首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Two forms of the activated beta1-adrenoceptor exist, one that is stabilized by (-)-noradrenaline and is sensitive to blockade by (-)-propranolol and another which is stabilized by partial agonists such as (-)-pindolol and (-)-CGP 12177 but is relatively insensitive to (-)-propranolol. We investigated the effects of stimulation of the propranolol-resistant beta1-adrenoceptor in the human heart. Myocardium from non-failing and failing human hearts were set up to contract at 1 Hz. In right atrium from non-failing hearts in the presence of 200 nM (-)-propranolol, (-)-CGP 12177 caused concentration-dependent increases in contractile force (-logEC50[M] 7.3+/-0.1, E(max) 23+/-1% relative to maximal (-)-isoprenaline stimulation of beta1- and beta2-adrenoceptors, n=86 patients), shortening of the time to reach peak force (-logEC50[M] 7.4+/-0.1, E(max) 37+/-5%, n=61 patients) and shortening of the time to reach 50% relaxation ( t(50%), -logEC50[M] 7.3+/-0.1, E(max) 33+/-2%, n=61 patients). The potency and maxima of the positive inotropic effects were independent of Ser49Gly- and Gly389Arg-beta1-adrenoceptor polymorphisms but were potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (-logEC50[M] 7.7+/-0.1, E(max) 68+/-6%, n=6 patients, P<0.0001). In the presence of (-)-propranolol and 3-isobutyl-1-methylxanthine, the potency (-logEC50[M] 7.4+/-0.1, P=0.0013, n=9 patients) but not the maximal effect of (-)-CGP 12177 was reduced in right atrium from failing hearts, which was associated with 64% and 52% reductions in the densities of low-affinity and high-affinity (-)-[3H]CGP 12177 binding sites. In the presence of (-)-propanolol and 3-isobutyl-1-methylxanthine, (-)-CGP 12177 increased atrial cyclic AMP levels and activated cyclic AMP-dependent protein kinase in right atrium from non-failing hearts. In right ventricle from failing hearts (-)-CGP 12177 increased contractile force (-logEC50[M] 7.4+/-0.1, E(max) 34+/-3%, n=13 patients) and hastened the time to peak force (-logEC50[M] 7.6+/-0.1) and time to reach 50% relaxation (-logEC50[M] 7.4+/-0.1) in the presence of (-)-propranolol and 3-isobutyl-1-methylxanthine. Our results show that (-)-CGP 12177 increases contractility and hastens relaxation through a cyclic AMP pathway in human myocardium, consistent with mediation through a (-)-propranolol-resistant state of the beta1-adrenoceptor. The reduction in heart failure of atrial inotropic potency of (-)-CGP 12177, as well as of the high-affinity and low-affinity binding sites for (-)-[3H]CGP 12177, is consistent with the beta1-adrenoceptor nature of these sites.  相似文献   

2.
(-)-Noradrenaline and (-)-CGP12177 activate β1-adrenoceptors through a high (H)- and low-affinity (L) site, respectively. The positive inotropic effects of (-)-noradrenaline are blunted by phosphodiesterase4 (PDE4) but not PDE3, while both PDE isoenzymes, acting in concert, prevent the effects of (-)-CGP12177 through β1-adrenoceptors in rat ventricle. We sought to unravel the role of PDE3 and PDE4 on signals through the H and L sites in human myocardium. The kinetics of matching positive inotropic effects of (-)-noradrenaline (20 nM) and (-)-CGP12177 (100 nM) were investigated on human atrial trabeculae in the absence and presence of the PDE3 inhibitor cilostamide (300 nM), PDE4 inhibitor rolipram (1 μM) or both. The influence of cilostamide and rolipram on agonist-evoked cyclic adenosine monophosphate (cAMP) increases were also compared in Chinese hamster ovary (CHO) cells expressing recombinant human β1-adrenoceptors. (-)-Noradrenaline and (-)-CGP12177 caused matching inotropic responses that faded during a 60-min time course. Cilostamide, but not rolipram, increased the positive inotropic effects and abolished the time dependent fade of both agonists. In CHO cells, rolipram, but not cilostamide, enhanced the cAMP signals caused by both (-)-noradrenaline and (-)-CGP12177. PDE3, but not PDE4, blunts the positive inotropic effects of both (-)-noradrenaline and (-)-CGP12177 through H and L sites, respectively, of human atrial β1-adrenoceptors. However, in CHO cells, PDE4 blunts the cAMP signals of both (-)-noradrenaline and (-)-CGP12177. Neither CHO cells nor the rat ventricle are appropriate models for the β1-adrenoceptor-evoked signalling to PDE3 observed in human atrium.  相似文献   

3.
Acting through a low-affinity site of the β1-adrenoceptor (β1LAR), CGP12177 causes sinoatrial tachycardia and positive inotropic effects in left atrium but not in the ventricle of the rat. However, inhibition of either PDE3 or PDE4 also uncovers positive inotropic effects of CGP12177 in ventricle, but whether these phosphodiesterases also control the atrial agonist effects of CGP12177 was unknown. We, therefore, investigated the effects of the PDE3-selective inhibitor cilostamide (300 nM) and PDE4 inhibitor rolipram (1 μM) on the (−)-CGP12177-evoked increases of sinoatrial beating rate and force of paced left atria of the rat. Rolipram (n = 8) increased basal sinoatrial rate by 27 ± 5 bpm but cilostamide (n = 8) had no effect. The chronotropic potency of (−)-CGP12177 (−logEC50M = 7.5) was not changed by rolipram and cilostamide or their combination. (-)-CGP12177 increased left atrial force with intrinsic activity 0.25 compared to (-)-isoprenaline. Rolipram (n = 8) and cilostamide (n = 8) did not change basal force of left atria but concurrent rolipram + cilostamide (n = 8) increased force by 52 ± 9% of the effect of 200 μM (−)-isoprenaline. Neither rolipram nor cilostamide affected the inotropic potency of (−)-CGP12177 (−logEC50M = 7.4) but concurrent rolipram + cilostamide caused potentiation (−logEC50M = 8.2) and converted (-)-CGP12177 into a full agonist compared to (-)-isoprenaline. Cyclic AMP appears to maintain sinoatrial rate and PDE4 elicits bradycardia through hydrolysis of cAMP in a compartment distinct from the β1LAR-induced cAMP compartment through which (−)-CGP12177 causes tachycardia. In contrast to the (−)-CGP12177-evoked tachycardia, not controlled by PDE3 and PDE4, these isoenzymes jointly reduce (−)-CGP12177-evoked increases of left atrial contractility through β1LAR.  相似文献   

4.
The mammalian heart expresses at least five phosphodiesterases (PDE1–5). Catecholamines produce surges of inotropically relevant cAMP through β1-adrenoceptor stimulation. cAMP is mainly hydrolysed by PDE3 and/or PDE4 thereby blunting contractility. Basal sinoatrial beating rate in mouse, rat, piglet and rabbit sinoatrial cells is reduced by PDE3 and/or PDE4 through hydrolysis of cAMP. However, in rodents, the tachycardia elicited by catecholamines through production of cAMP by β-adrenoceptor activation is not controlled by PDE3 and PDE4, despite a blunting effect of PDE3 or/and PDE4 on basal sinoatrial beating, but it is unknown whether PDE3 limits catecholamine-evoked tachycardia in the rabbit. Since rabbit sinoatrial cells are an important model for pacemaker research, we investigated whether the positive chronotropic effects of (?)-noradrenaline on spontaneously beating right atria of the rabbit are potentiated by inhibition of PDE3 with cilostamide (300 nM). We also studied the sinoatrial effects of the PDE4 inhibitor rolipram (10 μM) and its influence on the responses to (?)-noradrenaline. For comparison, we investigated the influence of cilostamide and rolipram on the positive inotropic responses to (?)-noradrenaline on rabbit left atria and right ventricular papillary muscles. Cilostamide and concurrent cilostamide?+?rolipram, but not rolipram alone, increased sinoatrial rate by 15% and 31% of the effect of (?)-isoprenaline (200?µM) but the PDE inhibitors did not significantly change the chronotropic potency of (?)-noradrenaline. In contrast in papillary muscle, the positive inotropic effects of (?)-noradrenaline were potentiated 2.4-, 2.6- and 44-fold by cilostamide, rolipram and concurrent cilostamide?+?rolipram, respectively. In left atrium, the positive inotropic effects of (?)-noradrenaline were marginally potentiated by cilostamide, as well as potentiated 2.7- and 32-fold by rolipram and by concurrent cilostamide and rolipram respectively. To compare the influence of PDE1–5 on basal sinoatrial rate and (?)-noradrenaline-evoked tachycardia, we investigated on rat right atria the effects of selective inhibitors. The PDE4 inhibitor rolipram and non-selective inhibitor isobutyl-methylxanthine caused tachycardia with –logEC50s of 7.2 and 5.0 and E max of 18% and 102% of (?)-isoprenaline, respectively. Rolipram did not change the chronotropic potency of (?)-noradrenaline. At high concentrations (10–30?µM), the PDE1, PDE3 and PDE5 inhibitors 8-methoxymethyl-3-isobutyl-1-methylxanthine, cilostamide and sildenafil, respectively, caused marginal tachycardia but did not significantly change the chronotropic potency of (?)-noradrenaline. The PDE2-selective inhibitor erythro-9-[2-hydroxy-3-nonyl]adenine caused marginal bradycardia at 30?µM and tended to reduce the chronotropic potency of (?)-noradrenaline. Rabbit PDE3 reduces basal sinoatrial rate. Although PDE4 only marginally reduces rate, under conditions of PDE3 inhibition, it further reduces sinoatrial rate. Both PDE3 and PDE4 control atrial and ventricular positive inotropic effects of (?)-noradrenaline. In contrast, neither PDE3 nor PDE4 limit the sinoatrial tachycardia induced by (?)-noradrenaline. In the rat, only PDE4, but not PDE1, PDE2, PDE3 and PDE5, reduces basal sinoatrial rate. None of the five rat PDEs limits the (?)-noradrenaline-evoked tachycardia. Taken together, these results confirm and expand evidence for our proposal that the cAMP-compartment modulating basal sinoatrial rate, controlled by PDE3 and/or PDE4, is different from the PDE-resistant cAMP compartment involved in β1-adrenoceptor-mediated sinoatrial tachycardia.  相似文献   

5.
BACKGROUND AND PURPOSE: beta(1) and beta(2)-adrenoceptors coexist in murine heart but beta(2)-adrenoceptor-mediated effects have not been detected in atrial and ventricular tissues, possibly due to marked phosphodiesterase (PDE) activity. We investigated the influence of the PDE3 inhibitor cilostamide and PDE4 inhibitor rolipram on the effects of (-)-adrenaline in three regions of murine heart. EXPERIMENTAL APPROACH:(-)-Adrenaline-evoked cardiostimulation was compared on sinoatrial beating rate, left atrial and right ventricular contractile force in isolated tissues from 129SvxC57B1/6 cross mice. Ventricular arrhythmic contractions were also assessed. KEY RESULTS: Both rolipram (1 microM) and cilostamide (300 nM) caused transient sinoatrial tachycardia but neither enhanced the chronotropic potency of (-)-adrenaline. Rolipram potentiated 19-fold (left atrium) and 7-fold (right ventricle) the inotropic effects of (-)-adrenaline. (-)-Adrenaline elicited concentration-dependent ventricular arrhythmias that were potentiated by rolipram. All effects of (-)-adrenaline were antagonized by the beta(1)-adrenoceptor-selective antagonist CGP20712A (300 nM). Cilostamide (300 nM) did not increase the chronotropic and inotropic potencies of (-)-adrenaline, but administered jointly with rolipram in the presence of CGP20712A, uncovered left atrial inotropic effects of (-)-adrenaline that were prevented by the beta(2)-adrenoceptor-selective antagonist ICI118551.CONCLUSIONS AND IMPLICATIONS: PDE4 blunts the beta(1)-adrenoceptor-mediated effects of (-)-adrenaline in left atrium and right ventricle but not in sinoatrial node. Both PDE3 and PDE4 reduce basal sinoatrial rate in a compartment distinct from the beta(1)-adrenoceptor compartment. PDE3 and PDE4, acting in concert, prevent left atrial beta(2)-adrenoceptor-mediated inotropy. PDE4 partially protects the right ventricle against (-)-adrenaline-evoked arrhythmias.  相似文献   

6.
Activation of both β1- and β2-adrenoceptors increases the contractility of human atrial myocardium through cyclic AMP-dependent pathways. Cyclic AMP is hydrolised by phosphodiesterases, but little is known about which isoenzymes catalyse inotropically relevant cyclic AMP accumulated upon stimulation of β-adrenoceptor subtypes. We have compared the positive inotropic effects of (−)-noradrenaline and (−)-adrenaline, mediated through β1- and β2-adrenoceptors, respectively, in the absence and presence of the PDE3 inhibitor cilostamide (300 nM) or PDE4 inhibitor rolipram (1 μM) on human atrial trabeculae from non-failing hearts. Cilostamide, but not rolipram, potentiated the effects of both (−)-noradrenaline and (−)-adrenaline. Cilostamide increased the −logEC50M of (−)-adrenaline more than of (−)-noradrenaline (P < 0.05), regardless of whether or not the patients had been chronically treated with β-blockers. The results are consistent with a greater PDE3-catalysed hydrolysis of inotropically relevant cyclic AMP produced through β2-adrenoceptors than β1-adrenoceptors in human atrium.  相似文献   

7.
(-)-Isoprenaline enhances cardiac contractility through beta-adrenoceptors. However, in cardiac tissue from transgenic mice with a 200-400-fold cardiac overexpression of the human beta(2)-adrenoceptor (TG4) we observed a pronounced cardiodepression at high (-)-isoprenaline concentrations. Here, we investigated the functional role of the coexisting beta(1)-, beta(2)-, and beta(3)-adrenoceptor subtypes in several regions of the TG4 heart, and in particular their contribution to the negative inotropic effect. In paced TG4 left atria, (-)-isoprenaline produced bell-shaped concentration-effect curves increasing (-logEC(50)M=9.0) and decreasing (-logIC(50)M=6.4) contractile force. These effects were unaffected by the beta(1)-selective CGP 20712A (300 nM). The beta(2)-selective inverse agonist ICI 118,551 (30-1,000 nM) antagonised in surmountable manner both the positive and negative inotropic effects of (-)-isoprenaline with similar concentration-dependence, consistent with an exclusive mediation through beta(2)-adrenoceptors. The beta(3)-adrenoceptor-selective agonist BRL37344 (1 nM-10 microM) failed to produce significant inotropic effects in TG4 left atria. Subsequently, we measured left atrial action potentials accompanying the inotropic changes induced by (-)-isoprenaline. Action potentials tended to have shorter duration in left atria from TG4 mice than from non-transgenic littermate mice. However, (-)-isoprenaline prolonged the duration of 30% repolarisation in atria from non-transgenic littermate but not from TG4 mice, while 90% repolarisation was abbreviated in both groups of atria. Negative inotropic effects of (-)-isoprenaline were also observed in right ventricular preparations. Pertussis toxin-treatment of the mice abolished the negative inotropic effects in left atria and reduced cardiodepression in right ventricle, indicating an involvement of beta(2)-adrenoceptor coupling to PTX-sensitive G-proteins. In additional experiments, designed to study the native murine beta(1)-adrenoceptor function, we used the physiological beta(1)-adrenoceptor agonist (-)-noradrenaline. In the presence of 600 nM ICI 118,551 we failed to find a functional role of the beta(1)-adrenoceptors in left atria, and detected only a marginal contribution to the positive chronotropic effect in right atria. We also investigated the effects of the non-conventional partial agonist (-)-CGP 12177 (0.2 nM-6 microM), which in wild-type mice causes tachycardia through beta(1)-adrenoceptors. In TG4 right atria, however, (-)-CGP 12177-evoked tachycardia was resistant to blockade by CGP 20712A but antagonised by ICI 118,551, consistent with mediation through human beta(2)-adrenoceptors.The results from TG4 mice suggest that the positive and negative inotropic effects of (-)-isoprenaline are mediated through human overexpressed beta(2)-adrenoceptors coupled to G(s) protein and G(i) protein, respectively. The (-)-isoprenaline-evoked shortening of the atrial action potential combined with reduced responses of L-type Ca(2+) current may contribute to the negative inotropic effects. The function of murine cardiac beta(1)-adrenoceptors is suppressed by overexpressed human beta(2)-adrenoceptors.  相似文献   

8.
1. Murine left atrium lacks inotropic beta(2)-adrenoceptor function. We investigated whether beta(2)-adrenoceptors are involved in the cardiostimulant effects of (-)-adrenaline on spontaneously beating right atria and paced right ventricular myocardium of C57BL6 mice. We also studied a negative inotropic effect of (-)-adrenaline. 2. Sinoatrial tachycardia, evoked by (-)-adrenaline was resistant to blockade by beta(2)-selective ICI 118,551 (50 nM) but antagonized by beta(1)-selective CGP 20712A (300 nM). This pattern was unaffected by pretreatment with pertussis toxin (PTX, 600 microg kg(-1) i.p. 24 h) which reversed carbachol-evoked bradycardia to tachycardia. 3. Increases of ventricular force by (-)-adrenaline and (-)-noradrenaline were not blocked by ICI 118,551 but antagonized by CGP 20712A. 4. Under blockade of beta-adrenoceptors, (-)-adrenaline and (-)-noradrenaline depressed ventricular force (-logIC(50)M=7.7 and 6.9). The cardiodepressant effects of (-)-adrenaline were antagonized by phentolamine (1 microM) and prazosin (1 microM) but not by (-)-bupranolol (1 microM). Prazosin potentiated the positive inotropic effects of (-)-adrenaline (in the absence of beta-blockers) from -logEC(50)M=6.2 - 6.8. 5. PTX-treatment reduced carbachol-evoked depression of ventricular force in the presence of high catecholamine concentrations. Inhibition of ventricular function of G(i) protein was verified by 82% reduction of in vitro ADP-ribosylation. PTX-treatment tended to increase the positive inotropic potency of (-)-adrenaline under all conditions investigated, including the presence of ICI 118,551. 6. (-)-Adrenaline causes murine cardiostimulation through beta(1)-adrenoceptors but not through beta(2)-adrenoceptors. The negative inotropic effects of (-)-adrenaline are mediated through ventricular alpha(1)-adrenoceptors but not through beta(3)-adrenoceptors. Both G(i) protein and alpha(1)-adrenoceptors restrain (-)-adrenaline-evoked increases in right ventricular force mediated through beta(1)-adrenoceptors.  相似文献   

9.
10.
1. The heart of several species including man contains atypical beta-adrenoceptors, in addition to coexisting beta 1- and beta 2-adrenoceptors. We now asked the question whether or not the third cardiac beta-adrenoceptor is identical to the putative beta 3-adrenoceptor. We compared the properties of the third cardiac beta-adrenoceptor with those of beta 3-adrenoceptors in isolated tissues of the rat. To study the third cardiac beta-adrenoceptor we used spontaneously beating right atria, paced left atria and paced left ventricular papillary muscles. As a likely model for putative beta 3-adrenoceptors we studied atypical beta-adrenoceptors of the colonic longitudinal muscle precontracted with 30 mM KCl. We used beta 3-adrenoceptor-selective agonists, antagonists and non-conventional partial agonists (ie high-affinity blockers of both beta 1- and beta 2-adrenoceptors know to exert also stimulant effects through beta 3-adrenoceptors). 2. The non-conventional partial agonist (-)-CGP 12177 caused positive chronotropic effects in right atria (pD2 = 7.3) and positive inotropic effects in left atria (pD2 = 7.5). The stimulant effects of (-)-CGP 12177 were resistant to blockade by 200 nM-2 microM (-)-propranolol and 3 microM ICI 118551 (a beta 2-selective antagonist) but antagonized by 1 microM (-)-bupranolol (pKB = 6.4-6.8), 3 microM CGP 20712A (a beta 1-selective antagonist) (pKB = 6.3-6.4) and 6.6 microM SR 59230A (a beta 3-selective antagonist, pKB = 5.1-5.4). 3. The non-conventional partial agonist cyanopindolol caused positive chronotropic effects in right atria (pD2 = 7.7) and positive inotropic effects in left atria (pD2 = 7.1). The stimulant effects of cyanopindolol were resistant to blockade by 200 nM (-)-propranolol but antagonized by 1 microM (-)-bupranolol (pKB = 6.8-7.1). 4. Neither (-)-CGP 12177 nor cyanopindolol caused stimulant effects in papillary muscles at concentrations between 0.2 nM and 20 microM. 5. In the presence of 200 nM (-)-propranolol the beta 3-adrenoceptor-selective agonists BRL 37344 (6 microM), SR 58611A (6 microM), ZD 2079 (60 microM) and CL 316243 (60 microM) did not cause stimulant effects or modify the potency and efficacy of the effects of (-)-CGP 12177 in right and left atria. The combination of 2 microM (-)-propranolol and 2 microM (-)-noradrenaline did not modify the chronotropic potency and efficacy of (-)-CGP 12177 compared to the potency and efficacy in the presence of 2 microM (-)-propranolol alone. 6. (-)-CGP 12177 relaxed the colon with a pD2 of 6.9 and a maximum effect of 55% compared to (-)-isoprenaline. The relaxant effects of (-)-CGP 12177 were resistant to blockade by 200 nM (-)-propranolol, 3 microM CGP 20712A, 3 microM ICI 118551 but blocked by 2 microM (-)-propranolol (pKB = 6.0), 1 microM (-)-bupranolol (pKB = 6.4) and 3 microM SR 59230A (pKB = 6.3). In the presence of 200 nM (-)-propranolol, (-)-CGP 12177 (20 microM) antagonized surmountably the relaxant effects of BRL 37344 (pKP = 7.3) (-)-noradrenaline (pKP = 7.0); and CL 316243 (pKP = 7.0). 7. Cyanopindolol in the presence of 200 nM (-)-propranolol relaxed the colon with a pD2 of 7.0 and a maximum effect of 40% compared to (-)-isoprenaline. As expected from a partial agonist, cyanopindolol antagonized the relaxant effects of both BRL 37344 and CL 316243 with a pKP = 7.6 and (-)-noradrenaline with a pKP = 7.4. 8. The following beta 3-adrenoceptor-selective agonists were potent colonic relaxants (pD2 values between parentheses): BRL 37344 (9.1), ZD 2079 (7.0), CL 316243 (9.0) and SR 58611A (8.2). The relaxant effects of these agonists were only marginally affected by 200 nM (-)-propranolol, not blocked by 3 microM CGP 20712A or 3 microM ICI 118551, and blocked by SR 59230A 3 microM (pKB = 6.9-7.5), 1 microM (-)-bupranolol (pKB = 6.2-6.4) and 2 microM (-)-propranolol (pKB = 6.3-6.5). 9...  相似文献   

11.
The β-blockers carvedilol and metoprolol provide important therapeutic strategies for heart failure treatment. Therapy with metoprolol facilitates the control by phosphodiesterase PDE3, but not PDE4, of inotropic effects of catecholamines in human failing ventricle. However, it is not known whether carvedilol has the same effect. We investigated whether the PDE3-selective inhibitor cilostamide (0.3 μM) or PDE4-selective inhibitor rolipram (1 μM) modified the positive inotropic and lusitropic effects of catecholamines in ventricular myocardium of heart failure patients treated with carvedilol. Right ventricular trabeculae from explanted hearts of nine carvedilol-treated patients with terminal heart failure were paced to contract at 1 Hz. The effects of (-)-noradrenaline, mediated through β1-adrenoceptors (β2-adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through β2-adrenoceptors (β1-adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of the PDE inhibitors. The inotropic potency, estimated from –logEC50s, was unchanged for (-)-noradrenaline but decreased 16-fold for (-)-adrenaline in carvedilol-treated compared to non-β-blocker-treated patients, consistent with the previously reported β2-adrenoceptor-selectivity of carvedilol. Cilostamide caused 2- to 3-fold and 10- to 35-fold potentiations of the inotropic and lusitropic effects of (-)-noradrenaline and (-)-adrenaline, respectively, in trabeculae from carvedilol-treated patients. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline. Treatment of heart failure patients with carvedilol induces PDE3 to selectively control the positive inotropic and lusitropic effects mediated through ventricular β2-adrenoceptors compared to β1-adrenoceptors. The β2-adrenoceptor-selectivity of carvedilol may provide protection against β2-adrenoceptor-mediated ventricular overstimulation in PDE3 inhibitor-treated patients. PDE4 does not control β1- and β2-adrenoceptor-mediated inotropic and lusitropic effects in carvedilol-treated patients.  相似文献   

12.
13.
The effects of cilostamide (N-cyclohexyl-N-methyl-4-[6-carbostyriloxy]butyramide; OPC-3689), a novel cyclic AMP phosphodiesterase (PDE) inhibitor were compared with those of 1-methyl-3-isobutylxanthine (IBMX) on the rabbit and canine heart preparations. Cilostamide was about three times less potent than IBMX in inhibiting the crude PDE activity of rabbit and canine heart in the cell-free system, while it was 10 times more potent than IBMX in enhancing the positive inotropic action of isoprenaline in the rabbit and canine ventricular myocardium: 10?6 M cilostamide shifted the concentration-response curve for isoprenaline to the left in a parellel manner to the same extent as did 10?5 M IBMX. Thus, cilostamide enhanced β-adrenoceptor stimulation more potently than did IBMX and the substances examined previously. Accumulation of intracellular cyclic AMP caused by 10?6 M isoprenaline in the isolated canine ventricular myocardium was significantly enhanced by 10?6 M cilostamide and 10?5 M IBMX; isoprenaline (10?6 M) induced cyclic AMP accumulation was greater with IBMX (10?5 M) than with cilostamide (10?6 M). The threshold concentration for cilostamide itself to induce positive chronotropic and inotropic actions in the rabbit heart was lower than that for IBMX, while the intrinsic activity of IBMX was greater than that of cilostamide. In the canine ventricular myocardium, the positive inotropic actions of cilostamide were comparable to those of IBMX; the action of cilostamide in concentrations of 10?5 M and higher was partly inhibited by a β-adrenoceptor blocking agent, pindolol (3 × 10?8 M). During the washout period of the drugs after the maximal response to the drugs had been reached, the positive inotropic action of cilostamide disappeared more rapidly than that of IBMX. The present results suggest that cilostamide is able to permeate the myocardial cell membrane more easily than IBMX and reach the PDE in the functionally important cyclic AMP compartment. The difference in turnover rate of cyclic AMP even in the same tissue in the physiological condition may also affect the direct action of the PDE inhibitors thereon.  相似文献   

14.
1. The inotropic effects of (-)-4-(3-t-butylamino-2-hydroxypropoxy)benzimidazol-2-one ((-)-CGP 12177), an antagonist for beta 1- and beta 2-adrenoceptors as well as an agonist for beta 3-adrenoceptors, were investigated on paced preparations of isolated right atrial appendages obtained from patients without advanced heart failure undergoing open heart surgery. 2. In the presence of (-)-propranolol (200 nM), (-)-CGP 12177 increased contractile force with a -log EC50, M, of 7.3. The maximum effects of (-)-CGP 12177 amounted to 15% and 11% of the effects of (-)-isoprenaline (400 microM) and of CaCl2 (6.75 mM) respectively. 3. (-)-Bupranolol 1 microM, an antagonist with a pKB of approximately 7.5 for beta 3-adrenoceptors, antagonized surmountably the positive inotropic effects of (-)-CGP 12177 (in the presence of 200 nM (-)-propranolol) with an apparent pKB of 7.3. 4. The potent positive inotropic effects of (-)-CGP 12177 and their resistance to blockade by (-)-propranolol but antagonism by (-)-bupranolol are consistent with the existence in human atrial myocardium of a minor third beta-adrenoceptor population, possibly related to beta 3-adrenoceptors.  相似文献   

15.

Background and purpose

β1- and β2-adrenoceptors coexist in rat heart but β2-adrenoceptor-mediated inotropic effects are hardly detectable, possibly due to phosphodiesterase (PDE) activity. We investigated the influence of the PDE3 inhibitor cilostamide (300 nmol·L−1) and the PDE4 inhibitor rolipram (1 µmol·L−1) on the effects of (−)-catecholamines.

Experimental approach

Cardiostimulation evoked by (−)-noradrenaline (ICI118551 present) and (−)-adrenaline (CGP20712A present) through β1- and β2-adrenoceptors, respectively, was compared on sinoatrial beating rate, left atrial and ventricular contractile force in isolated tissues from Wistar rats. L-type Ca2+-current (ICa-L) was assessed with whole-cell patch clamp.

Key results

Rolipram caused sinoatrial tachycardia. Cilostamide and rolipram did not enhance chronotropic potencies of (−)-noradrenaline and (−)-adrenaline. Rolipram but not cilostamide potentiated atrial and ventricular inotropic effects of (−)-noradrenaline. Cilostamide potentiated the ventricular effects of (−)-adrenaline but not of (−)-noradrenaline. Concurrent cilostamide + rolipram uncovered left atrial effects of (−)-adrenaline. Both rolipram and cilostamide augmented the (−)-noradrenaline (1 µmol·L−1) evoked increase in ICa-L. (−)-Adrenaline (10 µmol·L−1) increased ICa-L only in the presence of cilostamide but not rolipram.

Conclusions and implications

PDE4 blunts the β1-adrenoceptor-mediated inotropic effects. PDE4 reduces basal sinoatrial rate in a compartment distinct from compartments controlled by β1- and β2-adrenoceptors. PDE3 and PDE4 jointly prevent left atrial β2-adrenoceptor-mediated inotropy. Both PDE3 and PDE4 reduce ICa-L responses through β1-adrenoceptors but the PDE3 component is unrelated to inotropy. PDE3 blunts both ventricular inotropic and ICa-L responses through β2-adrenoceptors.  相似文献   

16.
1. To clarify whether there is a species difference or a tissue difference in beta3-adrenoceptors, the beta3-adrenoceptors mediating relaxations to catecholamines ((-)-isoprenaline, (-)-noradrenaline and (-)-adrenaline), a selective beta3-adrenoceptor agonist BRL37344 and a non-conventional partial beta3-adrenoceptor agonist (+/-)-CGP12177A (a potent beta1- and beta2-adrenoceptor antagonist with a partial beta3-adrenoceptor agonist property) were investigated in the guinea-pig ileum. 2. Catecholamines and beta3-adrenoceptor agonists induced concentration-dependent relaxations of pre-contracted strips of the guinea-pig ileum. The rank order for their relaxing potency was (-)-isoprenaline (pD2: 7.60) > BRL37344 (7.05) > (-)-noradrenaline (6.38) > (+/-)-CGP12177A (6.25) > (-)-adrenaline (6.07). 3. In the presence of the non-selective beta1- and beta2-adrenoceptor antagonist (+/-)-propranolol (1 microM), only small rightward shifts of the concentration-response curves (CRCs) to these agonists were observed and the rank order of potency of agonists was BRL37344 (pD2: 7.00) > (+/-)-CGP12177A (6.17) > (-)-isoprenaline (6.01) > (-)-noradrenaline (5.69) > (-)-adrenaline (5.41). 4. In the presence of (+/-)-propranolol (1 microM), the additional presence of (+/-)-bupranolol (3-30 microM), a non-selective beta1-, beta2- and beta3-adrenoceptor antagonist, caused a concentration-dependent rightward shift of the CRCs to catecholamines and beta3-adrenoceptor agonists. Schild plot analyses of (+/-)-bupranolol against these agonists gave pA2 values of 6.02 ((-)-isoprenaline), 6.03 ((-)-noradrenaline), 6.01 ((-)-adrenaline), 6.56 (BRL37344) and 5.74 ((+/-)-CGP12177A), respectively. All Schild plot slopes were not significantly different from unity. The pA2 values of (+/-)-bupranolol obtained for the guinea-pig beta3-adrenoceptors were about one log unit less than the values obtained for the rat beta3-adrenoceptors and about two log units less than the values obtained for dog beta3-adrenoceptors. 5. These results confirm that functional beta3-adrenoceptors are present in the guinea-pig ileum and that the relaxations of these agonists are mainly mediated via beta3-adrenoceptors in this tissue. The differential antagonistic potency of (+/-)-bupranolol may suggest that there is a species difference between the three species (guinea-pig, dog and rat) in their beta3-adrenoceptors.  相似文献   

17.
1. The effects of agents that elevate either cyclic AMP (the phosphodiesterase (PDE) III inhibitor siguazodan, salbutamol) or cyclic GMP (sodium nitroprusside (SNP)) on the relaxant activity of the PDE IV inhibitor, rolipram, were investigated in carbachol (0.1 microM) precontracted guinea-pig tracheal sheets. 2. Rolipram, siguazodan and SNP caused concentration-related reductions in tone of tissues precontracted with 0.1 microM carbachol (EC50 values 12.5; 2.73 and 0.35 microM respectively). Whilst the concentration-response relationship for the PDE III inhibitor, siguazodan, was monophasic that of the PDE IV inhibitor, rolipram, was biphasic. 3. The relaxant activity of rolipram was markedly enhanced in the presence of 10 microM siguazodan (EC50 < 0.01 microM), 0.1 microM salbutamol (EC50 0.03 microM) and 0.3 microM SNP (EC50 0.03 microM). In contrast, the relaxant activity of siguazodan was unaffected by SNP and only modestly enhanced by rolipram (10 microM) and salbutamol (0.1 microM). 4. The relaxant activity of SNP was enhanced by the PDE V inhibitor SK&F 96231 (30 microM: EC50 0.06 microM) and rolipram (30 microM, EC50 0.08 microM) but was unaffected by 30 microM siguazodan. 5. At concentrations up to 10 microM, neither siguazodan nor rolipram elevated tracheal cyclic AMP levels. However, the combination of 10 microM rolipram and siguazodan caused a two fold increase in the cyclic AMP content (from 2.19 to 4.36 pmol cyclic AMP mg-1 protein). SNP (0.1-10 microM) failed to produce a significant increase in tracheal cyclic AMP levels. At 0.1 microM the effect of SNP on tracheal cyclic AMP levels was significantly (P < 0.05) increased in the presence of rolipram but not siguadozan.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
1. The cyclic nucleotide phosphodiesterases (PDEs) present in an insulin secreting cell line, BRIN - BD11, were characterized using calcium/calmodulin, IGF-1, isoenzyme-selective PDE inhibitors and RT - PCR. 2. Calmodulin activated cyclic AMP or cyclic GMP PDE activity in pellet and was 3 fold (P=0.002) more potent in activating cyclic nucleotide hydrolysis in pellet compared with supernatant fractions. 3. The PDE1/PDE5 inhibitor zaprinast inhibited both cyclic AMP and cyclic GMP PDE activity in both pellet and supernatant fractions of cell homogenates by a maximum of around 25% (IC(50) 1 - 5 microM), while rolipram (PDE4 selective) inhibited only cyclic AMP hydrolysis. 4. The PDE3-selective inhibitors Org 9935 (0.02 - 10 microM) and siguazodan (0.1 - 10 microM) inhibited cyclic AMP PDE activity in the pellet but not the supernatant fractions of cell homogenates, with a maximum inhibition of about 30%. IGF-1 (2 - 7.5 ng ml(-1)) potently augmented this PDE activity. 5. RT - PCR using specific primers for PDE3B, but not for PDE3A, amplified, from BRIN - BD11 cell total RNA, a 351 base pair product that was >97% homologous with rat adipose tissue PDE3B. 6. IBMX, Org 9935, siguazodan and rolipram (1 - 50 microM), but not zaprinast, each augmented glucose-induced insulin secretion in the presence of 16.7 mM but not 1 mM glucose. 7. These findings, in a clonal insulin secreting cell line, are consistent with an important role for PDE3B in regulating the pool of cyclic AMP relevant to the modulation of glucose-induced insulin secretion.  相似文献   

19.

Background and Purpose

PDE3 and/or PDE4 control ventricular effects of catecholamines in several species but their relative effects in failing human ventricle are unknown. We investigated whether the PDE3-selective inhibitor cilostamide (0.3–1 μM) or PDE4 inhibitor rolipram (1–10 μM) modified the positive inotropic and lusitropic effects of catecholamines in human failing myocardium.

Experimental Approach

Right and left ventricular trabeculae from freshly explanted hearts of 5 non-β-blocker-treated and 15 metoprolol-treated patients with terminal heart failure were paced to contract at 1 Hz. The effects of (-)-noradrenaline, mediated through β1 adrenoceptors (β2 adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through β2 adrenoceptors (β1 adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of PDE inhibitors. Catecholamine potencies were estimated from –logEC50s.

Key Results

Cilostamide did not significantly potentiate the inotropic effects of the catecholamines in non-β-blocker-treated patients. Cilostamide caused greater potentiation (P = 0.037) of the positive inotropic effects of (-)-adrenaline (0.78 ± 0.12 log units) than (-)-noradrenaline (0.47 ± 0.12 log units) in metoprolol-treated patients. Lusitropic effects of the catecholamines were also potentiated by cilostamide. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline on right and left ventricular trabeculae from metoprolol-treated patients.

Conclusions and Implications

Metoprolol induces a control by PDE3 of ventricular effects mediated through both β1 and β2 adrenoceptors, thereby further reducing sympathetic cardiostimulation in patients with terminal heart failure. Concurrent therapy with a PDE3 blocker and metoprolol could conceivably facilitate cardiostimulation evoked by adrenaline through β2 adrenoceptors. PDE4 does not appear to reduce inotropic and lusitropic effects of catecholamines in failing human ventricle.

Linked Article

This article is commented on by Eschenhagen, pp 524–527 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12168  相似文献   

20.
The ability of cyclic nucleotide phosphodiesterases (PDEs) to hydrolyse cyclic (c)AMP in rat and rabbit ventricular myocardium has been compared. The PDE activity of rabbit, but not rat, cardiac homogenate and supernatant fraction was potentiated by Ca2+/calmodulin and attenuated by cGMP. Both rabbit and rat ventricular myocardium were shown to have a membrane bound PDE. However, rabbit membrane-bound PDE was inhibited by cGMP and low concentrations of milrinone (IC50 2.7 microM). In contrast, rat membrane-bound PDE was not inhibited by either cGMP or low concentrations of milrinone (IC50 19 microM), but it was potently inhibited by rolipram (IC50 2.2 microM). Thus, in rabbit the particulate PDE is milrinone sensitive (PDE III) whilst in rat it is the rolipram sensitive (PDE IV) isoenzyme. There are clearly species differences in the intracellular localization and relative activities of PDE isoenzymes in cardiac tissue. This may explain the species differences already found in the activity of selective PDE isoenzyme inhibitors as inotropic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号