首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sim JA  Skynner MJ  Herbison AE 《Endocrinology》2001,142(10):4448-4453
The mechanisms through which gonadal steroids exert critical feedback actions upon the activity of the GnRH neurons are not understood. We have examined here whether progesterone may modulate the electrical activity of the GnRH neurons following its rapid metabolism to the neuroactive steroid allopregnanolone within the brain. Using an acute brain slice preparation, whole-cell, patch-clamp recordings were made from GnRH neurons of juvenile (postnatal d 15-20) and adult (postnatal d 60-70) female mice in the presence of tetrodotoxin. Progesterone (1 microM) was not observed to have any actions (up to 5 min exposure) upon GnRH neurons. However, allopregnanolone (500 nM-1 microM) exerted rapid (<1 min) effects upon the baseline membrane potential of all GnRH neurons and also significantly (P < 0.01) enhanced their GABA responses by up to 4-fold. All GABA and allopregnanolone responses were abolished by the GABA(A) receptor antagonist bicuculline. No differences were detected in the allopregnanolone sensitivity of GnRH neurons recorded from juvenile and adult GnRH neurons. These results provide the first evidence for a direct action of the neurosteroid allopregnanolone on postnatal GnRH neurons and suggest a new mechanism through which fluctuating progesterone levels may influence the secretory activity of these important neurons in the female mouse.  相似文献   

2.
Han SK  Todman MG  Herbison AE 《Endocrinology》2004,145(2):495-499
The effect of endogenous gamma-aminobutyric acid (GABA)(A) receptor-mediated signaling on the excitability of adult male and female GnRH neurons was examined using gramicidin perforated-patch electrophysiology in GnRH-LacZ and GnRH-GFP (green fluorescent protein) transgenic mouse models. In both lines of mice, approximately 80% of GnRH neurons (n = 42) responded to the selective GABA(A) receptor antagonist bicuculline (20 microm) with a rapid and reversible membrane depolarization and/or increase in firing rate. Approximately 16% of GnRH neurons gave no response, and two neurons were inhibited by bicuculline. The same depolarizing responses (78%) were obtained from adult gonadectomized GnRH-GFP mice. The depolarizing response to bicuculline persisted in the presence of tetrodotoxin, demonstrating that even action potential-independent GABA release was acting to reduce GnRH neuron membrane potential. These observations show that endogenous GABA signaling through the GABA(A) receptor exerts a powerful net inhibitory effect upon the excitability of mature GnRH neurons.  相似文献   

3.
It is well established that the GABA(A) receptor plays an important role in regulating the electrical excitability of GnRH neurons. Two different modes of GABA(A) receptor signaling exist: one mediated by synaptic receptors generating fast (phasic) postsynaptic currents and the other mediated by extrasynaptic receptors generating a persistent (tonic) current. Using GABA(A) receptor antagonists picrotoxin, bicuculline methiodide, and gabazine, which differentiate between phasic and tonic signaling, we found that ~50% of GnRH neurons exhibit an approximately 15-pA tonic GABA(A) receptor current in the acute brain slice preparation. The blockade of either neuronal (NO711) or glial (SNAP-5114) GABA transporter activity within the brain slice revealed the presence of tonic GABA signaling in ~90% of GnRH neurons. The GABA(A) receptor δ subunit is only found in extrasynaptic GABA(A) receptors. Using single-cell RT-PCR, GABA(A) receptor δ subunit mRNA was identified in GnRH neurons and the δ subunit-specific agonist 4,5,6,7-tetrahydroisoxazolo [5,4-c] pyridin-3-ol was found to activate inward currents in GnRH neurons. Perforated-patch clamp studies showed that 4,5,6,7-tetrahydroisoxazolo [5,4-c] pyridin-3-ol exerted the same depolarizing or hyperpolarizing effects as GABA on juvenile and adult GnRH neurons and that tonic GABA(A) receptor signaling regulates resting membrane potential. Together, these studies reveal the presence of a tonic GABA(A) receptor current in GnRH neurons that controls their excitability. The level of tonic current is dependent, in part, on neuronal and glial GABA transporter activity and mediated by extrasynaptic δ subunit-containing GABA(A) receptors.  相似文献   

4.
Han SK  Herbison AE 《Endocrinology》2008,149(3):1129-1135
Norepinephrine (NE) is considered to exert an important modulatory influence upon the activity of GnRH neurons. In the present study, we used a transgenic GnRH-green fluorescent protein mouse model to examine the effects of NE on the electrical excitability of GnRH neurons in male and female mice. Gramicidin-perforated patch recordings demonstrated that NE (10-100 mum) exerted a robust membrane hyperpolarization, with associated suppression of firing, in more than 85% of male prepubertal and adult GnRH neurons (n = 25). The same hyperpolarizing action was observed in female GnRH neurons from diestrous (91%, n = 11), proestrous (50%, n = 14), estrous (77%, n = 13), and ovariectomized (82%, n = 11) mice. A subpopulation (<10%) of silent GnRH neurons in all groups responded to NE with hyperpolarization followed by the initiation of firing upon NE washout. The hyperpolarizing actions of NE were mimicked by alpha1-adrenergic (phenylephrine) and beta-adrenergic (isoproterenol) receptor agonists, but alpha2 receptor activation (guanabenz) had no effect. Approximately 75% of the NE-evoked hyperpolarization was blocked by the alpha1 receptor antagonist prazosin, and 75% of GnRH neurons responded to both phenylephrine and isoproterenol. These findings indicate that NE acts through both alpha1- and beta-adrenergic receptors located on the soma/dendrites of GnRH neurons to directly suppress their excitability throughout the estrous cycle and after ovariectomy. These data force a reanalysis of existing models explaining the effects of NE on gonadotropin secretion.  相似文献   

5.
gamma-Aminobutyric acid (GABA) inhibits the embryonic migration of GnRH neurons and regulates hypothalamic GnRH release. A subset of GnRH neurons expresses GABA along their migratory route in the nasal compartment before entering the brain, suggesting that GABA produced by GnRH neurons may help regulate the migratory process. To examine this hypothesis and the possibility that persistence of GABA production by GnRH neurons may affect subsequent reproductive function, we generated transgenic mice in which the expression of glutamic acid decarboxylase-67 (GAD-67), a key enzyme in GABA synthesis, is targeted to GnRH neurons under the control of the GnRH gene promoter. On embryonic d 15, when GnRH neurons are still migrating, the transgenic animals had more GnRH neurons in aberrant locations in the cerebral cortex and fewer neurons reaching the hypothalamic-preoptic region, whereas migration into the brain was not affected. Hypothalamic GnRH content in mutant mice was low during the first week of postnatal life, increasing to normal values during infantile development (second week after birth) in the presence of increased pulsatile GnRH release. Consistent with these changes, serum LH and FSH levels were also elevated. Gonadotropin release returned to normal values by the time steroid negative feedback became established (fourth week of life). Ovariectomy at this time demonstrated an enhanced gonadotropin response in transgenic animals. Although the onset of puberty, as assessed by the age at vaginal opening and first ovulation, was not affected in the mutant mice, estrous cyclicity and adult reproductive capacity were disrupted. Mutant mice had reduced litter sizes, increased time intervals between deliveries of litters, and a shorter reproductive life span. Thus, GABA produced within GnRH neurons does not delay GnRH neuronal migration, but instead serves as a developmental cue that increases the positional diversity of these neurons within the basal forebrain. In addition, the results suggest that the timely termination of GABA production within the GnRH neuronal network is a prerequisite for normal reproductive function. The possibility arises that similar abnormalities in GABA homeostasis may contribute to syndromes of hypothalamic amenorrhea/oligomenorrhea in humans.  相似文献   

6.
Leupen SM  Tobet SA  Crowley WF  Kaila K 《Endocrinology》2003,144(7):3031-3036
In mature central neurons, chloride extrusion mediated by the K-Cl cotransporter KCC2 appears to be largely responsible for the Cl(-) driving force that allows gamma-aminobutyric acid(A) (GABA(A)) receptor activation to trigger a hyperpolarization. In its absence, GABA's effect is typically depolarizing and often excitatory. We examined the colocalization of KCC2 and GnRH in adult male and female mice using a combined in situ hybridization-immunofluorescence procedure. We found that KCC2 was localized to approximately 34% of GnRH neurons. This proportion was similar in females and males. However, females exhibited a marked rostrocaudal gradient of colocalization that was not seen in males. By contrast, KCC2 was localized to nearly all vasopressin neurons of the supraoptic nucleus. These results indicate that a substantial fraction of GnRH neurons may be depolarized and excited by GABA(A) receptor activation throughout life, supporting the existence of functionally heterogeneous subpopulations.  相似文献   

7.
Sullivan SD  Moenter SM 《Endocrinology》2004,145(3):1194-1202
Negative energy balance inhibits fertility by decreasing GnRH release; however, the mechanisms are not well understood. GnRH neurons can be excited by activation of gamma-aminobutyric acid (GABA)(A) receptors, and GABAergic neurons provide a major synaptic input. We hypothesized that permissive metabolic signals mediated by leptin and inhibitory signals conveyed by neuropeptide Y (NPY) and opiates rapidly alter GABA(A) receptor-mediated drive to GnRH neurons. In fed and fasted female mice, GABAergic postsynaptic currents (PSCs) were recorded from GnRH neurons before and after in vitro treatment with leptin, NPY, or met-enkephalin. Leptin increased PSC frequency in fed and fasted mice, indicating that it increased presynaptic activity. Leptin also increased PSC size. Inhibiting leptin receptor signaling pathways within GnRH neurons abolished the latter effect, indicating a direct action on these cells. In fed, but not fasted, mice, NPY and met-enkephalin decreased PSC frequency in an antagonist-reversible manner, but did not alter PSC size. NPY-1 receptor antagonists alone increased frequency in fed and fasted mice, as did opiate receptor blockade in fasted animals, suggesting that endogenous NPY and opiates modulate GABAergic drive to GnRH neurons. These data suggest that GABAergic afferents integrate metabolic signals for delivery to GnRH neurons. Decreased sensitivity to NPY and opiates in fasted mice indicate that these peptides send physiologically relevant signals regarding energy balance to GnRH neurons.  相似文献   

8.
GnRH neurons play a pivotal role in the central regulation of fertility. Kisspeptin greatly increases GnRH/LH release and GnRH neuron firing activity and may be involved in estradiol feedback, but the neurobiological mechanisms for these actions are unknown. G protein-coupled receptor 54, the receptor for kisspeptin, is expressed by GnRH neurons as well as other hypothalamic neurons, suggesting both direct and indirect effects are possible. To investigate this and determine whether kisspeptin activation of GnRH neurons is estradiol sensitive, we recorded the firing rate of GnRH neurons in brain slices from adult female mice that were ovariectomized (OVX) and either treated with estradiol (E) capsules (OVX+E) or left without further treatment. Kisspeptin increased GnRH neuronal activity in a dose-dependent manner in cells from both OVX and OVX+E mice, and estradiol significantly potentiated the response. To begin to distinguish direct from indirect actions of kisspeptin, fast synaptic transmission mediated by ionotropic gamma-aminobutyric acid and glutamate receptors was pharmacologically blocked (blockade). Blockade reduced GnRH response to kisspeptin in OVX+E but not in OVX mice. Actions of kisspeptin were also assessed using whole-cell voltage- and current-clamp recording in slices from OVX animals. Kisspeptin application depolarized GnRH neurons in current-clamp and generated inward current in voltage-clamp recordings, even after blocking action potential-dependent neural communication, consistent with a direct effect. Blockers of potassium channels abolished the inward current. Together our data indicate that kisspeptin activates GnRH neurons via both direct and transsynaptic mechanisms and that transsynaptic mechanisms are either enabled and/or potentiated by estradiol.  相似文献   

9.
Rapid, nonclassical 17β-estradiol (E2) actions are thought to play an important role in the modulation of neuronal function. The present study addresses the intracellular signaling cascades involved in the rapid E2-induced phosphorylation of cAMP response element binding protein (CREB) in GnRH neurons. Administration of E2 to adult female mice resulted in the activation of ERK1/2 in GnRH neurons within 15 min. In vitro studies using pharmacological antagonists showed that ERK1/2 was essential for E2-induced CREB phosphorylation in GnRH neurons. Upstream to this, protein kinase A and calcium/calmodulin-dependent protein kinase type II, but not protein kinase C, were found to be necessary for E2-induced phosphorylation of ERK1/2. This rapid E2 signaling cascade in GnRH neurons was found to require both direct and indirect E2 actions. E2 failed to phosphorylate ERK1/2 and CREB in GnRH neuron-specific estrogen receptor β knockout mice in vivo. Equally, however, a cocktail of tetrodotoxin and γ-aminobutyric acid(A)/glutamate receptor antagonists also blocked E2-induced ERK1/2 phosphorylation in GnRH neurons in wild-type mice in vitro. Together, these observations indicate that E2 acts through calcium/calmodulin-dependent protein kinase type II and protein kinase A to rapidly phosphorylate ERK1/2, which then acts to phosphorylate CREB in adult female GnRH neurons. Intriguingly, these effects of E2 are dependent upon both direct ERβ mechanisms as well as indirect actions mediated by afferent inputs to GnRH neurons.  相似文献   

10.
Sullivan SD  Moenter SM 《Endocrinology》2003,144(10):4366-4375
Pulsatile GnRH release is required for fertility and is regulated by steroid feedback. Whether or not steroids or their metabolites act directly on GnRH neurons is not well established. In some neurons, steroid metabolites known as neurosteroids modulate the function of the GABAA receptor. Specifically, the progesterone derivative allopregnanolone is an allosteric agonist at this receptor, whereas the androgen dehydroepiandrosterone sulfate (DHEAS) is an allosteric antagonist. We hypothesized these metabolites act similarly on GnRH neurons to modify the response to GABA. Whole-cell voltage-clamp recordings of GABAergic miniature postsynaptic currents (mPSCs) were made from green fluorescent protein-identified GnRH neurons in brain slices from diestrous mice. Glutamatergic currents were blocked with antagonists and action potentials blocked with tetrodotoxin, minimizing presynaptic effects of treatments. Allopregnanolone (5 microm) increased mPSC rate of rise, amplitude and decay time by 15.9 +/- 6.1%, 16.5 +/- 6.3%, and 58.3 +/- 18.6%, respectively (n = 7 cells). DHEAS (5 microm) reduced mPSC rate of rise (32.1 +/- 5.7%) and amplitude (27.6 +/- 4.3%) but did not alter decay time (n = 8). Effects of both neurosteroids were dose dependent between 0.1 and 10 microm. In addition to independent actions, DHEAS also reversed effects of allopregnanolone on rate of rise and amplitude so that these parameters were returned to pretreatment baseline values (n = 6). These data indicate allopregnanolone increases and DHEAS decreases responsiveness of GnRH neurons to activation of GABAA receptors by differentially modulating current flow through GABAA receptor chloride channels. This provides one mechanism for direct steroid feedback to GnRH neurons.  相似文献   

11.
Liu X  Herbison AE 《Endocrinology》2011,152(12):4856-4864
The GnRH neurons are the key neurons controlling fertility in mammals. Although γ-aminobutyric acid (GABA) plays an important role in the regulation of GnRH neurons, the role of GABA(B) receptors is poorly understood. Using GnRH-green fluorescent protein transgenic mice and a parahorizontal brain slice preparation, we have undertaken a series of electrophysiological experiments to examine 1) postsynaptic GABA(B) receptors expressed by GnRH neurons, and 2) presynaptic GABA(B) receptors located on the terminals of an important neural input to GnRH neurons originating from the anteroventral periventricular nucleus (AVPV). The GABA(B) receptor agonist baclofen induced a direct postsynaptic hyperpolarization of GnRH neurons through induction of an outward current blocked by barium. Baclofen also acted presynaptically to suppress AVPV-activated GABA- and glutamate-evoked postsynaptic currents in GnRH neurons. The number of GnRH neurons exhibiting postsynaptic GABA(B) receptors was significantly (P < 0.05) different in males (22%) and females (70%), whereas presynaptic GABA(B) modulation of AVPV afferents was the same in the two sexes. Across the estrous cycle, a striking approximately 70% reduction (P < 0.05) in presynaptic GABA(B) modulation of AVPV afferents to GnRH neurons was found on proestrus compared with diestrus and estrus. In contrast, postsynaptic GABA(B) receptors did not change. Together, these findings show that GABA(B) receptors are active at both pre- and postsynaptic sites to modulate the excitability of GnRH neurons. The balance of this pre- and postsynaptic activity is different between the sexes and changes in a dynamic manner across the estrous cycle.  相似文献   

12.
13.
Moenter SM  DeFazio RA 《Endocrinology》2005,146(12):5374-5379
gamma-Aminobutyric acid (GABA) provides a major synaptic input to GnRH neurons. GnRH neurons maintain high intracellular chloride levels and respond to exogenous GABA with depolarization and action potential firing. We examined the role of synaptic GABA type A receptor (GABA(A)R) activation on the firing activity of GnRH neurons. Targeted extracellular recordings were used to detect firing activity of GnRH neurons in brain slices from adult female mice. Because the brain slice preparation preserves both glutamatergic and GABAergic neuronal networks, the effects of GABA(A)Rs on GnRH neurons were isolated by blocking ionotropic glutamatergic receptors (iGluR). With iGluR blocked, many GnRH neurons remained spontaneously active. Consistent with an excitatory role for GABA, subsequent blockade of GABA(A)Rs suppressed the firing rate in active cells from diestrous females by approximately 40% (P < 0.05; n = 10). GABA(A)R blockade did not affect inactive cells (n = 7), indicating that GABA(A)R-mediated inhibition was not responsible for the lack of firing. In prenatally androgenized females, GnRH neurons exhibit larger, more frequent GABAergic postsynaptic currents than control females. Most cells from prenatally androgenized animals fired spontaneously, and the firing rate was suppressed approximately 80% after GABA(A)R blockade (P < 0.01; n = 8). Blocking GABA(A)R without blocking iGluRs increased the firing rate in GnRH neurons from diestrous females (P < 0.05; n = 6), perhaps attributable to hyperexcitability within the slice network. Our results indicate that GABAergic inputs help generate a portion of action potentials in GnRH neurons; this fraction depends on the level of GABA transmission and postsynaptic responsiveness. The complexities of the GnRH neuron response to GABA make this a potentially critical integration point for central regulation of fertility.  相似文献   

14.
The GnRH neurons exhibit long dendrites and project to the median eminence. The aim of the present study was to generate an acute brain slice preparation that enabled recordings to be undertaken from GnRH neurons maintaining the full extent of their dendrites or axons. A thick, horizontal brain slice was developed, in which it was possible to record from the horizontally oriented GnRH neurons located in the anterior hypothalamic area (AHA). In vivo studies showed that the majority of AHA GnRH neurons projected outside the blood-brain barrier and expressed c-Fos at the time of the GnRH surge. On-cell recordings compared AHA GnRH neurons in the horizontal slice (AHAh) with AHA and preoptic area (POA) GnRH neurons in coronal slices [POA coronal (POAc) and AHA coronal (AHAc), respectively]. AHAh GnRH neurons exhibited tighter burst firing compared with other slice orientations. Although α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) excited GnRH neurons in all preparations, γ-aminobutyric acid (GABA) was excitatory in AHAc and POAc but inhibitory in AHAh slices. GABA(A) receptor postsynaptic currents were the same in AHAh and AHAc slices. Intriguingly, direct activation of GABA(A) or GABA(B) receptors respectively stimulated and inhibited GnRH neurons regardless of slice orientation. Subsequent experiments indicated that net GABA effects were determined by differences in the ratio of GABA(A) and GABA(B) receptor-mediated effects in "long" and "short" dendrites of GnRH neurons in the different slice orientations. These studies document a new brain slice preparation for recording from GnRH neurons with their extensive dendrites/axons and highlight the importance of GnRH neuron orientation relative to the angle of brain slicing in studying these neurons in vitro.  相似文献   

15.
The GnRH neurons represent the output cells of the neuronal network controlling gonadal function. Their activation initiates the onset of puberty, but the underlying mechanisms remain unclear. Using a GnRH-green fluorescent protein mouse model, we have been able to fill individual GnRH neurons with biocytin in the acute brain slice preparation to examine their morphological characteristics across puberty. GnRH neurons in prepubertal male mice [postnatal d 10-15 (PND10-15)] exhibited half as many dendritic and somal spines as adult male mice (>PND60; P < 0.05) but, surprisingly, a much more complex dendritic tree with 5-fold greater branch points (P < 0.05). Experiments examining somal and proximal dendritic spine numbers in vivo, in perfusion-fixed tissue from GnRH-green fluorescent protein mice, revealed the same pattern of approximately twice as many spines on adult GnRH neurons compared with PND10 male mice (P < 0.01). In contrast to the spine density alterations, reflecting changing excitatory input, confocal immunofluorescence studies revealed no differences in the numbers of vesicular gamma-aminobutyric acid transporter-immunoreactive elements adjacent to GnRH soma or proximal dendrites in prepubertal and adult male mice. Experiments evaluating dendritic tree structure in vivo (PND3, -10, and -35 and adult) revealed that GnRH neurons located in the rostral preoptic area, but not the medial septum, exhibited a more complex branching pattern at PND10, but that this was adult-like by PND35. These studies demonstrate unexpected dendritic tree remodeling in the GnRH neurons and provide evidence for an increase in direct excitatory inputs to GnRH neurons across the time of puberty.  相似文献   

16.
GnRH autoregulates GnRH neurons through an ultrashort feedback loop. One potential mechanism is the regulation of K(+) channel activity through the GnRH receptor. Whereas GnRH inhibits the activity of the M-current in peripheral neurons, there is no direct evidence that the M-current is involved in the autoregulatory pathway of GnRH or if the M-current is expressed in GnRH neurons. The M-current is a noninactivating, subthreshold K(+) current that inhibits cell excitability and is ubiquitously expressed in the central nervous system. We found that GnRH neurons expressed the neuronal M-current subunits, KCNQ2, -3, and -5 in addition to GnRH receptor (GnRH R1). Therefore, using whole-cell patch clamp recording and single-cell RT-PCR, we explored the effects of mammalian GnRH peptide on enhanced green fluorescent protein-tagged GnRH neurons acutely dispersed as well as in slice preparations. GnRH (100nm) inhibited GnRH neuronal excitability by hyperpolarizing the membrane. In the presence of CdCl(2), BaCl(2), and tetrodotoxin, GnRH activated an outward current in a dose-dependent manner (EC(50) 11 nm) in 30% of GnRH neurons. In voltage clamp, the selective M-channel blocker, XE-991, inhibited a K(+) current in GnRH neurons. XE-991 also antagonized the outward K(+) current induced by GnRH. Moreover, the GnRH effects on the M-current were blocked by the GnRH R1 antagonist antide. Therefore, these findings indicate that GnRH activates the M-current in a subpopulation of GnRH neurons via GnRH R1. This ultrashort circuit is one potential mechanism by which GnRH could modulate its own neuronal excitability through an autoreceptor.  相似文献   

17.
Polycystic ovary syndrome, a fertility disorder affecting approximately 7% of women, is characterized by elevated androgens, disrupted reproductive cycles, and high luteinizing hormone, the latter reflecting increased gonadotropin-releasing hormone (GnRH) release. In animal models, a similar reproductive endocrine phenotype occurs after prenatal androgen exposure. To study the effects of in utero androgen exposure directly on GnRH neurons, the central regulators of fertility, we prenatally androgenized (PNA) transgenic mice that express GFP in these cells. Pregnant females were injected with dihydrotestosterone, and their female offspring were studied as adults. PNA mice had irregular estrous cycles and elevated testosterone and luteinizing hormone levels, suggesting altered hypothalamo-pituitary-gonadal axis function. GnRH neurons receive a major input from gamma-aminobutyric acid (GABA)ergic neurons, and GABA type A receptor activation may play a role in their regulation by steroids. We tested whether PNA alters GABAergic drive to GnRH neurons by comparing frequency and size of GABAergic postsynaptic currents in GnRH neurons from PNA and control females. Both postsynaptic current frequency and size were increased in PNA mice; these effects were reversed by in vivo treatment with the androgen receptor antagonist flutamide, suggesting that androgens mediated these effects. Changes in postsynaptic current frequency and size were action potential-independent, suggesting the possibility that PNA increased connectivity between GABAergic and GnRH neurons. The ability of prenatal steroid exposure to initiate changes that alter functional inputs to GnRH neurons in adults has important implications for understanding the regulation of normal reproduction as well as the hypothalamic abnormalities of fertility disorders.  相似文献   

18.
Cannabinoids suppress fertility via reducing hypothalamic GnRH output. γ-Aminobutyric acid (GABA)(A) receptor (GABA(A)-R)-mediated transmission is a major input to GnRH cells that can be excitatory. We hypothesized that cannabinoids act via inhibiting GABAergic input. We performed loose-patch electrophysiological studies of acute slices from adult male GnRH-green fluorescent protein transgenic mice. Bath application of type 1 cannabinoid receptor (CB1) agonist WIN55,212 decreased GnRH neuron firing rate. This action was detectable in presence of the glutamate receptor antagonist kynurenic acid but disappeared when bicuculline was also present, indicating GABA(A)-R involvement. In immunocytochemical experiments, CB1-immunoreactive axons formed contacts with GnRH neurons and a subset established symmetric synapses characteristic of GABAergic neurotransmission. Functional studies were continued with whole-cell patch-clamp electrophysiology in presence of tetrodotoxin. WIN55,212 decreased the frequency of GABA(A)-R-mediated miniature postsynaptic currents (mPSCs) (reflecting spontaneous vesicle fusion), which was prevented with the CB1 antagonist AM251, indicating collectively that activation of presynaptic CB1 inhibits GABA release. AM251 alone increased mPSC frequency, providing evidence that endocannabinoids tonically inhibit GABA(A)-R drive onto GnRH neurons. Increased mPSC frequency was absent when diacylglycerol lipase was blocked intracellularly with tetrahydrolipstatin, showing that tonic inhibition is caused by 2-arachidonoylglycerol production of GnRH neurons. CdCl(2) in extracellular solution can maintain both action potentials and spontaneous vesicle fusion. Under these conditions, when endocannabinoid-mediated blockade of spontaneous vesicle fusion was blocked with AM251, GnRH neuron firing increased, revealing an endogenous endocannabinoid brake on GnRH neuron firing. Retrograde endocannabinoid signaling may represent an important mechanism under physiological and pathological conditions whereby GnRH neurons regulate their excitatory GABAergic inputs.  相似文献   

19.
GnRH neurons are the central regulators of fertility, and their activity is modulated by steroid feedback. In women with hyperandrogenemic infertility and in animal models of these disorders, elevated androgen levels interfere with progesterone (P) negative feedback. Our previous work showed that steroids altered the frequency and amplitude of gamma-aminobutyric acid (GABA) transmission to GnRH neurons. Specifically, P inhibited GABA transmission, which can excite GnRH neurons, whereas dihydrotestosterone (DHT) increased GABA transmission. In this study the GnRH neuron firing rate was examined in the same animal models. Adult (>2 months) female mice were ovariectomized and treated for 8-12 d with implants containing estradiol (E), E and P, E and DHT, or E, P, and DHT. Targeted extracellular recordings were used to examine the long-term firing activity of green fluorescent protein-identified GnRH neurons in brain slices from these mice. In comparing E alone to E plus P animals, P increased the percentage of time that GnRH neurons were quiescent and reduced the area under the curve of the firing rate and the instantaneous firing frequency, suggesting that P provides additional negative feedback over E alone. The addition of DHT markedly increased GnRH neuron activity in both the presence and absence of P. DHT also altered the firing pattern of GnRH neurons, such that peaks in the firing rate detected by the Cluster8 algorithm were approximately doubled in frequency and amplitude. These data support and extend our previous findings and are consistent with the hypothesis that the changes in GABAergic transmission observed in these animal models impact upon the activity of GnRH neurons, and central androgen action probably stimulates GnRH release.  相似文献   

20.
γ-Aminobutyric acid (GABA) has been implicated in the regulation of reproduction, particularly in the developmental modulation of gonadotropin-releasing hormone (GnRH) secretion. GnRH neurons are innervated by GABA-containing processes, and the administration of GABA stimulates and inhibits GnRH secretion in vivo and in vitro. We have previously shown that GABA can exert both of these actions in sequence, by acting directly on immortalized GnRH neurons. While the stimulation is the result of a GABAA receptor-mediated depolarization of the plasma membrane, the mechanism involved in the delayed inhibition is the subject of the present investigation. GABA (1 nM-10 μM) decreased the intracellular concentration of cyclic adenosine monophosphate (cAMP) in a dose- and time-dependent fashion. This effect was blocked by bicuculline and mimicked by muscimol but not by baclofen. To analyze the effect of GABA on cellular excitability, we used fura-2 loaded GT1-7 cells. Activation of voltage-sensitive calcium channels by high K+-induced depolarization (35 mM) increased [Ca2+]i. GABA (10μM) and muscimol (10 μM) reduced the amplitude of K+-induced [Ca2+]i transients. This inhibition was blocked by forskolin (20μM) or 8-Br-cAMP (1 mM). Altogether, these results show that GABAA receptors mediate a sustained inhibitory effect of GABA on GnRH neurons, and suggest the involvement of the cAMP pathway decreasing cellular excitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号