首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The remarkably high potencies of 2-thioether-adenine nucleotides regarding the activation of the P2Y(1)-receptor (P2Y(1)-R) in turkey erythrocyte membranes represent some of the largest substitution-promoted increases in potencies over that of a natural receptor ligand. This paper describes the investigation regarding the origin of the high potency of these P2Y(1)-R ligands over that of ATP. For this study, an integrated approach was employed combining the synthesis of new ATP analogues, their biochemical evaluation, and their SAR analysis involving NMR experiments and theoretical calculations. These experiments and calculations were performed to elucidate the conformation and to evaluate the electronic nature of the investigated P2Y(1)-R ligands. ATP analogues synthesized included derivatives where C2 or C8 positions were substituted with electron-donating groups such as ethers, thioethers, or amines. The compounds were tested for their potency to induce P2Y(1)-R-mediated activation of phospholipase C in turkey erythrocytes and Ca(2+) response in rat astrocytes. 8-Substituted ATP and AMP derivatives had little or no effect on phospholipase C or on calcium levels, whereas the corresponding 2-substituted ATP analogues potently increased the levels of inositol phosphates and ?Ca(2+)(i). AMP analogues were ineffective except for 2-butylthio-AMP which induced a small Ca(2+) response. P2Y(1)-R activity of these compounds was demonstrated by testing these ligands also on NG108-15 neuroblastoma x glioma hybrid cells. NMR data together with theoretical calculations imply that steric, rather than electronic, effects play a major role in ligand binding to the P2Y(1)-R. Hydrophobic interactions and H-bonds of the C2 substituent appear to be important determinants of a P2Y(1)-R ligand affinity.  相似文献   

2.
P2Y receptors (P2Y-Rs) are attractive pharmaceutical targets due to their involvement in the modulation of many tissues and organs. The lack of experimental structural data on P2Y-Rs impedes structure-based drug design. The need to elucidate the receptor's molecular recognition, together with the limitations of previous receptor models, triggered the construction of a new molecular model for the h-P2Y1-R. Therefore, a h-P2Y1-R model was constructed by homology modeling using the 2.6 A crystal structure of bovine rhodopsin as a template and subsequently refined by constrained molecular dynamics (MD) simulations in a fully hydrated lipid bilayer environment. ATP was docked into the receptor binding site, followed by binding site refinement using Monte Carlo and MD simulations. Analysis of the h-P2Y1-R-ATP complex suggests that the triphosphate moiety is tightly bound by a multitude of interactions possibly including a Mg2+ ion, the ribose ring is not involved in specific interactions, and the adenine ring is bound via N1, N7, and N6. The molecular recognition of the h-P2Y1-R was further probed by ATP derivatives modified on the adenine ring, and correlated with EC50 values for these derivatives. Analysis of receptor:ligand complexes and quantum mechanical studies on model compounds support the role of both steric and electronic effects in improving H-bonding (via N1 and N6) and pi-stacking interactions. The computed h-P2Y1-R model was validated with respect to our previous biochemical results. We believe that this new model of the h-P2Y1-R provides the means for understanding phenomena such as the ligand's potency and receptor subtype selectivity.  相似文献   

3.
In the companion paper, part 1, we described the construction of an improved molecular model for the h-P2Y1 receptor (h-P2Y1-R) and proposed a rational for the stereoelectronic selectivity of the receptor. Here, we extend our studies on the molecular recognition of the h-P2Y1-R to the exploration of the diastereoselectivity of this receptor. For this purpose, we implemented an integrative approach combining synthesis, spectral analysis, biochemical assays, and computational analysis. Specifically, we selected and synthesized novel ATP analogues bearing a chiral center on the phosphate chain. We analyzed the conformation of the chiral ATP analogues in solution by 1H/13C NMR and assigned the absolute configuration of the diastereoisomers. The coordination mode of these analogues with a Mg2+ ion was evaluated by 31P NMR. These chiral analogues were biochemically evaluated and found to be potent h-P2Y1-R ligands. An EC50 difference of ca. 20-fold was observed between the diastereoisomers. Their spectral absolute configuration assignment was confirmed by comparison of the biochemical results to those of ATP-alpha-S diastereoisomers whose chirality is known. Finally, a computational analysis was performed for the elucidation of molecular recognition employing molecular mechanics (docking) studies on the receptor:ligands complexes. On the basis of the current results, we hypothesize that h-P2Y1-R's chiral discrimination originates from the requirement that the nucleotide analogue interacts with a Mg2+ ion within the receptor binding site. This Mg2+ ion is possibly coordinated with both Asp204 and the ATP's alpha, beta, gamma-phosphates in a Lambda configuration.  相似文献   

4.
The potency of nucleotide antagonists at P2Y1 receptors was enhanced by replacing the ribose moiety with a constrained carbocyclic ring (Nandanan, et al. J. Med. Chem. 2000, 43, 829-842). We have now synthesized ring-constrained methanocarba analogues (in which a fused cyclopropane moiety constrains the pseudosugar ring) of adenine and uracil nucleotides, the endogenous activators of P2Y receptors. Methanocarba-adenosine 5'-triphosphate (ATP) was fixed in either a Northern (N) or a Southern (S) conformation, as defined in the pseudorotational cycle. (N)-Methanocarba-uridine was prepared from the 1-amino-pseudosugar ring by treatment with beta-ethoxyacryloyl cyanate and cyclization to form the uracil ring. Phosphorylation was carried out at the 5'-hydroxyl group through a multistep process: Reaction with phosphoramidite followed by oxidation provided the 5'-monophosphates, which then were treated with 1,1'-carbonyldiimidazole for condensation with additional phosphate groups. The ability of the analogues to stimulate phospholipase C through activation of turkey P2Y1 or human P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors stably expressed in astrocytoma cells was measured. At recombinant human P2Y1 and P2Y2 receptors, (N)-methanocarba-ATP was 138- and 41-fold, respectively, more potent than racemic (S)-methanocarba-ATP as an agonist. (N)-methanocarba-ATP activated P2Y11 receptors with a potency similar to ATP. (N)-Methanocarba-uridine 5'-triphosphate (UTP) was equipotent to UTP as an agonist at human P2Y2 receptors and also activated P2Y4 receptors with an EC(50) of 85 nM. (N)-Methanocarba-uridine 5'-diphosphate (UDP) was inactive at the hP2Y6 receptor. The vascular effects of (N)-methanocarba-UTP and (N)-methanocarba-UDP were studied in a model of the rat mesenteric artery. The triphosphate was more potent than UTP in inducing a dilatory P2Y4 response (pEC(50) = 6.1 +/- 0.2), while the diphosphate was inactive as either an agonist or antagonist in a P2Y6 receptor-mediated contractile response. Our results suggest that new nucleotide agonists may be designed on the basis of the (N) conformation that favors selectivity for P2Y1, P2Y2, P2Y4, and P2Y11 receptors.  相似文献   

5.
6.
1. Adenine dinucleotides (Ap3A, x = 2-6) are naturally-occurring polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. The selectivity and activity of adenine dinucleotides for neuronally-derived recombinant P2 purinoceptors were studied using P2X2 and P2Y1 subtypes expressed in Xenopus oocytes. 2. For the P2Y1 subtype derived from chick brain, Ap3A was equipotent and as active as ATP (EC50 values: 375 +/- 86 nM and 334 +/- 25 nM, respectively). Ap4A was a weak partial agonist and other dinucleotides were inactive as agonists. None of the inactive dinucleotides were antagonists nor modulated the activity of Ap3A and ATP. 3. For the P2X2 subtype derived from rat PC12 cells, Ap4A was as active as ATP but less potent (EC50 values: 15.2 +/- 1 microM and 3.7 +/- 0.7 microM, respectively). Other adenosine dinucleotides were inactive as either agonists or antagonists. 4. Ap5A (1-100 nM) potentiated ATP-responses at the P2X2 subtype, showing an EC50 of 2.95 +/- 0.7 nM for this modulatory effect. Ap5A (10 nM) shifted the concentration-response curves for ATP to the left by one-half log10 unit but did not alter the Hill co-efficient for ATP (nH = 2.1 +/- 0.1). Ap5A (10 nM) failed to potentiate Ap4A-responses but did enhance the efficacy of the P2 purinoceptor antagonist, suramin, by 12 fold at the P2X2 subtype. 5. In conclusion, the results show that ionotropic (P2X2) and metabotropic (P2Y1) ATP receptors which occur in the CNS are activated selectively by naturally-occurring adenine dinucleotides which are known to be released with nucleotides from storage vesicles. The observed potentiation of P2X2-responses by Ap5A, where co-released with ATP by brain synaptosomes, may have a functional bearing in purinergic signalling in the CNS.  相似文献   

7.
P2Y-nucleotide receptors represent important targets for drug development. The lack of stable and receptor specific agonists, however, has prevented successful therapeutic applications. A novel series of P-boronated ATP derivatives (ATP-alpha-B) were synthesized by substitution of a nonbridging O at P(alpha) with a BH(3) group. This introduces a chiral center, thus resulting in diastereoisomers. In addition, at C2 of the adenine ring a further substitution was made (Cl- or methylthio-). The pairs of diastereoisomers were denoted here as A and B isomers. Here, we tested the receptor subtype specificity of these analogs on HEK 293 cells stably expressing rat P2Y(1) and rat P2Y(2) receptors, respectively, both attached to the fluorescent marker protein GFP (rP2Y(1)-GFP, rP2Y(2)-GFP). We investigated agonist-induced receptor endocytosis, [Ca(2+)](i) rise and arachidonic acid (AA) release. Agonist-induced endocytosis of rP2Y(1)-GFP was more pronounced for the A isomers than the corresponding B counterparts for all ATP-alpha-B analogs. Both 2-MeS-substituted diastereoisomers induced a greater degree of agonist-induced receptor endocytosis as compared to the 2-Cl-substituted derivatives. Endocytosis results are in accordance with the potency to induce Ca(2+) release by these compounds in HEK 293 cells stably transfected with rP2Y(1). In case of rP2Y(2)-GFP, the borano-nucleotides were very weak agonists in comparison to UTP and ATP in terms of Ca(2+) release, AA release and in inducing receptor endocytosis. The different ATP-alpha-B derivatives and also the diastereoisomers were equally ineffective. Thus, the new agonists may be considered as potent and highly specific agonist drug candidates for P2Y(1) receptors. The difference in activity of the ATP analogs at P2Y receptors could be used as a tool to investigate structural differences between P2Y receptor subtypes.  相似文献   

8.
In comparison to other classes of cell surface receptors, the medicinal chemistry at P2X (ligand-gated ion channels) and P2Y (G protein-coupled) nucleotide receptors has been relatively slow to develop. Recent effort to design selective agonists and antagonists based on a combination of library screening, empirical modification of known ligands, and rational design have led to the introduction of potent antagonists of the P2X(1) (derivatives of pyridoxal phosphates and suramin), P2X(3)(A-317491), P2X(7) (derivatives of the isoquinoline KN-62), P2Y(1)(nucleotide analogues MRS 2179 and MRS 2279), P2Y(2)(thiouracil derivatives such as AR-C126313), and P2Y(12)(nucleotide/nucleoside analogues AR-C69931X and AZD6140) receptors. A variety of native agonist ligands (ATP, ADP, UTP, UDP, and UDP-glucose) are currently the subject of structural modification efforts to improve selectivity. MRS2365 is a selective agonist for P2Y(1)receptors. The dinucleotide INS 37217 potently activates the P2Y(2)receptor. UTP-gamma-S and UDP-beta-S are selective agonists for P2Y(2)/P2Y(4)and P2Y(6)receptors, respectively. The current knowledge of the structures of P2X and P2Y receptors, is derived mainly from mutagenesis studies. Site-directed mutagenesis has shown that ligand recognition in the human P2Y(1)receptor involves individual residues of both the TMs (3, 5, 6, and 7), as well as EL 2 and 3. The binding of the negatively-charged phosphate moiety is dependent on positively charged lysine and arginine residues near the exofacial side of TMs 3 and 7.  相似文献   

9.
BACKGROUND AND PURPOSE: We explored the stereoselective activation of the P2Y11 receptor, stably expressed and tagged with GFP, in 1321N1 cells, in comparison to its closest homologue, the P2Y1 receptor. EXPERIMENTAL APPROACH: The potency of several chiral ATP analogues was determined by measuring increases in intracellular calcium concentration ([Ca2+]i). In a series of ATP-alpha-B and ATP-alpha-S analogues, a non-bridging oxygen atom of Palpha was substituted by BH3 or sulphur, respectively, introducing a chiral center at Palpha. The pairs of diastereoisomers (A and B isomers) were each applied as purified compounds. KEY RESULTS: The (B) isomers (ATP-alpha-B Sp isomers and ATP-alpha-S Rp isomers) of all derivatives tested were more potent at the P2Y11 receptor than the corresponding (A) isomers (ATP-alpha-B Rp isomers and ATP-alpha-S Sp isomers) and the parent compounds. This characteristic of the P2Y11 receptor is opposite to the behaviour of the same diastereoisomers at the P2Y1 receptor, at which the (A) isomers are more active. CONCLUSIONS AND IMPLICATIONS: The distinctly opposite diastereoselective activity of ATP derivatives at the P2Y11 and the P2Y1 receptor will allow the deciphering of structural differences of the ligand recognition sites between these receptor subtypes and may aid in the development of subtype-selective agonists. Moreover, ATP-alpha-B diastereoisomers are not active at the P2Y2 receptor. Thus, they are compounds suitable for distinguishing the functional contribution of the two ATP-activated P2Y receptors, the P2Y2 and P2Y11 receptor, in physiological or pathophysiological responses of cells.  相似文献   

10.
1. Analogues of adenine nucleotides inhibited beta-adrenoceptor-stimulated cyclic AMP accumulation in C6 rat glioma cells with a pharmacological selectivity consistent with that for involvement of a P2Y-purinoceptor. 2. The inhibitory effect of adenine nucleotides was completely prevented by pretreatment of cells with pertussis toxin. 3. The capacity of a series of recently synthesized 2-thioether analogues of adenine nucleotides to inhibit cyclic AMP accumulation was examined. Several ATP analogues, e.g. 2-cyclohexylthio and 2-hexylthio ATP, inhibited cyclic AMP accumulation with EC50 values of approximately 30 pM. These values represent 100,000 fold increases in potency over ATP. 4. Analogues of ADP exhibited the same remarkable increase in potency relative to their natural congener and diphosphates were at least as potent as the corresponding triphosphates at the C6 cell P2Y-purinoceptor. 5. The relative potencies of a broad series of agonists at the C6 cell receptor did not correspond to the relative potencies of the same compounds for activation of P2Y-purinoceptors on turkey erythrocyte membranes. Some agonists, particularly 2-thioether derivatives were more potent for stimulation of the C6 cell receptor, whereas other agonists were more potent in the turkey erythrocyte system. 6. These results add further support to the view that the adenylyl cyclase-linked P2Y-purinoceptor of C6 rat glioma cells is a different subtype from the phospholipase C-linked P2Y-purinoceptor of turkey erythrocyte membranes and several mammalian tissues.  相似文献   

11.
Platelet activation plays an essential role in thrombosis. ADP-induced platelet aggregation is mediated by two distinct G protein-coupled ADP receptors, Gq-linked P2Y(1), and Gi-linked P2T(AC), which has not been cloned. The cDNA encoding a novel G protein-coupled receptor, termed HORK3, was isolated. The HORK3 gene and P2Y(1) gene were mapped to chromosome 3q21-q25. HORK3, when transfected in the rat glioma cell subline (C6-15), responded to 2-methylthio-ADP (2MeSADP) (EC(50) = 0.08 nM) and ADP (EC(50) = 42 nM) with inhibition of forskolin-stimulated cAMP accumulation. 2MeSADP (EC(50) = 1.3 nM) and ADP (EC(50) = 18 nM) also induced intracellular calcium mobilization in P2Y(1)-expressing cells. These results show that HORK3 is a Gi/o-coupled receptor and that its natural ligand is ADP. AR-C69931 MX and 2MeSAMP, P2T(AC) antagonists, selectively inhibited 2MeSADP-induced adenylyl cyclase inhibition in HORK3-expressing cells. On the other hand, A3P5PS, a P2Y(1) antagonist, blocked only 2MeSADP-induced calcium mobilization in P2Y(1)-expressing cells. HORK3 mRNA was detected in human platelets and the expression level of HORK3 was equivalent to that of P2Y(1). These observations indicate that HORK3 has the characteristics of the proposed P2T(AC) receptor. We have also determined that [(3)H]2MeSADP binds to cloned HORK3 and P2Y(1). Competition binding experiments revealed a similarity in the rank orders of potency of agonists and the selectivity of antagonists as obtained in the functional assay. These results support the view that P2Y(1) functions as a high-affinity ADP receptor and P2T(AC) as a low-affinity ADP receptor in platelets.  相似文献   

12.
13.
Montelukast and pranlukast are orally active leukotriene receptor antagonists selective for the CysLT1 receptor. Conversely, the hP2Y(1,2,4,6,11,12,13,14) receptors represent a large family of GPCRs responding to either adenine or uracil nucleotides, or to sugar-nucleotides. Montelukast and pranlukast were found to inhibit nucleotide-induced calcium mobilization in a human monocyte-macrophage like cell line, DMSO-differentiated U937 (dU937). Montelukast and pranlukast inhibited the effects of UTP with IC50 values of 7.7 and 4.3 microM, respectively, and inhibited the effects of UDP with IC50 values of 4.5 and 1.6 microM, respectively, in an insurmountable manner. Furthermore, ligand binding studies using [3H]LTD4 excluded the possibility of orthosteric nucleotide binding to the CysLT1 receptor. dU937 cells were shown to express P2Y2, P2Y4, P2Y6, P2Y11, P2Y13 and P2Y14 receptors. Therefore, these antagonists were studied functionally in a heterologous expression system for the human P2Y receptors. In 1321N1 astrocytoma cells stably expressing human P2Y(1,2,4,6) receptors, CysLT1 antagonists inhibited both the P2Y agonist-induced activation of phospholipase C and intracellular Ca2+ mobilization. IC50 values at P2Y1 and P2Y6 receptors were <1 microM. In control astrocytoma cells expressing an endogenous M3 muscarinic receptor, 10 microM montelukast had no effect on the carbachol-induced rise in intracellular Ca2+. These data demonstrated that CysLT1 receptor antagonists interact functionally with signaling pathways of P2Y receptors, and this should foster the study of possible implications for the clinical use of these compounds in asthma or in other inflammatory conditions.  相似文献   

14.
The P2Y1 receptor responds to adenine nucleotides and is present in platelets, heart, smooth muscles prostate, ovary, and brain. A selective antagonist may be useful as an antithrombotic agent. We have analyzed the binding site of this G protein-coupled receptor using ligand design, site-directed mutagenesis, and homology modeling based on rhodopsin. We have designed and synthesized a series of deoxyadenosine 3',5'-bisphosphate derivatives that act as antagonists, or, in some cases with small structural changes, as agonists or partial agonists. The 2-position accommodates Cl or thioethers, whereas the N6-position is limited to Me or Et. 2'-Substitution with OH or OMe increases agonist efficacy over 2'-H. Using molecular modeling of the binding site, the oxygen atoms of the ribose moiety were predicted to be non-essential, i.e. no specific H-bonds with the receptor protein appear in the model. We have, therefore, substituted this moiety with carbocylics, smaller and larger rings, conformationally constrained rings, and acyclics, with retention of affinity for the receptor. With simplified pharmacophores we are exploring the steric and electronic requirements of the receptor binding site, and the structural basis of receptor activation.  相似文献   

15.
Nucleotides are emerging as an ubiquitous family of extracellular signaling molecules. These effects are mediated through a specific class of plasma membrane receptors called P2 receptors that, according to the molecular structure, are further subdivided into two subfamilies: P2Y and P2X. Specifically, P2X-receptors are ligand-gated ion channels, whereas P2Y-receptors belong to the superfamily of G-protein-coupled receptors. In this review, we focus our attention to GPCRs molecular architecture, with the special emphasis on our work on the human P2Y(1) receptor. In fact, despite an enormous amount of research on the structure and function of these receptors, fundamental understanding of the molecular details of ligand/GPCR interactions remains very rudimentary. How agonist binding transforms a resting GPCR into its active form and the microscopic basis of binding site blockade by an antagonist are generally still unclear. In the absence of high-resolution structural knowledge of GPCRs, such questions only can be addressed by building models, which are tested through pharmacological and biochemical studies. In this review, we underline how different molecular modeling approaches can help the investigation of both receptor architecture and ligand/receptor molecular recognition.  相似文献   

16.
17.
MRS-2179 is a selective P2Y(1) receptor antagonist, a strong inhibitor of ADP-induced platelet aggregation in vitro and ex vivo. By i.v. administration to mice MRS-2179 increases resistance to thromboembolism induced by a mixture of collagen and epinephrine or by a tissue factor. Likewise, it significantly increases the time to thrombus formation in a ferric chloride-induced model of localized arterial thrombosis. MRS-2179 also confers resistance to localized venous thrombosis, which is dependent on thrombin generation and in which platelets play a relatively minor role as compared to stasis or activation of coagulation. These data provide considerable encouragement for the development of new P2Y(1) receptor antagonists. Nevertheless, the properties of MRS-2179 indicate that new compounds should be optimized in order to increase the half-life of the molecule in vivo and its selectivity and potency at the P2Y(1) receptor. Further directions include the synthesis of molecules with modifications of the nucleotide structure which replace the fragile moiety by a stable bond and should lead to a non-hydrolysable structure. In conclusion, P2Y(1) antagonists have been shown to be efficient antithrombotic agents. MRS-2179 is the first P2Y(1) antagonist with antithrombotic action. Its effectiveness demonstrates that the P2Y(1) receptor is a potentially promising target for drugs designed to treat thrombotic syndromes.  相似文献   

18.
The P2Y(12)-receptor plays a prominent role in ADP-induced platelet aggregation. In the present study, we searched for amino acid residues involved in ligand recognition of the human P2Y(12)-receptor. Wild-type or mutated receptors were expressed in 1321N1 astrocytoma cells and Chinese hamster ovary (CHO) cells. There were no major differences in cellular expression of the constructs. Cellular cAMP production and cAMP response element (CRE)-dependent luciferase expression was increased by isoproterenol (astrocytoma cells) or forskolin (CHO cells). In cells expressing wild-type receptors, R256K or S101A mutant constructs, 2-methylthio-ADP inhibited the induced cAMP production with IC(50) concentrations of about 0.3nM. In cells expressing R256A constructs, the IC(50) concentration amounted to 25nM. In cells expressing H253A/R256A, Y259D and K280A constructs, 2-methylthio-ADP failed to affect the cellular cAMP production. Moreover, in cells expressing Y259D and K280A constructs, 2-methylthio-ADP did also not change the forskolin-induced CRE-dependent luciferase expression and caused only small increases in the serum response element-dependent luciferase expression. The antagonist cangrelor had similar potencies at wild-type receptors and R256A constructs (apparent pK(B)-value at wild-type receptors: 9.2). In contrast, reactive blue-2 had a lower potency at the R256A construct (apparent pK(B)-value at wild-type receptors: 7.6). In summary, the data indicate the involvement of Arg256, Tyr259 and, possibly, H253 (transmembrane region TM6) as well as Lys280 (TM7) in the function of the human P2Y(12)-receptor. Arg256 appears to play a role in the recognition of nucleotide agonists and the non-nucleotide antagonist reactive blue-2, but no role in the recognition of the nucleotide antagonist cangrelor.  相似文献   

19.
1. The vasoconstrictor responses of isolated intrapulmonary arteries (IPA) to P2-receptor agonists was investigated during adaptation to extrauterine life in the normal piglet and the effect of pulmonary hypertension was studied following exposure of newborn animals to chronic hypobaric hypoxia (51 kPa) for 3 days. 2. At resting tone, alpha,beta-methyleneATP (alpha,beta-meATP) (P2X-receptor agonist) contracted intrapulmonary arteries from adult, but not immature pigs, and repeated application desensitized the response. 3. Adenosine 5'-triphosphate (ATP) induced endothelium-independent relaxation at low concentrations at all ages, a variable contractile response to high concentrations developed by 3 days, becoming larger and consistent by 14 days of age. 4. Uridine 5'-triphosphate (UTP) evoked a contractile response in normal intrapulmonary arteries from foetal to adult life, the magnitude of the response increasing with age. Endothelial removal and pre-incubation with Nomega-nitro-L-arginine methyl ester (L-NAME) (100 microM) increased the contractile response of adult vessels. 5. Pre-incubation with alpha,beta-meATP (100 microM), increased the contractile response to UTP in both newborn and adult vessels. ATP-induced relaxations were reduced in newborn vessels but there was no effect on the responses of adult vessels. 6. Responses to UTP, ATP and alpha,beta-meATP of intrapulmonary arteries from newborn piglets exposed to chronic hypobaric hypoxia for 3 days were normal. 7. In summary, UTP elicited marked vasoconstriction of porcine IPA at all ages. UTP and ATP responses were consistent with activation of the P2Y4-receptor recently identified in vascular smooth muscle by others. alpha, beta-meATP induced a small vasoconstriction in the adult probably via the P2X1-receptor. Responses remained normal in neonatal pulmonary hypertension.  相似文献   

20.
1. The vasodilator responses of isolated intrapulmonary arteries (IPA) to P2-receptor agonists were investigated during adaptation to extrauterine life in the piglet. The effect of pulmonary hypertension on the normal response was determined after exposing newborn animals to chronic hypobaric hypoxia (51 kPa) for 3 days. 2. Adenosine 5'-triphosphate (ATP), 2-methylthioATP (2-meSATP), adenosine 5-O-(2-thiodiphos-phate) (ADPbetaS) and uridine 5'-triphosphate (UTP) induced a relaxation in normal newborn piglet IPA pre-contracted with prostaglandin F2alpha (PGF2alpha). The relaxations were not affected by removal of the endothelium. The responses to ATP and ADPbetaS increased significantly with age. 3. The relaxation responses of IPA to ATP, 2-meSATP and ADPbetaS continued to increase normally after birth in an hypoxic environment. 4. The results of the study show that vasodilatation of porcine intrapulmonary vessels to nucleotides increased during development from foetus to adult; that the vasodilatation to purines was mediated by P2Y-receptors on the vascular smooth muscle rather than on the endothelium; and that the P2Y-receptor mediated relaxation of IPA remained normal in the pulmonary hypertensive neonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号