首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Murphy LB  Loney C  Murray J  Bhella D  Ashton P  Yeo RP 《Virology》2003,307(1):143-153
Bacterially expressed nucleocapsid (N) protein, from respiratory syncytial virus (RSV), was used to investigate RNA binding in a modified North-Western blotting protocol. The recombinant protein demonstrated no sequence specificity in binding RNA representing either the antigenomic leader sequence or the nonspecific sequence derived from a plasmid vector. When recombinant N was purified on CsCl gradients, two types of structure, both with densities indicating that they contained RNA, could be visualised by negative-stain electron microscopy. Structures similar to nucleocapsids (NC) from RSV-infected cells were observed, as were ring structures. A small fragment of the N (amino acids 1-92) was all that was required for the production of NC-like structures. Another mutant with an internal deletion could form rings but not NC-like structures. This suggests that this domain (amino acids 121-160) may be important for maintaining helical stability. Further analysis has also identified a potential site in the amino-terminus that may be involved in an interaction with the phosphoprotein. A domain model of the RSV N protein is presented which, similar to that of other paramyxoviruses, supports the idea that the amino-terminus is important for NC assembly.  相似文献   

3.
The nucleotide sequence of the gene encoding the major nucleocapsid (N) protein of bovine respiratory syncytial virus (BRSV) has been determined. The N mRNA is 1196 nucleotides long with a single, large open reading frame. The derived polypeptide has 391 amino acids corresponding to a calculated molecular weight of 42,600 Da. This is in agreement with the molecular weight of 43,000 Da determined for the BRSV N protein by SDS-polyacrylamide gel electrophoresis (PAGE). Comparison of the nucleotide sequence of BRSV N gene with the sequence of the N gene of human respiratory syncytial virus (HRSV) revealed a homology of 80.7%. There is a 93.3% homology at the amino acid level between the N proteins of BRSV and HRSV. The 5'- and 3'-terminal untranslated sequences that are conserved among HRSV mRNAs were also identified in the N mRNA of BRSV. The results indicate that the N genes are highly conserved in the bovine and human strains of respiratory syncytial virus.  相似文献   

4.
Summary. The yeast two-hybrid system has been used to identify domains of the Newcastle disease virus (NDV) phosphoprotein (P) involved in self-association and interaction with the nucleocapsid protein (NP). Deletion analysis was used to map the domain(s) of the P protein involved in P:P and P:NP interactions. The C-terminal 45 amino acids (residues 247–291) were shown to play a major role in both of the interactions. Comparison of these findings with other reports suggests that paramyxoviruses are different with respect to interaction domain(s) between these two essential viral proteins involved in genome replication.  相似文献   

5.
D Shaji  M S Shaila 《Virology》1999,258(2):415-424
The yeast two-hybrid system was used to identify domains involved in specific in vivo interactions between the Rinderpest virus (RPV) phosphoprotein (P) and nucleocapsid protein (N). N and P genes were cloned in both the yeast GAL4 DNA-binding and GAL4 activation domain vectors, which enabled analysis of self and interprotein interactions. Mapping of the domain of P protein involved in its association with itself revealed that the COOH-terminal 32 amino acids (316-347) that forms a part of the highly conserved coiled coil region is important for interaction. In addition, just the coiled coil region of RPV P protein fused to the DNA-binding domain and activation domain of GAL4 was found to be sufficient to bring about activation of the beta-galactosidase reporter. Similarly, mapping of the domains of P protein involved in its interaction with N protein revealed that NH2-terminal 59 amino acids and COOH-terminal 32 amino acids (316-347) involved in P-P interaction are simultaneously required for association with N protein. Interestingly, a P protein mutant with just the NH2-terminal 59 amino acids and the coiled coil domain with all other P protein regions deleted retained its ability to interact with N protein. Furthermore, we were able to show N and P protein interaction in vitro using recombinant N and P proteins expressed in Escherichia coli, demonstrating the existence of direct physical interaction between the two proteins.  相似文献   

6.
7.
8.
R A Lerch  K Anderson  V L Amann  G W Wertz 《Virology》1991,181(1):118-131
Bovine respiratory syncytial (BRS) virus is an important cause of serious respiratory illness in calves. The disease caused in calves is similar to that caused by human respiratory syncytial (HRS) virus in children. The two viruses, however, have distinct host ranges and the attachment glycoproteins, G, have no antigenic cross-reactivity. The fusion glycoproteins, F, of the HRS and BRS viruses, however, have some antigenic cross-reactivity. To further compare the BRS virus and HRS virus fusion proteins, we determined the nucleotide sequence of cDNA clones to the BRS virus F protein mRNA, deduced the amino acid sequence, and compared these sequences with the HRS virus F protein sequences. The BRS virus F mRNA was 1899 nucleotides in length and had a single major open reading frame which could code for a polypeptide of 574 amino acids with an estimated molecular weight of 63.8 kDa. Structural features predicted from the amino acid sequence included an NH2-terminal signal sequence (residues 1-26), a site for proteolytic cleavage (residues 131-136) to generate the disulfide-linked F1 and F2 subunits, and a hydrophobic transmembrane anchor sequence (residues 522-549). The nucleic acid identity between the BRS virus and the HRS virus F mRNA sequences was 71.5%. The predicted BRS virus F protein shared 80.5% overall amino acid identity with the HRS virus F protein with 89% identity in the F1 polypeptide but only 68% identity in the F2 polypeptide. The position and number of the cysteine residues in the F1 and F2 polypeptides were conserved among all F proteins. However, BRS virus F protein had only three potential N-linked carbohydrate acceptor sites in comparison to four or five for the HRS viruses. A difference in the extent of glycosylation between the BRS and HRS virus F2 polypeptides was shown to be responsible for differences observed in the electrophoretic mobility of these proteins. A cDNA containing the complete open reading frame of the BRS virus F mRNA was inserted into the thymidine kinase gene of vaccinia virus and following homologous recombination, a recombinant virus containing the BRS virus F gene was isolated. The BRS virus F protein was expressed in recombinant virus infected cells as demonstrated by immunoprecipitation and was transported to and expressed on the surface of infected cells as shown by indirect immunofluorescence.  相似文献   

9.
Summary The isolation and characterization of a bovine respiratory syncytial (RS) virus is described. Serological studies indicate that bovine RS virus is widespread in Iowa cattle and that it is involved in some outbreaks of respiratory disease. Experimental infection in calves indicates that the virus can cause illness in calves, particularly those with serum neutralizing antibody.  相似文献   

10.
Jeffree CE  Brown G  Aitken J  Su-Yin DY  Tan BH  Sugrue RJ 《Virology》2007,369(2):309-323
During respiratory syncytial virus (RSV) infection there is a close physical interaction between the filamentous actin (F-actin) and the virus, involving both inclusion bodies and the virus filaments. This interaction appears to occur relatively early in the replication cycle, and can be detected from 8 h post-infection. Furthermore, during virus assembly we obtained evidence for the participation of an F-actin-associated signalling pathway involving phosphatidyl-3-kinase (PI3K). Treatment with the PI3K inhibitor LY294002 prevented the formation of virus filaments, although no effect was observed either on virus protein expression, or on trafficking of the virus glycoproteins to the cell surface. Inhibition of the activity of Rac GTPase, a down-stream effector of PI3K, by treatment with the Rac-specific inhibitor NSC23766 gave similar results. These data suggest that an intimate interaction occurs between actin and RSV, and that actin-associated signalling pathway, involving PI3K and Rac GTPase, may play an important role during virus assembly.  相似文献   

11.
12.
K Anderson  A M King  R A Lerch  G W Wertz 《Virology》1992,191(1):417-430
We investigated the nature of the oligosaccharide modification of the glycosylated forms of the small hydrophobic integral membrane protein, SH (previously designated 1A), of respiratory syncytial (RS) virus. Analysis of SH protein expressed in cells infected with RS virus or with a recombinant vaccinia virus revealed two glycosylated SH protein species, SHg and SHp, which contained N-linked carbohydrate residues. SHp migrated diffusely on polyacrylamide gels, which suggested modification by polylactosaminoglycan oligosaccharides. Polylactosaminoglycan modification of SHp was established from three lines of investigation: (1) the synthesis of SHp in a cell line (IdID) conditionally defective in the ability to add specific carbohydrate residues to N- or O-linked oligosaccharide chains required the addition of galactose, which is a component of the N-acetyllactosamine repeating unit; (2) SHp was sensitive to digestion with endo-beta-galactosidase, which cleaves the beta 1-4 linkage between galactose and N-acetylglucosamine of the repeated N-acetyllactosamine subunit; and (3) SHp was selected by Datura stramonium lectin (Dsl), which has specificity for polylactosaminoglycans. The presence of SHp as a component of purified human subgroups A and B and bovine RS virus particles was demonstrated by Dsl affinity selection. In addition to SHp, nonglycosylated SHo was selected by Dsl affinity, indicating that SHp and SHo may associate to form complexes within infected cells and virus particles. To identify conserved amino acid residues among the human and bovine SH glycoproteins that may function as signals for polylactosaminoglycan modification, the nucleotide sequences of the SH protein genes of a human subgroup B virus (8/60) and a bovine virus (391-2) were determined and compared to those of a human subgroup A virus (A2), a subgroup B virus (18537), and a bovine virus (A51908). A comparison of the deduced amino acid sequences of the human and bovine RS virus SH proteins indicated that a central hydrophobic region and the presence of potential N-linked glycosylation sites on either side of the central hydrophobic region were conserved features that may be required for the polylactosaminoglycan modification of SH.  相似文献   

13.
The nucleocapsid (N) protein of bovine respiratory syncytial virus (BRSV) in the baculovirus expression system was evaluated as a source of antigen in an enzyme-linked immunosorbent assay (ELISA) for the detection of respiratory syncytial virus (RSV) antibodies. The recombinant N protein was purified from infected-cell extracts by sucrose gradient centrifugation and used in the ELISA for the detection of antibodies to various RSV strains. The ELISA was compared with the virus neutralization (VN) test for determining BRSV antibodies in 10 consecutive serum samples from four calves vaccinated with a live modified BRSV vaccine and from two nonvaccinated control calves. The ELISA compared favorably with the VN test for detecting serological responses. All serum samples which were positive in the VN test were also positive in the ELISA. None of the serum samples collected from the two nonvaccinated calves reacted in the ELISA. To determine the usefulness of the ELISA for epidemiological studies, 58 cattle serum samples were tested in the ELISA and the VN test. Approximately 94% (42 of 45) of field serum samples which were positive in the ELISA were also positive in the VN test. No case was found in which the ELISA result was negative and the VN test result was positive. Thirteen of the serum samples were negative in both methods. Our results indicate that the ELISA with the baculovirus-expressed N protein as an antigen is an efficient, sensitive, and specific method for detecting serum antibodies to RSV.  相似文献   

14.
Human respiratory syncytial virus is an important cause of severe respiratory disease in young children, the elderly, and in immunocompromised adults. Similarly, bovine respiratory syncytial virus (BRSV) is causing severe, sometimes fatal, respiratory disease in calves. Both viruses are pneumovirus and the infections with human respiratory syncytial virus and BRSV have similar clinical, pathological, and epidemiological characteristics. In this study we used experimental BRSV infection in calves as a model of respiratory syncytial virus infection to demonstrate important aspects of viral replication and clearance in a natural target animal. Replication of BRSV was demonstrated in the luminal part of the respiratory epithelial cells and replication in the upper respiratory tract preceded the replication in the lower respiratory tract. Virus excreted to the lumen of the respiratory tract was cleared by neutrophils whereas apoptosis was an important way of clearance of BRSV-infected epithelial cells. Neighboring cells, which probably were epithelial cells, phagocytized the BRSV-infected apoptotic cells. The number of both CD4(+) and CD8+ T cells increased during the course of infection, but the T cells were not found between the epithelial cells of the bronchi up until apoptosis was no longer detected, thus in the bronchi there was no indication of direct contact-dependent T-cell-mediated cytotoxicity in the primary infection.  相似文献   

15.
McDonald TP  Pitt AR  Brown G  Rixon HW  Sugrue RJ 《Virology》2004,330(1):147-157
The interaction between the respiratory syncytial virus (RSV) polymerase complex and lipid rafts was examined in HEp2 cells. Lipid-raft membranes were prepared from virus-infected cells and their protein content was analysed by Western blotting and mass spectrometry. This analysis revealed the presence of the N, P, L, M2-1 and M proteins. However, these proteins appeared to differ from one another in their association with these structures, with the M2-1 protein showing a greater partitioning into raft membranes compared to that of the N, P or M proteins. Determination of the polymerase activity profile of the gradient fractions revealed that 95% of the detectable viral enzyme activity was associated with lipid-raft membranes. Furthermore, analysis of virus-infected cells by confocal microscopy suggested an association between these proteins and the raft-lipid, GM1. Together, these results provide evidence that the RSV polymerase complex is able to associate with lipid rafts in virus-infected cells.  相似文献   

16.
J Murray  C Loney  L B Murphy  S Graham  R P Yeo 《Virology》2001,289(2):252-261
To investigate structure and biological properties of the nucleocapsid (N) protein of respiratory syncytial virus (RSV), we have generated a panel of 16 monoclonal antibodies, raised against recombinant N protein, and epitope mapped seven of these to three antigenic sites (Site I aa 16-30; Site II aa 341-350; Site III aa 351-365). Characterization by immunofluorescence and by immunoprecipitation assay demonstrated that a monoclonal antibody to antigenic site I can detect N protein complexed with phospho (P) protein. Antibodies to antigenic sites II and III, which are adjacent to each other near the carboxyl terminus of the N protein, have distinct properties. A site III monoclonal antibody detected N protein in cytoplasmic inclusion bodies and in the cytosol, but not when N was complexed to P protein, while the site II antibody reacted with N protein in the nucleocapsid fraction but did not detect cytosolic N protein. Further investigation into the reactivities of the antibodies after binding of P to N in vitro demonstrated that antigenic sites II and III were blocked by the interaction, indicating an involvement for the carboxy domain of N in the N-P interaction. This was confirmed by the ability of peptides from the carboxy terminus of N to inhibit the N-P interaction in vitro.  相似文献   

17.
18.
Summary The quarternary structure of respiratory syncytial virus (RSV) fusion protein has been studied. Crosslinking studies were done to stabilize the non-covalently associated proteins. These stable, heat-resistant, covalently linked complexes were analyzed by sodium dodecyl sulfate-polyacrylamide electrophoresis. In situ crosslinking studies demonstrated that the fusion protein of RSV exists as a dimer in its native form on the surface of infected cells. The purified protein was also found to be present predominantly as a dimer. In addition, the results suggest that F1 subunits may play a role in the dimerization of the fusion protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号