首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nonhuman primates are increasingly being used as models for pre-clinical assessment of retrovirus vector expression and function following stem and progenitor cell transduction. We compared the relative susceptibility of CD34+ marrow progenitors from four nonhuman primate species and humans to transduction with amphotropic pseudotyped retrovirus vectors containing the Neo gene. The rate of functional gene transfer was measured by colony formation under G418 selection. Marrow progenitors from pigtail macaques (Macaca nemestrina) were transduced at about twice the rate (19.1 +/- 4.3%) as those from rhesus (11.2 +/- 3.7%) and cynomolgus (7.6 +/- 1.9%) macaques, baboons (7.8 +/- 1.8%), and humans (9.6 +/- 1.7%). Semiquantitative RT/PCR analysis suggests this difference may be due to elevated expression of the amphotropic receptor Pit2 in pigtailed macaque CD34+ cells. Further, transduction rates increased an average 1.6 +/- 0.4-fold when the culture temperature was lowered to 33 degrees C, and 2.1 +/- 0.3-fold when the culture dishes were coated with the fibronectin fragment CH-296. The data presented here point to important differences among nonhuman primate models as well as transduction culture conditions, and suggest that pigtailed macaques may be particularly useful for assessing expression and function of therapeutic retrovirus vectors. Gene Therapy (2000) 7, 359-367.  相似文献   

2.
A novel, stable human immunodeficiency virus type 1 vector packaging system, STAR, was tested for its ability to transduce human cord blood CD34+ progenitor cells assayed both in vitro and after transplantation into NOD/SCID mice. Vectors pseudotyped with three different gammaretrovirus envelopes were used: the amphotropic MLV envelope (MLV-A), a modified gibbon ape leukemia virus envelope (GALV+), and a modified feline endogenous virus RD114 envelope (RDpro). Gene transfer to freshly thawed CD34+ cells in the absence of cytokines was very low. Addition of cytokines increased gene transfer efficiency significantly and this was further augmented if the cells were prestimulated for 24 h. Concentration of the vectors (15-fold) by low-speed centrifugation increased gene transfer to CD34+ cells in vitro even further. More than 90% of cells were transduced with a single exposure to the RDpro vector as determined by GFP expression using flow cytometry. The two other pseudotypes transduced approximately 65-70% of the cells under the same conditions. Transplantation of CD34+ cells prestimulated for 24 h and then transduced with a single exposure to concentrated vector revealed that the RDpro vector transduced 55.1% of NOD/SCID repopulating human cells, which was significantly higher than the MLV-A (12.6%)- or GALV+ (25.1%)-pseudotyped vectors.  相似文献   

3.
One factor limiting the ability to modify human repopulating hematopoietic cells genetically with retroviral vectors is the relatively low expression of the cognate viral receptor. We have tested sequential transduction of human hematopoietic cells with an adenoviral vector encoding the ecotropic retroviral receptor followed by transduction with an ecotropic retroviral vector. Adenoviral transduction of K562 erythroleukemia cells was highly efficiently with >95% of cells expressing the ecotropic receptor at a multiplicity of infection (MOI) of 103with a correspondingly high transduction with a retroviral vector. Ecotropic receptor expression in CD34+ cells following transduction with adenoviral vectors was increased by at least two-fold (from 20 to 48%) by replacing the RSV promoter with the CMV E1a promoter, resulting in a parallel increase in retroviral transduction efficiency. Replacing the head portion of the fiber protein in conventional adenoviral vectors (serotype 5) with the corresponding portion from an adenoviral 3 serotype resulted in ecotropic receptor expression in 60% of CD34+ cells at an MOI of 104 and a retroviral transduction of 60% of hematopoietic clonogenic progenitors. The sequential transduction strategy also resulted in efficient transduction of the primitive CD34+CD38- subset suggesting that it may hold promise for genetic modification of human hematopoietic stem cells.  相似文献   

4.
Lentiviral vectors are useful for transducing primitive hematopoietic cells. We examined four envelope proteins for their ability to mediate lentiviral transduction of mobilized human CD34+ peripheral blood cells. Lentiviral particles encoding green fluorescent protein (GFP) were pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G), the amphotropic (AMPHO) murine leukemia virus envelope protein, the endogenous feline leukemia viral envelope protein or the feline leukemia virus type C envelope protein. Because the relative amount of genome RNA per ml was similar for each pseudotype, we transduced CD34+ cells with a fixed volume of each vector preparation. Following an overnight transduction, CD34+ cells were transplanted into immunodeficient mice which were sacrificed 12 weeks later. The average percentages of engrafted human CD45+ cells in total bone marrow were comparable to that of the control, mock-transduced group (37–45%). Lenti-particles pseudotyped with the VSV-G envelope protein transduced engrafting cells two- to tenfold better than particles pseudotyped with any of the γ-retroviral envelope proteins. There was no correlation between receptor mRNA levels for the γ-retroviral vectors and transduction efficiency of primitive hematopoietic cells. These results support the use of the VSV-G envelope protein for the development of lentiviral producer cell lines for manufacture of clinical-grade vector.  相似文献   

5.
A number of stable producer cell lines for high-titer Mo-MuLV vectors have been constructed. Development has previously centered on increasing end-point titers by producing maximal levels of Mo-MuLV Gag/Pol, envelope glycoproteins, and retroviral RNA genomes. We describe the production yields and transduction efficiency characteristics of two Mo-MuLV packaging cell lines, FLYA13 and TEFLYA. Although they both produce 4070A-pseudotyped retroviral vectors reproducibly at >1 x 10(6) LFU ml(-1), the transduction efficiency of unconcentrated and concentrated virus from FLYA13 lines is poor compared with vector preparations from TEFLYA lines. A powerful inhibitor of retroviral transduction is secreted by FLYA13 packaging cells. We show that the inhibitory factor does not affect transduction of target cells by RD114-pseudotyped vectors. This suggests that the inhibitory factor functions at the level of envelope-receptor interactions. Phosphate starvation of target cells shows a two-fold increase in Pit2 receptor mRNA and causes some improvement in FLYA13 virus transduction efficiency. Western blots show that FLYA13 viral samples contain an eight-fold higher ratio of 4070A envelope to p30gag than that of virus produced by TEFLYA producer cell lines. This study correlates overexpression of 4070A envelope glycoprotein in retroviral preparations with a reduction of transduction efficiency at high multiplicities of infection. We suggest that TEFLYA packaging cells express preferable levels of 4070A compared with FLYA13, which not only enables high-titer stocks to be generated, but also facilitates a high efficiency of transduction of target cells.  相似文献   

6.
The entry of retroviral vectors into cells requires two events: binding to a cell surface receptor and the subsequent fusion of viral and cellular membranes. The host range of a vector is therefore determined largely by the receptor specificity of the fusion protein contained in the outer viral envelope. Previous attempts to generate targeted retroviral vectors have included the addition of targeting ligands to the murine leukemia virus envelope protein (MuLV Env). Although such proteins frequently display modified cell-binding characteristics, the interaction with the targeted receptors fails to trigger virus-cell fusion. Here, we report the use of a binding-defective but fusion-competent hemagglutinin (HA) protein to complement the fusion defect in a chimeric MuLV Env targeted to the Flt-3 receptor. Retroviral vectors containing both proteins showed enhanced transduction of cells expressing Flt-3, which was abrogated by preincubating the target cells with soluble Flt-3 ligand. Furthermore, the fusion function of HA was absolutely required. These data demonstrate that it is possible to separate the binding and fusion events of retroviral entry, using two separate proteins, and suggest that varying the binding protein component in this scheme may allow a general strategy for targeting retroviral vectors.  相似文献   

7.
Cell proliferation is required for transduction by standard retrovirus vectors derived from viruses in the murine leukemia virus (MuLV) group. Since proliferation rates are low in the mature pulmonary epithelium, we tested the hypothesis that the efficiency of retrovirus-mediated transduction of respiratory epithelial cells can be enhanced by stimulation of cell proliferation with recombinant human keratinocyte growth factor (rhKGF). A marked increase in proliferation of bronchiolar and alveolar epithelial cells was observed after intratracheal administration of rhKGF (30 mg/kg) to adult FVB/N mice. Two days after rhKGF or saline treatment, 10(7) AP+ FFU of LAPSN, a recombinant amphotropic retrovirus that expresses human placental alkaline phosphatase (AP), was instilled intratracheally into the mice. Transduction efficiency, measured 2 days after infection, was increased approximately 70-fold by rhKGF pretreatment. However, even after KGF treatment the total numbers of AP-expressing cells were few. Transduction efficiency was similar using either LAPSN packaged by amphotropic host range packaging cells or LAPSN pseudotyped with 10A1 MuLV envelope protein (0.091 +/- 0.006 versus 0.094 +/- 0.028 transduction events/mm2, respectively). Amphotropic vectors use Pit-2 for cell entry, while 10A1 MuLV vectors can use Pit-1 or Pit-2 for cell entry. By in situ hybridization the retroviral receptor Pit-2 (Ram-1) mRNA was expressed only in the pulmonary vasculature, and Pit-1 (Glvr-1) mRNA was expressed at low levels throughout the lung. In vitro studies demonstrated that retrovirus was inactivated by pulmonary surfactant. Stimulating proliferation of the respiratory epithelium increased retroviral transduction in vivo, but the paucity of retroviral receptors and inactivation by surfactant are additional barriers to high-level retroviral gene transfer in the lung.  相似文献   

8.
In light of findings demonstrating that the macaque TRIM5alpha protein inhibits infection of cells by human immunodeficiency virus (HIV)-1, simian immunodeficiency virus (SIV)-based lentiviral vectors may have distinct advantages over HIV-1 vectors for the transduction of macaque hematopoietic stem cells. We evaluated the ability of an SIV vector (VRX859) encoding an antisense SIV envelope sequence and enhanced green fluorescent protein (GFP) to inhibit viral replication and to transduce rhesus CD34(+) lymphoid progenitor cells. After infection with homologous SIV strains, CD4(+) cell lines transduced with VRX859 exhibited more than 600-fold inhibition of viral replication compared with control cells. Less inhibition was observed with the divergent SIV strain SIVsmE660. Partial inhibition of a chimeric simian-human immunodeficiency virus, which contains an HIV-1 envelope in an SIV backbone, was observed, suggesting that the SIV vector also contributes to viral inhibition independent of the antisense envelope inhibitor. Transduction of rhesus CD34(+) cells with VRX859 at various multiplicities of infection resulted in transduction efficiencies comparable to those obtained with the HIV vector VRX494. However, when we evaluated transduction of rhesus T lymphocyte progenitors by examining GFP expression in CD4(+) T cells derived from transduced CD34(+) cells, we observed more efficient transduction with the SIV-based vector. GFP(+)CD4(+) T cells derived from VRX859-transduced CD34(+) cells strongly inhibited SIVmac239 replication as compared with control CD4(+) T cells. The ability of this SIV-based vector to mediate potent inhibition of SIV replication, coupled with its efficient transduction of rhesus hematopoietic progenitor cells, make it an important candidate for proof-of-principle experiments of stem cell gene therapy in the SIV-macaque model.  相似文献   

9.
The transfer of T-cell receptor (TCR) genes into primary human T-cells to endow their specificity toward virus-infected and tumor cells is becoming an interesting tool for immunotherapy. TCR-modified T cells are mainly generated by retrovirus-mediated gene transfer. To produce TCR-retrovirus particles, fibroblast packaging cell lines are the most common tool. We constructed two packaging cell lines based on the human suspension T-cell lymphoma line Deltabeta-Jurkat, which lacks endogenous TCRbeta-chains and is therefore unable to express CD3 complexes on the cell surface. After supply of gag-pol (murine leukemia virus (Mo-MLV)) and env (GALV or MLV-10A1) genes, a green fluorescent protein (GFP)-encoding retrovirus vector was transduced into both packaging cell clones, which then stably produced GFP-retroviruses with titers of up to 4 x 10(5) infectious particles (IP)/ml. After transfer of a TCRalpha/beta-encoding retrovirus vector, Deltabeta-Jurkat/GALV and Deltabeta-Jurkat/10A1 cells expressed CD3 molecules on the cell surface. CD3-high expressing packaging cells were enriched by fluorescence-activated cell sorter sorting. In these cells, the CD3 expression level directly correlated with the titer of vector particles. TCR-retroviruses efficiently transduced human T-cell lines and primary T cells. In conclusion, the method allowed the fast and easy generation of high virus titer supernatants for TCR gene transfer.  相似文献   

10.
The ability of human immunodeficiency virus (HIV)- and equine infectious anaemia virus (EIAV)-based vectors to transduce cell lines from a range of species was compared. Both vectors carried the vesicular stomatitis virus G (VSV-G) envelope protein and encoded an enhanced green fluorescent protein (eGFP) gene driven by a human cytomegalovirus (CMV) early promoter. Immunostaining for viral core proteins and VSV-G was used to demonstrate that the HIV and EIAV vector preparations contained similar numbers of virus particles. Various cell lines were transduced with these vectors and the transduction efficiency was estimated by measuring eGFP expression. Efficient transduction by both vectors was observed in human, hamster, pig, horse, cat and dog cell lines, although EIAV vector was about 10-fold less efficient in human, hamster and pig cells normalised to the total number of viral particles. This could be partly explained by the lower RNA genome levels per particle for EIAV as measured by real-time RT-PCR. Rodent cells appeared to be transduced inefficiently with both vectors, but when the CMV promoter was substituted with the EF1alpha promoter in the HIV vectors, the expression level increased leading to an increase in the measurable level of transduction.  相似文献   

11.
The aim of this study was to quantify the impact of amphotropic retroviral receptor (PiT-2) levels on susceptibility to transduction and to determine whether the low level of PiT-2 found on CD34+ hematopoietic cells is within the range likely to compromise gene transfer. Receptor-deficient Chinese hamster ovary (CHO) cells were transfected with a PiT-2 construct that could be induced by the removal of tetracycline. The level of PiT-2 expression measured by virus binding in uninduced and in fully and partially induced transfectants correlated with the efficiency of transduction by an amphotropic retroviral reporter vector. Fully induced CHO-PiT-2 cells gave apparent viral titers similar to NIH 3T3 fibroblasts while addition of tetracycline reduced titers by up to 140-fold. Binding of the same vector preparation to purified CD34+ peripheral blood stem cells (PBSCs) was always less than to uninduced CHO-PiT-2 transfectants even after preincubation in 10-ng/ml concentrations of IL-3, IL-6, and stem cell factor, which increased retroviral binding by an average of 35%. The level of expression of the amphotropic retroviral receptor PiT-2 thus significantly limits transduction efficiency within the range observed in target cells of importance in human gene therapy.  相似文献   

12.
The optimal stem cell source for stem cell gene therapy has yet to be determined. Most large-animal studies have utilized peripheral blood or marrow-derived cells collected after administration of granulocyte colony-stimulating factor (G-SCF) and stem cell factor (SCF); however, SCF is unavailable for clinical use in the United States and the European Union. A recent study in a competitive repopulation assay in the rhesus macaque showed very inefficient marking of G-CSF-mobilized (G/only) peripheral blood (G-PBSC) CD34(+) cells relative to G-CSF and SCF-mobilized cells using vectors with an amphotropic pseudotype. Because G-PBSC would be the preferred target cell population for most clinical stem cell gene therapy applications, we asked whether we could achieve efficient transduction and engraftment of G-PBSC using Phoenix-GALV-pseudotyped vectors. We transplanted three baboons with G/only mobilized CD34(+) cells transduced with GALV-pseudotyped retroviral vectors. We observed high-level, persistent engraftment of gene-modified G-PBSC in all animals with gene marking levels in granulocytes up to 60%. We analyzed amphotropic (PIT2) and GALV (PIT1) receptor expression in G/only cells and found preferential expression of PIT1 after G/only, which may explain the inferior results with amphotropic pseudotypes. These findings demonstrate that high stem cell gene transfer levels can be achieved using G-CSF-mobilized PBSC with Phoenix-GALV-pseudotyped vectors.  相似文献   

13.
In an effort to improve hematopoietic stem cell gene transfer rates using gibbon ape leukemia virus (GALV)-pseudotype retroviral vectors in baboons, we have studied preselection of transduced green fluorescent protein (GFP)-expressing CD34-enriched marrow cells. Three animals were transplanted with GFP-selected (GS) CD34-enriched marrow. To ensure engraftment, preselected GFP-positive cells were infused together with unselected neo-transduced cells. After transduction on fibronectin, cells were cultured for an additional 2 days to allow for expression of GFP. GFP-expressing cells were enriched by fluorescence-activated cell sorting and infused together with cells from the unselected fractions after myeloablative irradiation of the recipient. Three other animals were transplanted with GFP-transduced CD34-enriched cells without prior GFP selection (GU). At 4 weeks after transplant, the percentage of GFP-expressing white blood cells was significantly higher in the GS group (6.6%) than in the GU group (1.3%) (p < 0.002). The higher gene transfer levels in the animals transplanted with GS cells gradually declined, and by day 100 after transplant, gene transfer levels were similar in both groups. PCR analysis performed on genomic DNA isolated from peripheral blood cells demonstrated that the decline in GFP-positive cells was due to the loss of gene-marked cells and not due to loss of expression. These results show that transplantation of CD34-positive marrow cells selected for GFP-positive cells after transduction provides high levels of transduced granulocytes in the short term. However, using this experimental design with concomitant infusion of unselected cells and the use of oncoretroviral vectors, preenrichment of vector-expressing, transduced CD34-enriched cells does not improve long-term persistence and expression.  相似文献   

14.
This study was designed to retrovirally transduce T cells by a protocol that would be simple, short, cost effective, applicable for clinical use, and efficient enough to avoid further selection of transduced T cells. Because retrovirally mediated infection is depending on the cell cycle, we first optimized the conditions for activating T cells in the presence of immobilized CD3 monoclonal antibodies and recombinant interleukin 2. Cell cycle analysis indicated that CD8+ and total T cells reach a maximum of cycling within 4 days whereas CD4+ T cells attain their maximum of cycling only by day 6. Taking into account these data, CD4+, CD8+, and total T cells were preactivated for 5 and 3 days, respectively, and then infected for 24 hr with supernatant containing retrovirus pseudotyped with gibbon-ape leukemia virus envelope, using a cell centrifugation protocol. Results show that approximately 95% of CD4+, CD8+, and total T cells can be transduced, this transduction efficiency being significantly higher than that obtained with amphotropic retrovirus vectors. Furthermore, under permanent growth stimulation, transduced T cells can be expanded approximately 1,000-fold in 4 weeks of culture with maintenance of transgene expression. However, Immunoscope analysis revealed alterations of T cell repertoire diversity after 2-3 weeks in culture that was not due to retroviral transduction per se. Overall, these data provide evidence that T cells can be transduced at levels that may alleviate the need for both further selection of transduced cells and in vitro expansion, thereby preserving the repertoire diversity of the transduced T cells to be reinfused.  相似文献   

15.
16.
Sakurai F  Mizuguchi H  Hayakawa T 《Gene therapy》2003,10(12):1041-1048
Efficient gene transfer into human hematopoietic stem cells (HSCs) is the most important requirement for gene therapy of hematopoietic disorders and for study of the hematopoietic system. An adenovirus (Ad) vector based on the Ad serotype 5 (Ad5) is known to transduce HSCs, including CD34(+) cells, with very low efficiency because of low-level expression of its primary receptor, coxsackievirus and adenovirus receptor (CAR). In the present study, we developed a recombinant Ad vector composed of the whole Ad serotype 35 (Ad35), which recognizes an unidentified receptor different from CAR for its infection. A transduction study showed that the Ad35-based vectors exhibit a higher transduction efficiency in human CD34(+) cells than the conventional Ad5 vectors and the Ad5F35 vectors, which are fiber-substituted Ad5 vectors containing Ad35 fiber proteins. The mean of fluorescence intensity in the CD34(+) cells transduced with the Ad35 vectors was 12-76 and 1.4-3 times higher than that in the cells transduced with the Ad5 and Ad5F35 vectors, respectively. The percentages of green fluorescent protein (GFP)-positive CD34(+) cells by transduction with Ad35, Ad5, and Ad5F35 vectors expressing GFP at 300 PFU/cell were 53%, 5%, and 52%, respectively, suggesting that Ad35 vectors mediate a more efficient gene transfer into human CD34(+) cells than Ad5 and Ad5F35 vectors, although the percentage of transduced cells was similar between Ad35 and Ad5F35 vectors. The Ad vector based on Ad35 could be very useful in gene therapy for blood disorders and gene transfer experiments using HSCs.  相似文献   

17.
18.
We have attempted to engineer murine leukemia virus (MuLV)-based retroviral vectors to specifically transduce cells expressing human CD34, an antigen present on the surface of undifferentiated hematopoietic stem cells. A number of chimeric ecotropic MuLV envelope (Env) proteins were constructed that contained anti-CD34 single-chain antibody variable fragments (scFvs). The scFv-Env proteins were generated either by replacing the receptor-binding domain of Env with the scFv or by inserting the scFv into the N terminus of the Env protein. Only chimeric Env proteins with scFv insertions between amino acids 6 and 7 were incorporated into viral particles, and coexpression of native MuLV Env did not rescue incorporation-defective proteins. In addition, the efficiency of incorporation varied with the specific anti-CD34 scFv that was used. Retroviral vectors containing the scFv-Env proteins bound to CD34+ cells and transduced NIH 3T3 cells expressing human CD34 (3T3-CD34 cells) at approximately twice the efficiency of the parental NIH 3T3 cells. However, the introduction of the mutation D84K, which prevents binding to the ecotropic MuLV receptor mcat-1, prevented transduction of both NIH 3T3 and 3T3-CD34 cells. Complementation cell-cell fusion assays [Zhao et al. (1997). J. Virol. 71, 6967-6972] in 3T3-CD34 cells revealed that although the scFv-Env proteins could contribute postbinding entry functions when bound to mcat-1, they were unable to do so when bound to CD34. Taken together, these data suggest that although the interaction with CD34 effectively increased the concentration of virus on 3T3-CD34 cells, entry could occur only through an interaction with mcat-1; CD34 alone was not capable of triggering the appropriate postbinding changes that lead to viral entry.  相似文献   

19.
The aim of this study was to examine the effect of two of the most commonly used viral vectors, that is, retrovirus and adenovirus, on the antigen presentation of dendritic cells (DCs). DCs were generated from CD34(+) hematopoietic precursors and CD14(+) monocytes of the same prostate cancer patients. Adenoviral transduction of monocyte-derived DCs (MO-DCs) resulted in upregulation of CD80, CD86, and CD83 expression. Adenovirus-transduced MO-DCs were also more potent stimulators of allogeneic lymphocytes, produced increased amounts of the cytokines tumor necrosis factor alpha and interleukin 12 p70, and exhibited increased expression of NF-kappaB and antiapoptotic molecules Bcl-X(L) and Bcl-2. Enhanced expression of the antiapoptotic molecules correlated with increased resistance of adenovirus-transduced MO-DCs to spontaneous as well as Fas-mediated cell death. In contrast to the adenoviral construct, no significant transduction of MO-DCs with the retrovirus could be obtained. Transduction of CD34(+) cell-derived DCs with the retrovirus or the adenovirus did not significantly alter expression of the costimulatory molecules or cytokines studied. At lower stimulation ratios, CD34(+) cell-derived DCs transduced with retrovirus were less potent in their ability to stimulate allogeneic lymphocytes in comparison with nontransduced DCs. Our results indicate that adenoviral vectors may be more suitable for gene delivery to DCs for immunotherapy.  相似文献   

20.
The success of gene therapy strategies for congenital and acquired blood disorders requires high levels of gene transfer into hematopoietic cells. Retroviral vectors have been extensively used to deliver foreign genes to mammalian cells and improvement of transduction protocols remains dependent on markers that can be rapidly monitored and used for efficient selection of transduced cells. The enhanced green fluorescent protein (EGFP) is a suitable reporter molecule for gene expression because of its lack of cytotoxicity and stable fluorescence signal that can be readily detected by flow cytometry. However, attempts to adapt the GFP system to stable transduction of human lymphocytes have not been satisfactory. In this article, transductions of primary human T lymphocytes were performed using cell-free supernatants from a PG13 packaging cell line in which a retroviral vector expressing EGFP was pseudotyped with the gibbon ape leukemia virus (GALV) envelope. Using this system combined with a fibronectin-facilitated protocol, primary lymphocytes were transduced with a mean gene transfer efficiency of 27.5% following a 2-day stimulation with either PHA or anti-CD3/CD28 antibodies. Conditions that increased the entry of lymphocytes into cell cycle did not consistently correlate with enhanced gene transfer, indicating that factors other than proliferation are important for optimal retroviral gene transfer. These results demonstrate the utility of EGFP as a marker for human T cell transduction and will enable further optimization of T cell gene therapy protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号