首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells. Previous work raised the possibility that brain-derived neurotrophic factor (BDNF) and its high-affinity tropomyosin-related receptor kinase may be important as modulators of this excitatory input into the SCN. In order to test this possibility, we used whole-cell patch-clamp methods to measure spontaneous excitatory currents in mouse SCN neurons. We found that the amplitude and frequency of these currents were increased by BDNF and decreased by the neurotrophin receptor inhibitor K252a. The neurotrophin also increased the magnitude of currents evoked by application of N-methyl-d-aspartate and amino-methyl proprionic acid. Next, we measured the rhythms in action potential discharge from the SCN brain slice preparation. We found that application of K252a dramatically reduced the magnitude of phase shifts of the electrical activity rhythm generated by the application of glutamate. By itself, BDNF caused phase shifts that resembled those produced by glutamate and were blocked by K252a. The results demonstrate that BDNF and neurotrophin receptors can enhance glutamatergic synaptic transmission within a subset of SCN neurons and potentiate glutamate-induced phase shifts of the circadian rhythm of neural activity in the SCN.  相似文献   

2.
3.
The regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors is implicated in synaptic plasticity. Although we have found that brain-derived neurotrophic factor (BDNF) triggers surface translocation of AMPA receptor proteins, the physiological significance of the BDNF effect remained to be determined. The present immunohistochemical studies revealed that cortical GABAergic neurons exhibited the most striking response to BDNF. Accordingly, we monitored AMPA-triggered currents through GABAergic neurons: Chronic BDNF treatment increased the AMPA-triggered currents but not NMDA-triggered currents in culture. In parallel, the amplitude, but not frequency, of spontaneous miniature excitatory postsynaptic currents (mEPSCs) was elevated in GABAergic neurons. In agreement, BDNF enhanced GABA release triggered by AMPA compared to the amount triggered by high potassium. Conversely, there was a significant decrease in the mEPSC amplitude of GABAergic neurons in heterozygous BDNF-knockout mice. These findings indicate that the neurotrophin enhances the input sensitivity of GABAergic neurons to facilitate their inhibitory function in the neocortex.  相似文献   

4.
Neurotrophins are potent regulators of neuronal survival, maintenance, and synaptic strength. In particular, brain-derived neurotrophic factor (BDNF), acting through full-length TrkB receptor (TrkB(FL)), is implicated in the stimulation of neurotransmission. Physical activity has been reported to increase BDNF expression in the brain and spinal cord. In this study we have evaluated the hypothesis that activation of a spinal neuronal network, due to exercise, affects the entire spinal neurotrophin system acting via TrkB receptors by modulation of BDNF, neurotrophin 4 (NT-4), and their TrkB receptor proteins. We investigated the effect of treadmill walking (4 weeks, 1 km daily) on distribution patterns and response intensity of these proteins in the lumbar spinal cord of adult rats. Training enhanced immunoreactivity (IR) of both neurotrophins. BDNF IR increased in cell processes of spinal gray matter, mainly in dendrites. NT-4 IR was augmented in the white matter fibers, which were, in part, of astrocytic identity. Training strongly increased both staining intensity and number of TrkB(FL)-like IR small cells of the spinal gray matter. The majority of these small cells were oligodendrocytes, representing both their precursor and their mature forms. In contrast, training did not exert an effect on expression of the truncated form of TrkB receptor in the spinal cord. These results show that both neuronal and nonneuronal cells may be actively recruited to BDNF/NT-4/TrkB(FL) neurotrophin signaling which can be up-regulated by training. Oligodendrocytes of the spinal gray matter were particularly responsive to exercise, pointing to their involvement in activity-driven cross talk between neurons and glia.  相似文献   

5.
6.
The effects of transforming growth factor (TGF)-beta1 on expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, TrkB, in neurons cultured from the cerebral cortex of 18-day-old embryonic rats were examined. BDNF mRNA was significantly increased from 24-48 hr after the TGF-beta1 treatment over 20 ng/ml. Accumulation of BDNF protein in the culture medium was also potentiated by TGF-beta1, although the intracellular content of BDNF was nearly unchanged. The enhancement of BDNF mRNA expression was suppressed by the co-presence of decorin, a small TGF-beta-binding proteoglycan that inhibits the biological activities of TGF-betas. mRNA expression of full-length TrkB, the bioactive high-affinity receptor for BDNF, was also upregulated after treatment with TGF-beta1. These observations suggest that: 1) TGF-beta1 potentiates BDNF/TrkB autocrine or local paracrine system; and 2) the neurotrophic activity of TGF-beta1 is partly responsible for the BDNF induced by TGF-beta1 itself. To test this latter possibility, we examined the neuronal survival activity of TGF-beta1 with or without K252a, a selective inhibitor of Trk family tyrosine kinases. TGF-beta1 significantly enhanced neuronal survival, but the co-presence of K252a completely suppressed the activity, demonstrating the involvement of Trk receptor signaling in TGF-beta1-mediated neuronal survival in cultured rat cortical neurons. These results seem to be in line with recent findings by other investigators that some neurotrophic factors including BDNF require TGF-betas as a cofactor to exert their neurotrophic activities.  相似文献   

7.
Previously, our electrophysiological studies revealed a transient imbalance between suppressed excitation and enhanced inhibition in hypoglossal motoneurons of rats on postnatal days (P) 12–13, a critical period when abrupt neurochemical, metabolic, ventilatory and physiological changes occur in the respiratory system. The mechanism underlying the imbalance is poorly understood. We hypothesised that the imbalance was contributed by a reduced expression of brain‐derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition. We also hypothesised that exogenous BDNF would partially reverse this synaptic imbalance. Immunohistochemistry/single‐neuron optical densitometry, real‐time quantitative PCR (RT‐qPCR) and whole‐cell patch‐clamp recordings were done on hypoglossal motoneurons in brainstem slices of rats during the first three postnatal weeks. Our results indicated that: (1) the levels of BDNF and its high‐affinity tyrosine receptor kinase B (TrkB) receptor mRNAs and proteins were relatively high during the first 1–1.5 postnatal weeks, but dropped precipitously at P12–13 before rising again afterwards; (2) exogenous BDNF significantly increased the normally lowered frequency of spontaneous excitatory postsynaptic currents but decreased the normally heightened amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) during the critical period; (3) exogenous BDNF also decreased the normally heightened frequency of miniature IPSCs at P12–13; and (4) the effect of exogenous BDNF was partially blocked by K252a, a TrkB receptor antagonist. Thus, our results are consistent with our hypothesis that BDNF and TrkB play an important role in the synaptic imbalance during the critical period. This may have significant implications for the mechanism underlying sudden infant death syndrome.  相似文献   

8.
9.
Synchronization of circadian rhythms to the 24‐h light/dark (L/D) cycle is associated with daily rearrangements of the neuronal‐glial network of the suprachiasmatic nucleus of the hypothalamus (SCN), the central master clock orchestrating biological functions in mammals. These anatomical plastic events involve neurons synthesizing vasoactive intestinal peptide (VIP), known as major integrators of photic signals in the retinorecipient region of the SCN. Using an analog‐sensitive kinase allele murine model (TrkBF616A), we presently show that the pharmacological blockade of the tropomyosin‐related kinase receptor type B (TrkB), the high‐affinity receptor of brain‐derived neurotrophic factor (BDNF), abolished day/night changes in the dendrite enwrapping of VIP neurons by astrocytic processes (glial coverage), used as an index of SCN plasticity on electron‐microscopic sections. Therefore, the BDNF/TrkB signaling pathway exerts a permissive role on the ultrastructural rearrangements that occur in SCN under L/D alternance, an action that could be a critical determinant of the well‐established role played by BDNF in the photic regulation of the SCN. In contrast, the extent of glial coverage of non‐VIP neighboring dendrites was not different at daytime and nighttime in TrkBF616A mice submitted to TrkB inactivation or not receiving any pharmacological treatment. These data not only show that BDNF regulates SCN structural plasticity across the 24‐h cycle but also reinforce the view that the daily changes in SCN architecture subserve the light synchronization process.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) is a neurotrophin implicated in the phenomena of synaptic plasticity in the adult. It is found in terminals of nociceptive primary afferents. Following a pain-related stimulus, it is released in the spinal cord, where it activates its high-affinity receptor TrkB, leading to the phosphorylation of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK). A large body of evidence suggests that BDNF has a positive neuromodulatory effect on glutamate transmission in the spinal cord. However, none of these studies examined anatomically whether projection neurons known to be involved in transmission of nociceptive inputs express BDNF's receptor. Because the spinothalamic tract (STT) is a well-characterized pathway for its role in the transfer and integration of sensory and nociceptive informations, this study in rats aimed to 1) determine whether neurons of the STT pathway express the TrkB receptor, 2) establish the rostrocaudal and laminar distribution of STT-TrkB neurons in the whole spinal cord, and 3) test the potential functionality of TrkB expression in these cells by investigating the ability of BDNF to activate the MAP kinase ERK. Using tract tracing coupled to immunofluorescent labeling for TrkB, we observed that in all levels of the spinal cord most STT neurons were immunoreactive for TrkB. Furthermore, microinjections of BDNF into the spinal cord or release of endogenous BDNF by intraplantar injection of capsaicin activated ERK phosphorylation in TrkB-containing STT neurons. These data suggest an important role for BDNF in nociception as an activator of spinothalamic projection neurons.  相似文献   

11.
G M Cahill  M Menaker 《Brain research》1987,410(1):125-129
An in vitro slice preparation of the mouse hypothalamus was used to determine the effects of pharmacological agents on the field potentials that are evoked in the suprachiasmatic nucleus (SCN) by stimulation of the optic nerve. Postsynaptic components of these responses were identified by lowering the concentration of calcium in the superfusate. Bath application of kynurenate, an antagonist of excitatory amino acid neurotransmission, reversibly blocked postsynaptic responses in the SCN. The evoked responses in the SCN were not affected by the acetylcholinergic agents (+)-tubocurarine, scopolamine, physostigmine, or carbachol. These results suggest that excitatory amino acid receptors mediate responses of SCN neurons to retinal input, but do not support a role for acetylcholine.  相似文献   

12.
Brain trauma can disrupt synaptic connections, and this in turn can prompt axons to sprout and form new connections. If these new axonal connections are aberrant, hyperexcitability can result. It has been shown that ablating tropomyosin‐related kinase B (TrkB), a receptor for brain‐derived neurotrophic factor (BDNF), can reduce axonal sprouting after hippocampal injury. However, it is unknown whether inhibiting BDNF‐mediated axonal sprouting will reduce hyperexcitability. Given this, our purpose here was to determine whether pharmacologically blocking BDNF inhibits hyperexcitability after injury‐induced axonal sprouting in the hippocampus. To induce injury, we made Schaffer collateral lesions in organotypic hippocampal slice cultures. As reported by others, we observed a 50% reduction in axonal sprouting in cultures treated with a BDNF blocker (TrkB‐Fc) 14 days after injury. Furthermore, lesioned cultures treated with TrkB‐Fc were less hyperexcitable than lesioned untreated cultures. Using electrophysiology, we observed a two‐fold decrease in the number of CA3 neurons that showed bursting responses after lesion with TrkB‐Fc treatment, whereas we found no change in intrinsic neuronal firing properties. Finally, evoked field excitatory postsynaptic potential recordings indicated an increase in network activity within area CA3 after lesion, which was prevented with chronic TrkB‐Fc treatment. Taken together, our results demonstrate that blocking BDNF attenuates injury‐induced hyperexcitability of hippocampal CA3 neurons. Axonal sprouting has been found in patients with post‐traumatic epilepsy. Therefore, our data suggest that blocking the BDNF–TrkB signaling cascade shortly after injury may be a potential therapeutic target for the treatment of post‐traumatic epilepsy.  相似文献   

13.
Brain-derived neurotrophic factor (BDNF) acutely modulates synaptic transmission to excitatory neurons in hippocampus and neocortex. The question of whether BDNF acts similarly on excitatory synaptic transmission to GABAergic neurons was eluded in previous studies using cortical slices. To address this question, we used transgenic mice in which expression of green fluorescence protein (GFP) is regulated by glutamic acid decarboxylase 67 (GAD67) promoter. In cortical slices prepared from these GAD67-GFP knock-in mice, we could detect GABAergic neurons under a fluorescent microscope. An application of BDNF rapidly depressed excitatory postsynaptic currents (EPSCs) evoked by layer IV stimulation in most GFP-positive neurons in layer II/III of the cortex. This effect was seen at synapses activated during the BDNF application and blocked by anti-TrkB IgG, indicating that the acute inhibitory action of BDNF is activity-dependent and mediated through TrkB. Paired-pulse ratios of the amplitude of EPSCs to paired stimulation at intervals of 10-100 ms were not significantly changed after BDNF application, suggesting that the site of depression may be postsynaptic. Responses to directly applied glutamate were also depressed by BDNF in most of neurons, being consistent with the interpretation of postsynaptic action of BDNF. The depressive action of BDNF was blocked by an intracellular injection of a Ca(2+) chelator, suggesting that a rise in Ca(2+) is involved in the acute depression of EPSCs. This action of BDNF was seen in 67% of parvalbumin (PV)-positive neurons, but in only 19% of PV-negative neurons, indicating that the depressive action is biased to PV-positive GABAergic neurons.  相似文献   

14.
The neurotrophin receptor, TrkB receptor tyrosine kinase, is critical to central nervous system (CNS) function in health and disease. Elucidating the ligands mediating TrkB activation in vivo will provide insights into its diverse roles in the CNS. The canonical ligand for TrkB is brain‐derived neurotrophic factor (BDNF). A diversity of stimuli also can activate TrkB in the absence of BDNF, a mechanism termed transactivation. Zinc, a divalent cation packaged in synaptic vesicles along with glutamate in axons of mammalian cortical neurons, can transactivate TrkB in neurons and heterologous cells in vitro. Yet the contributions of BDNF and zinc to TrkB activation in vivo are unknown. To address these questions, we conducted immunohistochemical (IHC) studies of the hippocampal mossy fiber axons and boutons using an antibody selective for pY816 of TrkB, a surrogate measure of TrkB activation. We found that conditional deletion of BDNF resulted in a reduction of pY816 in axons and synaptic boutons of hippocampal mossy fibers, thereby implicating BDNF in activation of TrkB in vivo. Unexpectedly, pY816 immunoreactivity was increased in axons but not synaptic boutons of mossy fibers in ZnT3 knockout mice that lack vesicular zinc. Marked increases of BDNF content were evident within the hippocampus of ZnT3 knockout mice and genetic elimination of BDNF reduced pY816 immunoreactivity in these mice, implicating BDNF in enhanced TrkB activation mediated by vesicular zinc depletion. These findings support the conclusion that BDNF but not vesicular zinc activates TrkB in hippocampal mossy fiber axons under physiological conditions. J. Comp. Neurol. 522:3885–3899, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Brain-derived neurotrophic factor (BDNF) acutely modulates the efficacy of central glutamatergic synapses via activation of the receptor tyrosine kinase TrkB. On a longer time scale, recent evidence suggests an additional role of TrkB signaling in the formation of excitatory synaptic connections. Here, we have overexpressed full-length TrkB receptors (fl-TrkB) in hippocampal neurons, to investigate the contribution of BDNF signaling to the maturation of glutamatergic synapses. Using patch clamp recordings, we show a three-fold reduction in glutamatergic excitatory autaptic and synaptic current amplitudes in neurons overexpressing fl-TrkB, and application of saturating concentrations of BDNF and NT-4/5 completely reverses this effect. Compatible with these overexpression data, in untransfected neurons, scavenging of endogenous BDNF and NT-4/5 by TrkB-IgGs reduces excitatory autaptic current (EAC) amplitudes. By overexpression of truncated TrkB receptors (TrkB.T1, TrkB.T2) and a chimeric receptor containing only the intracellular domain of fl-TrkB, we show that intra- and extracellular domains of fl-TrkB are necessary to observe the EAC reduction. Labeling of presynaptic terminals with FM 4-64 revealed, that the reduced EAC amplitudes in fl-TrkB overexpressing neurons are accompanied by a two-fold reduction in synapse number. These results suggest, that ligand-independent signaling through fl-TrkB receptors can decrease glutamatergic synaptic strength, if sufficient amounts of BDNF or NT-4/5 are not available.  相似文献   

16.
Projections from the nucleus of tractus solitarius (NTS) to the caudal ventrolateral medulla (CVLM) are important in mediating autonomic reflexes. However, little is known about the cellular properties of the CVLM-projecting NTS neurons. In this study, the CVLM-projecting NTS neurons were retrogradely labeled by fluorescent microspheres injected into the CVLM. Whole cell voltage- and current-clamp recordings were performed on labeled NTS neurons in coronal brainstem slices. Compared with unlabeled neurons, the labeled NTS neurons had more depolarized resting membrane potentials, larger input resistance, and higher firing activity in response to depolarizing currents. Bath application of an ionotropic glutamate receptor antagonist kynurenic acid and a non-NMDA receptor antagonist CNQX significantly decreased the firing activity in the majority of labeled NTS neurons. In contrast, an NMDA receptor antagonist AP5 failed to alter the firing activity in labeled neurons tested. While the glycine receptor antagonist strychnine had no effect on the firing activity, blockade of GABA(A)receptors with bicuculline significantly increased the firing rate in the majority of labeled NTS neurons. Furthermore, CNQX blocked the majority of spontaneous excitatory postsynaptic currents (EPSCs) and evoked EPSCs elicited by stimulation of the tractus solitarius. The residual spontaneous and evoked EPSCs were abolished by the nicotinic receptor antagonist mecamylamine and the purinergic P2X receptor antagonist iso-PPADS. Finally, while bicuculline completely blocked the miniature inhibitory postsynaptic currents (IPSCs), the spontaneous and evoked IPSCs were abolished by a combination of bicuculline and strychnine in labeled NTS neurons. Collectively, these data suggest that the CVLM-projecting neurons are a population of neurons with distinctive membrane properties.  相似文献   

17.
Brain-derived neurotrophic factor (BDNF) has trophic effects and modulates synaptic transmission in the hippocampal formation in animal studies. It is also upregulated in acute and chronic epilepsy models and in human temporal lobe epilepsy. This study was undertaken to examine the effects of BDNF on fast synaptic transmission in the human epileptic dentate gyrus. Hippocampal specimens were acquired from patients with temporal lobe epilepsy during surgical removal of the anterior temporal lobe intended to treat the epileptic condition. Whole-cell patch-clamp recordings were obtained from dentate granule cells in transverse hippocampal slices in vitro. Application of BDNF increased the amplitude and frequency of spontaneous excitatory postsynaptic currents and increased the amplitude of evoked excitatory postsynaptic currents. BDNF had no effect on spontaneous inhibitory postsynaptic currents but produced a decrease in amplitude of evoked inhibitory postsynaptic currents. BDNF's effects were abolished by coapplication of the tyrosine kinase inhibitor K252a. Therefore, BDNF enhances fast excitatory transmission in the epileptic human dentate gyrus and may play an important role in epileptogenesis in temporal lobe epilepsy. This raises the possibility of designing therapies for this disorder that may be both anticonvulsant and antiepileptogenic.  相似文献   

18.
BDNF, a member of the neurotrophin family, is emerging as a key modulator of synaptic structure and function in the CNS. Due to the critical role of postsynaptic Ca(2+) signals in dendritic development and synaptic plasticity, we tested whether long-term exposure to BDNF affects Ca(2+) elevations evoked by coincident excitatory postsynaptic potentials (EPSPs) and back-propagating action potentials (bAPs) in spiny dendrites of CA1 pyramidal neurons within hippocampal slice cultures. In control neurons, a train of 5 coincident EPSPs and bAPs evoked Ca(2+) elevations in oblique radial branches of the main apical dendrite that were of similar amplitude than those evoked by a train of 5 bAPs alone. On the other hand, dendritic Ca(2+) signals evoked by coincident EPSPs and bAPs were always larger than those triggered by bAPs in CA1 neurons exposed to BDNF for 48 h. This difference was not observed after blockade of NMDA receptors (NMDARs) with D,L-APV, but only in BDNF-treated neurons, suggesting that Ca(2+) signals in oblique radial dendrites include a synaptic NMDAR-dependent component. Co-treatment with the receptor tyrosine kinase inhibitor k-252a prevented the effect of BDNF on coincident dendritic Ca(2+) signals, suggesting the involvement of neurotrophin Trk receptors. These results indicate that long-term exposure to BDNF enhances Ca(2+) signaling during coincident pre- and postsynaptic activity in small spiny dendrites of CA1 pyramidal neurons, representing a potential functional consequence of neurotrophin-mediated dendritic remodeling in developing neurons.  相似文献   

19.
The neurotrophin BDNF has been shown to modulate long-term potentiation (LTP) at Schaffer collateral-CA1 hippocampal synapses. Mutants in the BDNF receptor gene trkB and antibodies to its second receptor p75NTR have been used to determine the receptors and cells involved in this response. Inhibition of p75NTR does not detectably reduce LTP or affect presynaptic function, but analyses of newly generated trkB mutants implicate TrkB. One mutant has reduced expression in a normal pattern of TrkB throughout the brain. The second mutant was created by cre-loxP-mediated removal of TrkB in CA1 pyramidal neurons of this mouse. Neither mutant detectably impacts survival or morphology of hippocampal neurons. TrkB reduction, however, affects presynaptic function and reduces the ability of tetanic stimulation to induce LTP. Postsynaptic glutamate receptors are not affected by TrkB reduction, indicating that BDNF does not modulate plasticity through postsynaptic TrkB. Consistent with this, elimination of TrkB in postsynaptic neurons does not affect LTP. Moreover, normal LTP is generated in the mutant with reduced TrkB by a depolarization-low-frequency stimulation pairing protocol that puts minimal demands on presynaptic terminal function. Thus, BDNF appears to act through TrkB presynaptically, but not postsynaptically, to modulate LTP.  相似文献   

20.
Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT3) promote the function and/or survival of basal forebrain (BF) cholinergic neurons in vivo and in culture. The neurotrophin source is commonly thought to be targets of cholinergic neurons and the possibility that local glial sources support cholinergic neurons has not been well examined. These sources, however, may be critical to BF neurons before or even after they reach their targets. We investigated neurotrophin expression in BF astrocytes and its regulation by neural signals. Solution hybridization and immunocytochemical assays revealed that NGF, BDNF, and NT(3) mRNA and proteins were expressed in cultured BF astrocytes. To investigate roles of neuronal signals in neurotrophin regulation, effects of K(+), glutamate, and the cholinergic agonist carbachol were examined. These stimuli affected neurotrophin expression differentially. KCl increased BDNF mRNA but did not alter NGF or NT(3) mRNA. The effect was blocked by nifedipine, suggesting that it was mediated by L-type voltage-dependent calcium currents. Carbachol also increased BDNF mRNA levels without changing NGF or NT(3). Effects were blocked by the muscarinic antagonist, atropine. In contrast, glutamate increased both NGF and BDNF mRNA. NT(3) mRNA again was unaffected. The metabotropic agonist trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (trans-ACPD) reproduced glutamate effects, whereas kainate or N-methyl-D-aspartate (NMDA) plus glycine did not. Lack of antagonism by ionotropic antagonists and blockade of glutamate effects by metabotropic antagonists confirmed metabotropic mediation. We suggest that BF astrocytes are local sources of neurotrophins for BF cholinergic neurons during development and are regulated differentially by specific neuronal signals. Critical neuronal-glial interactions may underlie basal forebrain function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号