首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Bonansco C  Buño W 《Hippocampus》2003,13(1):150-163
This article reports the cellular mechanisms underlying a form of intracellular "theta-like" (theta-like) rhythm evoked in vitro by microiontophoresis of N-methyl-D-aspartate (NMDA) at the apical dendrites of CA1 pyramidal neurons. Rhythmic membrane potential (Vm) oscillations and action potential (AP) bursts (approximately 6 Hz; approximately 20 mV; approximately 2-5 APs) were evoked in all cells. The response lasted approximately 2 s, and the initial oscillations were usually small (< 20 mV) and below AP threshold. Rhythmic bursts were never evoked by imposed depolarization in the absence of NMDA. Block of Na+ conductance with tetrodotoxin (TTX) (1.5 microM), of non-NMDA receptors with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (20 microM) and of synaptic inhibition by bicuculline (50 microM) and picrotoxin (50 microM) did not prevent NMDA oscillation. Inhibition of the voltage dependence of the NMDA conductance in Mg2+-free Ringer's solution blocked oscillations. Preventing Ca2+ influx with Ca2+-free and Co2+ (2-mM) solutions and block of the slow Ca2+-dependent afterhyperpolarization (sAHP) by carbamilcholine (5 microM), isoproterenol (10 microM), and intracellular BAPTA blocked NMDA oscillations. Inhibition of L-type Ca2+ conductance with nifedipine (30 microM) reduced oscillation amplitude. Block of tetraethylammonium (TEA) (10 mM) and 4AP (10 mM)-sensitive K+ conductance increased the duration and amplitude, but not the frequency, of oscillations. In conclusion, theta-like bursts relied on the voltage dependence of the NMDA conductance and on high-threshold Ca2+ spikes to initiate and boost the depolarizing phase of oscillations. The repolarization is initiated by TEA-sensitive K+ conductance and is controlled by the sAHP. These results suggest a role of interactions between NMDA conductance and intrinsic membrane properties in generating the CA1 theta-rhythm.  相似文献   

2.
Entorhinal inputs reach the hippocampal CA1 field through a trisynaptic circuit involving dentate granule cells and CA3 pyramidal neurons, as well as through a monosynaptic path ending on the distal apical dendrites of CA1 pyramidal cells. The influence of monosynaptic entorhinal inputs onto CA1 operations is poorly understood. In this study, we characterized the involvement of the monosynaptic pathway in the generation of the fast CA1 oscillation bursts (30–60 Hz) that occur in the dorsal hippocampus of anaesthetized guinea-pigs after partial cortex removal. Using multiple-site extracellular and intracellular recording, we found that in this particular preparation, devoid of theta rhythm, fast oscillations are temporally coherent over a large portion of the CA1 region along the hippocampal septotemporal axis. Current source density analysis revealed that fast CA1 oscillations involve two dipoles reflecting synchronous synaptic activities in the stratum lacunosum-moleculare of the hippocampus proper and in the stratum moleculare of the dentate gyrus. These layers constitute the two major termination zones of entorhinal afferents, suggesting that the entorhinal cortex entrains fast CA1 oscillations. This hypothesis was corroborated by the concomitant occurrence of fast oscillation bursts in the entorhinal cortex and CA1 region. Furthermore, fast CA1 oscillations were abolished by lidocaine or tetrodotoxin injections in the entorhinal cortex. Finally, acute interruption of the hippocampal trisynaptic loop did not affect the stratum lacunosum-moleculare dipole recorded extracellularly, but also intracellularly, as high-frequency postsynaptic potentials in CA1 pyramidal cells. These results indicate that the monosynaptic pathway is involved in the genesis of fast CA1 oscillations.  相似文献   

3.
J Larson  G Lynch 《Brain research》1988,441(1-2):111-118
Short bursts of high frequency stimulation produce maximal long-term potentiation (LTP) at Schaffer-commissural synapses on CA1 neurons in hippocampal slices when the bursts are spaced 200 ms apart. A burst to one input (S1) does not induce LTP but 'primes' the postsynaptic neurons such that 200 ms later the postsynaptic response to a burst to a second input (S2) is greatly enhanced and LTP is induced. The role of N-methyl-D-aspartate (NMDA) receptors in this response enhancement and LTP induction was studied by perfusing slices with the NMDA antagonist, 2-amino-5-phosphonovalerate (AP5). AP5 (100 microM) had no effect on the field excitatory postsynaptic potential evoked by single pulse stimulation, but completely eliminated both the decremental short-term potentiation (lasting less than 10 min) and stable LTP effects elicited by burst stimulation. AP5 reduced the response to a non-primed burst by about 10% and reduced the relative enhancement of a primed burst response by about 35%. These results indicate that part of the postsynaptic response to a primed burst is mediated by NMDA receptors and that this component is necessary for all forms of synaptic potentiation (including LTP) resulting from burst stimulation. The similarity of the short bursts with the complex-spike discharges of hippocampal neurons as well as the 200 ms optimal interval with the period of the hippocampal theta-rhythm suggest links between theta and the NMDA receptor in the induction of hippocampal synaptic plasticity.  相似文献   

4.
The efficacy of stimulation patterns consisting of brief high frequency bursts repeated at various intervals to induce long-term potentiation (LTP) at synapses on apical and basal dendrites of CA1 hippocampal neurons was tested in vitro. Both apical and basal dendritic synapses exhibited maximal LTP after bursts repeated at 5-10 Hz, i.e. close to the frequency of the endogenous hippocampal theta rhythm. As at apical dendritic synapses, LTP at basal dendritic synapses was blocked by an antagonist of NMDA receptors. Basal dendritic LTP was significantly greater in magnitude than apical dendritic LTP, although the reason for this is unknown.  相似文献   

5.
The hippocampus is a key brain structure for the encoding of new experiences and environments. Hippocampal activity shows distinct oscillatory patterns, but the relationships between oscillations and memory are not well understood. Here we describe bursts of hippocampal approximately 23-30 Hz (beta2) oscillations in mice exploring novel, but not familiar, environments. In marked contrast to the relatively invariant approximately 8 Hz theta rhythm, beta2 power was weak during the very first lap of the novel environment, increased sharply as the mice reencountered their start point, then persisted for only a few minutes. Novelty-evoked oscillations reflected precise synchronization of individual neurons, and participating pyramidal cells showed a selective enhancement of spatial specificity. Through focal viral manipulations, we found that novelty-evoked oscillations required functional NMDA receptors in CA3, a subregion critical for fast oscillations in vitro. These findings suggest that beta2 oscillations indicate a hippocampal dynamic state that facilitates the formation of unique contextual representations.  相似文献   

6.
The multiunit activity in the medial septal–diagonal band complex (MSDB) and field potentials of the hippocampus were simultaneously recorded in waking healthy rabbits (control) and in the same animals that were then exposed to kindling stimulation of the perforant path. In the control, the bursts of spikes in one group of rhythmic MSDB neurons phase-locked to the top of theta waves in the hippocampus, and in the second group, to the trough of these waves. The stimulation evoked seizure afterdischarges in the hippocampus and seizure bursts of spikes separated by periods of inhibition in MSDB neurons. In the first group of septal cells, seizure bursts coincided with inhibitory periods between afterdischarges in the hippocampus; in the second group, these bursts were observed during seizure afterdischarges, suggesting that different MSDB cells play opposite roles in the development of seizures. Evoked afterdischarges were spontaneously followed by recurrent ictal events; neuronal oscillations at the theta (6–7 Hz) or “twice-theta” frequency (12–14 Hz) preceded these secondary epileptic discharges. As a result of kindling, interictal spikes were recorded in the hippocampus; at the same time, synchronous bursts of many cells appeared in the MSDB. In the epileptic brain, the frequency of both the hippocampal theta rhythm and MSDB neuronal theta bursts increased; in the septum, an augmentation of neuronal rhythmicity was also observed. Theta oscillations, either spontaneous or evoked by sensory stimulation, abolished the epileptiform events. Evidently, the activities within the theta range during preictal and interictal periods are of different significance in the generation of seizures.  相似文献   

7.
During working memory tasks, the hippocampus exhibits synchronous theta‐band activity, which is thought to be correlated with the short‐term memory maintenance of salient stimuli. Recent studies indicate that the hippocampus contains the necessary circuitry allowing it to generate and sustain theta oscillations without the need of extrinsic drive. However, the cellular and network mechanisms supporting synchronous rhythmic activity are far from being fully understood. Based on electrophysiological recordings from hippocampal pyramidal CA1 cells, we present a possible mechanism for the maintenance of such rhythmic theta‐band activity in the isolated hippocampus. Our model network, based on the Hodgkin‐Huxley formalism, comprising pyramidal neurons equipped with calcium‐activated nonspecific cationic (CAN) ion channels, is able to generate and sustain synchronized theta oscillations (4–12 Hz), following a transient stimulation. The synchronous network activity is maintained by an intrinsic CAN current (ICAN), in the absence of constant external input. When connecting the pyramidal‐CAN network to fast‐spiking inhibitory interneurons, the dynamics of the model reveal that feedback inhibition improves the robustness of fast theta oscillations, by tightening the synchronization of the pyramidal CAN neurons. The frequency and power of the theta oscillations are both modulated by the intensity of the ICAN, which allows for a wide range of oscillation rates within the theta band. This biologically plausible mechanism for the maintenance of synchronous theta oscillations in the hippocampus aims at extending the traditional models of septum‐driven hippocampal rhythmic activity. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
Intracellular records of theta rhythm in hippocampal CA1 cells of the rat   总被引:4,自引:0,他引:4  
Lai-Wo S. Leung  Chi Yiu Yim   《Brain research》1986,367(1-2):323-327
In the urethane-anesthetized rat, intracellular recordings from hippocampal CA1 cells, some of them identified as projection (probably pyramidal) cells, showed oscillations of the resting membrane potential in the theta frequency range ('intracellular theta rhythm') which is phase-locked to the extracellularly recorded theta rhythm. Current injection or acetate ion diffusion, which reversed an inhibitory postsynaptic potential (IPSP) evoked by alvear stimulation, inverted the phase relationship between intracellular and extracellular theta rhythms. A high correlation was also found between amplitudes of the intracellular theta and the evoked IPSP at different membrane potentials. These results indicate that hippocampal theta rhythm in the urethane-anesthetized rat is predominantly caused by a rhythmic modulation of impinging IPSPs on pyramidal cells.  相似文献   

9.
Previous studies have shown that pyramidal neurons in hippocampal regions CA1 and CA3 are selectively vulnerable in several neurodegenerative disorders and that a subpopulation of pyramidal neurons in cell cultures of embryonic hippocampus are sensitive to glutamate neurotoxicity. In order to determine whether the patterns of cell loss seen in situ correlate with intrinsic differences in neuronal sensitivities to glutamate-induced degeneration acquired during development, we characterized cultures established from different regions of postnatal rat hippocampus and then examined neuronal sensitivity to glutamate. Tissue corresponding to the dentate gyrus (DG) and regions CA1, CA2 and CA3 of Ammon's horn was removed by microdissection from transverse hippocampal slices and was used to establish cultures of dissociated cells. Cultures from all 4 regions contained 3 major morphological classes of neurons; pyramidal-like, bipolar and stellate. Pyramidal-like neurons comprised the majority of neurons in all cultures; these neurons extended one long and branching axon, and one or more short dendrites. Immunocytochemistry showed that all neurons possessed high levels of glutamate-like and gamma-aminobutyric acid (GABA)-like immunoreactivity when grown in isolation. In contrast, when bipolar and pyramidal neurons were cultured in contact with glial cells, glutamate and GABA immunoreactivity were selectively reduced in the bipolar and pyramidal cells, respectively, suggesting that cell interactions influence neurotransmitter phenotype. Subpopulations of hippocampal neurons from each hippocampal region were vulnerable to glutamate-induced neurotoxicity. Bipolar and stellate cells were resistant to glutamate, while pyramidal-like neurons showed varying degrees of sensitivity to glutamate depending upon which region they were taken from. Experiments with specific glutamate receptor agonists and antagonists demonstrated that both non N-methyl-D-aspartic acid (NMDA) receptors and NMDA receptors mediated glutamate-induced degeneration. There were clear differences in the vulnerability of the pyramidal-like neuron populations in cultures from the different hippocampal regions. The rank order of the vulnerability of pyramidal-like neurons to glutamate-induced neurodegeneration between regions in culture was: DG less than CA2 less than CA3 less than CA1. This pattern of selective vulnerability in cell culture corresponds directly to the pattern of selective cell loss seen in situ in Alzheimer's disease, epilepsy, and stroke suggesting that intrinsic neuronal differences in glutamate sensitivity may be involved in these disorders.  相似文献   

10.
Encoding of novel information has been proposed to rely on the time‐locked release of dopamine in the hippocampal formation during novelty detection. However, the site of novelty detection in the hippocampus remains a matter of debate. According to current models, the CA1 and the subiculum act as detectors and distributors of novel sensory information. Although most CA1 pyramidal neurons exhibit regular‐spiking behavior, the majority of subicular pyramidal neurons fire high‐frequency bursts of action potentials. The present study investigates the efficacy of dopamine D1/D5 receptor activation to facilitate the induction of activity‐dependent long‐term potentiation (LTP) in rat CA1 regular‐spiking and subicular burst‐spiking pyramidal cells. Using a weak stimulation protocol, set at a level subthreshold for the induction of LTP, we show that activation of D1/D5 receptors for 5–10 min facilitates LTP in subicular burst‐spiking neurons but not in CA1 neurons. The results demonstrate that D1/D5 receptor‐facilitated LTP is NMDA receptor‐dependent, and requires the activation of protein kinase A. In addition, the D1/D5 receptor‐facilitated LTP is shown to be presynaptically expressed and relies on presynaptic Ca2+ signaling. The phenomenon of dopamine‐induced facilitation of presynaptic NMDA receptor‐dependent LTP in subicular burst‐spiking pyramidal cells is in accordance with observations of the time‐locked release of dopamine during novelty detection in this brain region, and reveals an intriguing mechanism for the encoding of hippocampal output information.  相似文献   

11.
Intracellular theta-rhythm generation in identified hippocampal pyramids   总被引:2,自引:0,他引:2  
The hippocampal EEG and the transmembrane potential of CA1-CA3 hippocampal pyramids were recorded in curarized and urethanized rats. Pyramids were identified by antidromic driving and intracellular staining with Lucifer yellow. During theta-rhythm most pyramids showed 10-20 mV sustained depolarizations and potential oscillations either consisting of 5-10 mV smooth sine-like waves or slow spikes of up to 60 mV. Fast Na+ and slow, probably Ca2+-mediated, spikes were triggered by depolarizing pulses or spontaneously. Depolarizations greater than 15 mV triggered rhythmic slow spikes at theta-frequency, but if less than 15 mV, slow spikes were irregular and at lower rates. With depolarizations of less than 10 mV, no slow spikes were triggered. Sine-like intracellular theta-wave amplitudes increased with hyper- and decreased with depolarizing pulses, showing the behavior of rhythmic EPSPs. Periodic fast spike bursts were theta-correlated. Cells with intracellular theta could either fire periodic fast spike bursts or at random, but always at a preferred phase of the theta-wave. Slow spikes were generated above a potential threshold by a slow depolarization and driven by periodic EPSPs. Intracellular theta is the reflection of EPSPs and of slow spikes; the oscillatory phenomena are not exclusively generated, as previously hypothesized, by network properties which may, however, contribute as tuning and modulatory elements. The determining events in intracellular theta-generation are the intrinsic biophysical characteristics of the pyramidal neuron membrane.  相似文献   

12.
Microinfusion of N-methyl-D-aspartate (NMDA) into apical dendrites of hippocampal CA1 pyramidal cells of urethane-anesthetized rats resulted in long lasting (20-30 min) induction of hippocampal synchrony at the field and cellular level. Power but not frequency of NMDA-induced theta was significantly greater than tail pinch-induced theta activity. This effect was antagonized by intrahippocampal infusion of AP5, but unaffected by i.v. atropine sulfate. During AP5 blockade tail pinch theta frequency and power were significantly reduced. Microinfusion of NMDA into the medial septum also resulted in long lasting induction of hippocampal theta field activity. Contrary to the results of hippocampal NMDA microinfusions, frequency but not power of NMDA-induced theta was significantly greater than tail pinch- induced theta activity. Microinfusion of AP5 into the medial septum significantly lowered power of tail pinch-induced theta but did not affect frequency. Wheel running behavior of rats induced by low levels of electrical stimulation of the posterior hypothalamic nucleus (PH) was completely abolished by microinfusion of AP5 into the medial septum, accompanied by a significant reduction in theta power and frequency. Wheel running and theta were maintained at control levels with high intensity PH stimulation. We propose that: (1) the glutamatergic septohippocampal projection represents a third pathway capable of generating hippocampal field and cellular synchrony, independent of that generated by the septohippocampal cholinergic and GABAergic projections, and (2) the septohippocampal glutamatergic projection serves to function as an interface between cholinergic and GABAergic modulated sensory processing Type 2 theta and movement related Type 1 theta.  相似文献   

13.
A slow (0.5-4 Hz) oscillation of thalamic neurons was recently described and attributed to the interplay of two intrinsic currents. In this study, we investigated the network modulation of this intrinsic thalamic oscillation within the frequency range of EEG sleep delta-waves. We performed intracellular and extracellular recordings of antidromically identified thalamocortical cells (n = 305) in sensory, motor, associational, and intralaminar nuclei of anesthetized cats. At the resting membrane potential, Vm (-60.3 +/- 0.4 mV, mean +/- SE), cortical stimulation induced spindle-like oscillations (7-14 Hz), whereas at Vm more negative than -65 mV the same stimuli triggered an oscillation within the EEG delta-frequency (0.5-4 Hz), consisting of low-threshold spikes (LTSs) followed by after hyperpolarizing potentials (AHPs). The LTS-AHP sequences outlasted cortical stimuli as a self-sustained rhythmicity at 1-2 Hz. Corticothalamic stimuli were able to transform subthreshold slow (0.5-4 Hz) oscillations, occurring spontaneously at Vm more negative than -65 mV, into rhythmic LTSs crowned by bursts of Na+ spikes that persisted for 10-20 sec after cessation of cortical volleys. Cortical volleys also revived a hyperpolarization-activated slow oscillation when it dampened after a few cycles. Auto- and crosscorrelograms of neuronal pairs revealed that unrelated cells became synchronized after a series of corticothalamic stimuli, with both neurons displaying rhythmic (1-2 Hz) bursts or spike trains. Since delta-thalamic oscillations, prevailing during late sleep stages, are triggered at more negative Vm than spindles characterizing the early sleep stage, we postulate a progressive hyperpolarization of thalamocortical neurons with the deepening of the behavioral state of EEG-synchronized sleep. In view of the evidence that cortical-elicited slow oscillations depend on synaptically induced hyperpolarization of thalamocortical cells, we propose that the potentiating influence of the corticothalamic input results from the engagement of two GABAergic thalamic cell classes, reticular and local-circuit neurons. The thalamocorticothalamic loop would transfer the spike bursts of thalamic oscillating cells to cortical targets, which in turn would reinforce the oscillation by direct pathways and/or indirect projections relayed by reticular and local-circuit thalamic cells. Stimulation of mesopontine cholinergic [peribrachial (PB) and laterodorsal tegmental (LDT)] nuclei in monoamine-depleted animals had an effect that was opposite to that exerted by corticothalamic volleys. PB/LDT stimulation reduced or suppressed the slow (1-4 Hz) oscillatory bursts of high-frequency spikes in thalamic cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Previously, research elucidating steroid hormone actions in the central nervous system has focused on their role in sexual reproduction and maintaining homeostasis. The hippocampus is a target of steroid modulation and is involved in the development of emotional behavior and memory storage. Area CA1 of the hippocampus contains a high density of androgen receptor (AR) and N-methyl-D-aspartate (NMDA) receptors. NMDA receptors underlie excitatory synaptic transmission and excitotoxicity in CA1 neurons. The effects of AR activation on the neurophysiology of hippocampal pyramidal neurons is unknown. Standard intracellular recording techniques in hippocampal slices were used to investigate the effects of the non-aromatizable androgen, 5-α-dihydrotestosterone-proprionate (DHTP), on CA1 pyramidal cell characteristics and NMDA receptor-mediated responses. Male Sprague-Dawley rats were unoperated, sham-operated (SHAM), gonadectomized (GDX), or gonadectomized with DHTP replacement therapy (GDX + DHTP). Neuronal AR was saturated by DHTP treatment as determined by binding studies and immunocytochemistry. Chronic DHTP treatment increased the action potential duration and decreased the fast afterhyperpolarization (fAHP) amplitude. To test the effect of DHTP on glutamate receptor-mediated responses, hippocampal slices were exposed to increasing concentrations of NMDA. In pyramidal cells from SHAM and GDX-treated animals, 30 μM NMDA induced an irreversible depolarization; the membrane potential of pyramidal cells from GDX + DHTP-treated animals recovered to baseline. The effect of DHTP was time dependent, implicating protein synthetic mechanisms. Our findings demonstrate that androgens can influence pyramidal cell characteristics and neurotransmitter-evoked actions in hippocampal CA1 pyramidal cells. © 1996 Wiley-Liss, Inc.  相似文献   

15.
It is thought that CA3 pyramidal neurons communicate mainly through bursts of spikes rather than so-called trains of regular firing action potentials. Reports of both burst firing and nonburst firing CA3 cells suggest that they may fire with more than one output pattern. With the use of whole-cell recording methods we studied the firing properties of rat hippocampal pyramidal neurons in vitro within the CA3b subregion and found three distinct types of firing patterns. Approximately 37% of cells were regular firing where spikes generated by minimal current injection (rheobase) were elicited with a short latency and with stronger current intensities trains of spikes exhibited spike frequency adaptation (SFA). Another 46% of neurons exhibited a delayed onset at rheobase with a weakly-adapting firing pattern upon stronger stimulation. The remaining 17% of cells showed a burst-firing pattern, though only elicited in response to strong current injection and spontaneous bursts were never observed. Control experiments indicated that the distinct firing patterns were not due to our particular slicing methods or recording techniques. Finally, computer modeling was used to identify how relative differences in K+ conductances, specifically K(C), K(M), and K(D), between cells contribute to the different characteristics of the three types of firing patterns observed experimentally.  相似文献   

16.
Pituitary adenylate cyclase-activating polypeptide (PACAP), a neurotrophic and neuromodulatory peptide, was recently shown to enhance NMDA receptor-mediated currents in the hippocampus (Macdonald, et al. 2005. J Neurosci 25:11374-11384). To check if PACAP might also modulate AMPA receptor function, we tested its effects on AMPA receptor-mediated synaptic currents on CA1 pyramidal neurons, using the patch clamp technique on hippocampal slices. In the presence of the NMDA antagonist D-AP5, PACAP (10 nM) reduced the amplitude of excitatory postsynaptic currents (EPSCs) evoked in CA1 pyramidal neurons by stimulation of Schaffer collaterals. Following a paired-pulse stimulation protocol, the paired-pulse ratio was unaffected in most neurons, suggesting that the AMPA-mediated EPSC was modulated by PACAP mainly at a postsynaptic level. PACAP also modulated the currents induced on CA1 pyramidal neurons by applications of either glutamate or AMPA. The effects of PACAP were dose-dependent: at a 0.5 nM dose, PACAP increased AMPA-mediated current; such effect was blocked by PACAP 6-38, a selective antagonist of PAC1 receptors. The enhancement of AMPA-mediated current by PACAP 0.5 nM was abolished when cAMPS-Rp, a PKA inhibitor, was added to the intracellular solution. At a 10 nM concentration, PACAP reduced AMPA-mediated current; such effect was not blocked by PACAP 6-38. The inhibitory effect of 10 nM PACAP was mimicked by Bay 55-9837 (a selective agonist of VPAC2 receptors), persisted in the presence of intracellular BAPTA and was abolished by intracellular cAMPS-Rp. Stimulation-evoked EPSCs in CA1 neurons were significantly reduced following application of the PAC1 antagonist PACAP 6-38; this result indicates that PAC1 receptors in the CA1 region are tonically activated by endogenous PACAP and enhance CA3-CA1 synaptic transmission. Our results show that PACAP differentially modulates AMPA receptor-mediated current in CA1 pyramidal neurons by activation of PAC1 and VPAC2 receptors, both involving the cAMP/PKA pathway; the functional significance will be discussed in light of the multiple effects exerted by PACAP on the CA3-CA1 synapse at different levels.  相似文献   

17.
Gao ZB  Chen XQ  Hu GY 《Brain research》2006,1111(1):41-47
The red wine polyphenol trans-resveratrol has been found to exert potent protective actions in a variety of cerebral ischemia models. The neuroprotection by trans-resveratrol thus far is mainly attributed to its intrinsic antioxidant properties. In the present study, the effects of the red wine polyphenol on excitatory synaptic transmission were investigated in the CA1 region of rat hippocampal slices. Perfusion with trans-resveratrol (10-100 microM) caused a concentration-dependent inhibition on the filed excitatory postsynaptic potentials (the field EPSPs) without detectable effect on the presynaptic volleys. The inhibition had a slow onset and was reversible. Trans-resveratrol (30 microM) did not change the ratios of paired-pulse facilitation of the field EPSPs tested at intervals of 20, 40 and 80 ms, nor did it alter the membrane properties of postsynaptic CA1 pyramidal neurons. However, trans-resveratrol (30 microM) significantly suppressed glutamate-induced currents in postsynaptic CA1 pyramidal neurons. In dissociated hippocampal neurons, the IC(50) value of trans-resveratrol in inhibition of glutamate-induced currents was 53.3+/-9.4 microM. Kainite and NMDA receptors were more sensitive to the red wine polyphenol than AMPA receptors. The present study for the first time demonstrates that trans-resveratrol inhibits the postsynaptic glutamate receptors, which probably works in concert with its antioxidant action for ameliorating the brain ischemic injury. The findings also support the future use of trans-resveratrol in the treatment of various neurodegenerative disorders.  相似文献   

18.
The potential toxic effects of the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and its interactions with the N-methyl-D-aspartate (NMDA) receptor were studied in hippocampal brain slice cultures, using densitometric measurements of the cellular uptake of propidium iodide (PI) to quantify neuronal degeneration. Cultures exposed to ACPD, showed a concentration (2-5 mM) and time (1-4 days) dependent increase in PI uptake in CA1, CA3 and dentate subfields after 24 h and 48 h of exposure, with CA1 pyramidal cells being most sensitive. The neurodegeneration induced by 2 mM ACPD was completely abolished by addition of 10 microM of the NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), while 20 microM of the 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainic acid receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) had no effect. Co-exposing cultures to a subtoxic dose of 300 microM ACPD together with 10 microM NMDA, which at this dose is known to induce a fairly selective degeneration of CA1 pyramidal cells, significantly increased the PI uptake in both CA1 and CA3, compared to cultures exposed to 10 microM NMDA only. Adding the 300 microM ACPD as pretreatment for 30 min followed by a 30 min wash in normal medium before the ACPD/NMDA co-exposure, eliminated the potentiation of NMDA toxicity. The potentiation was also blocked by addition of 10 or 100 microM 2-methyl-6-(phenylethynyl)pyridine (MPEP) (mGluR5 antagonist) during the co-exposure, while a corresponding addition of 10 or 100 microM 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) (mGluR1 antagonist) had no effect. We conclude that, stimulation of metabotropic glutamate receptors with ACPD at concentrations of 2 mM or higher induces a distinct subfield-related and time and concentration dependent pattern of hippocampal degeneration, and that ACPD at subtoxic concentrations modulates NMDA-induced excitotoxicity through the mGluR5 receptor in a time dependent way.  相似文献   

19.
The hippocampal region of the brain is important for encoding environment inputs and memory formation. However, the underlying mechanisms are unclear. To investigate the behavior of indi-vidual neurons in response to somatosensory inputs in the hippocampal CA1 region, we recorded and analyzed changes in local ifeld potentials and the ifring rates of individual pyramidal cells and interneurons during tail clamping in urethane-anesthetized rats. We also explored the mechanisms underlying the neuronal responses. Somatosensory stimulation, in the form of tail clamping, chan-ged local ifeld potentials into theta rhythm-dominated waveforms, decreased the spike ifring of py-ramidal cells, and increased interneuron ifring. In addition, somatosensory stimulation attenuated orthodromic-evoked population spikes. These results suggest that somatosensory stimulation sup-presses the excitability of pyramidal cells in the hippocampal CA1 region. Increased inhibition by local interneurons might underlie this effect. These ifndings provide insight into the mechanisms of signal processing in the hippocampus and suggest that sensory stimulation might have thera-peutic potential for brain disorders associated with neuronal hyperexcitability.  相似文献   

20.
We tested the hypothesis that presynaptic GABA(B) receptors on glutamatergic terminals (GABA(B) heterosynaptic receptors) decreased in efficacy after partial hippocampal kindling. Rats were implanted with chronically indwelling electrodes and 15 hippocampal afterdischarges were evoked by high-frequency electrical stimulation of hippocampal CA1. Control rats were implanted with electrodes but not given high-frequency stimulations. One to 21 days after the last afterdischarge, excitatory postsynaptic potentials (EPSPs) were recorded in CA1 of hippocampal slices in vitro, following stimulation of the stratum radiatum. Field EPSPs (fEPSPs) were recorded in CA1 stratum radiatum and intracellular EPSPs (iEPSPs) were recorded from CA1 pyramidal cells. GABA(B) receptor agonist +/- baclofen (10 microM) in the bath suppressed the fEPSPs significantly more in control than kindled rats, at 1 or 21 days after kindling. Similarly, baclofen (10 microM) suppressed iEPSPs more in the control than the kindled group of neurons recorded at 1 day after kindling. Suppression of the fEPSPs by 1 microM N(6)-cyclopentyladenosine, which acted on presynaptic A1 receptors, was not different between kindled and control rats. Activation of the GABA(B) heteroreceptors by a conditioning burst stimulation of CA3 afferents suppressed the iEPSPs evoked by a test pulse. The suppression of the iEPSPs at 250-500 ms condition-test interval was larger in control than kindled groups of neurons. It was concluded that the efficacy of presynaptic GABA(B) receptors on the glutamatergic terminals was reduced after partial hippocampal kindling. The reduction in heterosynaptic presynaptic GABA(B) receptor efficacy will increase glutamate release and seizure susceptibility, particularly during repeated neural activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号