首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In many vertebrate CNS synapses, the neurotransmitter glutamate activates postsynaptic non-N-methyl-D-aspartate (NMDA) and NMDA receptors. Since their biophysical properties are quite different, the time course of excitatory postsynaptic currents (EPSCs) depends largely on the relative contribution of their activation. To investigate whether the activation of the two receptor subtypes is affected by the synaptic interaction in the inner plexiform layer (IPL) of the mouse retina, we analyzed the properties of the light-evoked responses of ON-cone bipolar cells and ON-transient amacrine cells in a retinal slice preparation. ON-transient amacrine cells were whole cell voltage-clamped, and the glutamatergic synaptic input from bipolar cells was isolated by a cocktail of pharmacological agents (bicuculline, strychnine, curare, and atropine). Direct puff application of NMDA revealed the presence of functional NMDA receptors. However, the light-evoked EPSC was not significantly affected by D(-)-2-amino-5-phosphonopentanoic acid (D-AP5), but suppressed by 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) or 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466). These results indicate that the light-evoked EPSC is mediated mainly by AMPA receptors under this condition. Since bipolar cells have GABA(C) receptors at their terminals, it has been suggested that bipolar cells receive feedback inhibition from amacrine cells. Application of (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA), a specific blocker of GABA(C) receptors, suppressed both the GABA-induced current and the light-evoked feedback inhibition observed in ON-cone bipolar cells and enhanced the light-evoked EPSC of ON-transient amacrine cells. In the presence of TPMPA, the light-evoked EPSC of amacrine cells was composed of AMPA and NMDA receptor-mediated components. Our results suggest that photoresponses of ON-transient amacrine cells in the mouse retina are modified by the activation of presynaptic GABA(C) receptors, which may control the extent of glutamate spillover.  相似文献   

2.
1. The effects of D-O-phosphoserine (DOS) were examined on proximal neurons in the superfused mudpuppy retinal-eyecup preparation by measuring their synaptically evoked whole-cell currents with the use of patch-clamp electrodes. 2. DOS reduced the light-evoked excitatory postsynaptic potentials (EPSPs) of amacrine and ganglion cells. This suppression was present even though the center responses of both ON- and OFF-bipolar cells were unaffected by DOS. 3. When recordings were done under voltage-clamp conditions. DOS diminished the magnitude of light-evoked synaptic currents associated with a reduction in synaptic conductance. 4. To determine which acidic amino acid receptor mediated the network-selective action of DOS, various glutamate agonists were tested against this excitatory amino acid receptor (EAAR) antagonist. DOS blocked the depolarizing effects of kainate (KA), but not those of N-methyl-D-aspartate (NMDA) or quisqualate (QQ). Thus DOS was a selective KA antagonist, and KA receptors appear to be the dominant EAAR subtype that mediates synaptic inputs into the inner retina of the mudpuppy.  相似文献   

3.
The glutamate-mediated synaptic responses of neocortical pyramidal cell to fast-spiking interneuron (pyramidal-FS) connections were studied by performing paired recordings at 30-33 degrees C in acute slices of 14- to 35-day-old rats (n = 39). Postsynaptic fast-spiking (FS) cells were recorded in whole cell configuration with a patch pipette, and presynaptic pyramidal cells were impaled with sharp intracellular electrodes. At a holding potential of -72 mV (near the resting membrane potential), unitary excitatory postsynaptic potentials (EPSPs) had a mean amplitude of 2.1 +/- 1.3 mV and a mean width at half-amplitude of 10.5 +/- 3.7 ms (n = 18). Bath application of the N-methyl-D-aspartate (NMDA) receptor antagonist D(-)2-amino-5-phosphonovaleric acid (D-AP5) had minor effects on both the amplitude and the duration of unitary EPSPs, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) almost completely blocked the synaptic responses. In voltage-clamp mode, the selective antagonist of AMPA receptors 1-(4-aminophenyl)-3-methylcarbamyl-4-methyl-7,8-methylenedioxy-3, 4-dihydro-5H-2,3-benzodiazepine (GYKI 53655; 40-66 microM) blocked 96 +/- 1.9% of D-AP5-insensitive unitary excitatory postsynaptic currents (EPSCs), confirming the predominance of AMPA receptors, as opposed to kainate receptors, at pyramidal-FS connections (n = 3). Unitary EPSCs mediated by AMPA receptors had fast rise times (0.29 +/- 0.04 ms) and amplitude-weighted decay time constants (2 +/- 0.8 ms; n = 16). In the presence of intracellular spermine, these currents showed the characteristic rectifying current-voltage (I-V) curve of calcium-permeable AMPA receptors. A slower component mediated by NMDA receptors was observed when unitary synaptic currents were recorded at a membrane potential more positive than -50 mV. In response to short trains of moderately high-frequency (67 Hz) presynaptic action potentials, we observed only a limited temporal summation of unitary EPSPs, probably because of the rapid kinetics of AMPA receptors and the absence of NMDA component in these subthreshold synaptic responses. By combining paired recordings with extracellular stimulations (n = 11), we demonstrated that EPSPs elicited by two different inputs were summed linearly by FS interneurons at membrane potentials below the action potential threshold. We estimated that, in our in vitro recording conditions, 8 +/- 5 pyramidal cells (n = 18) should be activated simultaneously to make FS interneurons fire an action potential from -72 mV. The low level of temporal summation and the linear summation of excitatory inputs in FS cells favor the role of coincidence detectors of these interneurons in neocortical circuits.  相似文献   

4.
We have studied the modulatory effects of cholinergic agonists on excitatory postsynaptic currents (EPSCs) in nucleus accumbens (nAcb) neurons during postnatal development. Recordings were obtained in slices from postnatal day 1 (P1) to P27 rats using the whole cell patch-clamp technique. EPSCs were evoked by local electrical stimulation, and all experiments were conducted in the presence of bicuculline methchloride in the bathing medium and with QX-314 in the recording pipette. Under these conditions, postsynaptic currents consisted of glutamatergic EPSCs typically consisting of two components mediated by AMPA/kainate (KA) and N-methyl-D-aspartate (NMDA) receptors. The addition of acetylcholine (ACh) or carbachol (CCh) to the superfusing medium resulted in a decrease of 30-60% of both AMPA/KA- and NMDA-mediated EPSCs. In contrast, ACh produced an increase ( approximately 35%) in both AMPA/KA and NMDA receptor-mediated EPSCs when administered in the presence of the muscarinic antagonist atropine. These excitatory effects were mimicked by the nicotinic receptor agonist 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) and blocked by the nicotinic receptor antagonist mecamylamine, showing the presence of a cholinergic modulation mediated by nicotinic receptors in the nAcb. The antagonistic effects of atropine were mimicked by pirenzepine, suggesting that the muscarinic depression of the EPSCs was mediated by M(1)/M(4) receptors. In addition, the inhibitory effects of ACh on NMDA but not on AMPA/KA receptor-mediated EPSC significantly increased during the first two postnatal weeks. We found that, under our experimental conditions, cholinergic agonists produced no changes on membrane holding currents, on the decay time of the AMPA/KA EPSC, or on responses evoked by exogenous application of glutamate in the presence of tetrodotoxin, but they produced significant changes in paired pulse ratio, suggesting that their action was mediated by presynaptic mechanisms. In contrast, CCh produced consistent changes in the membrane and firing properties of medium spiny (MS) neurons when QX-314 was omitted from the recording pipette solution, suggesting that this substance actually blocked postsynaptic cholinergic modulation. Together, these results suggest that ACh can decrease or increase glutamatergic neurotransmission in the nAcb by, respectively, acting on muscarinic and nicotinic receptors located on excitatory terminals. The cholinergic modulation of AMPA/KA and NMDA receptor-mediated neurotransmission in the nAcb during postnatal development could play an important role in activity-dependent developmental processes in refining the excitatory drive on MS neurons by gating specific inputs.  相似文献   

5.
To elucidate the gating mechanism of the epileptic dentate gyrus on seizure-like input, we investigated dentate gyrus field potentials and granule cell excitatory postsynaptic potentials (EPSPs) following high-frequency stimulation (10-100 Hz) of the lateral perforant path in an experimental model of temporal lobe epilepsy (i.e., kindled rats). Although control slices showed steady EPSP depression at frequencies greater than 20 Hz, slices taken from animals 48 h after the last seizure presented pronounced EPSP facilitation at 50 and 100 Hz, followed by steady depression. However, 28 days after kindling, the EPSP facilitation was no longer detectable. Using the specific N-methyl-D-aspartate (NMDA) and RS-alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproponic acid (AMPA) receptor antagonists 2-amino-5-phosphonovaleric acid and SYM 2206, we examined the time course of alterations in glutamate receptor-dependent synaptic currents that parallel transient EPSP facilitation. Forty-eight hours after kindling, the fractional AMPA and NMDA receptor-mediated excitatory postsynaptic current (EPSC) components shifted dramatically in favor of the NMDA receptor-mediated response. Four weeks after kindling, however, AMPA and NMDA receptor-mediated EPSCs reverted to control-like values. Although the granule cells of the dentate gyrus contain mRNA-encoding kainate receptors, neither single nor repetitive perforant path stimuli evoked kainate receptor-mediated EPSCs in control or in kindled rats. The enhanced excitability of the kindled dentate gyrus 48 h after the last seizure, as well as the breakdown of its gating function, appear to result from transiently enhanced NMDA receptor activation that provides significantly slower EPSC kinetics than those observed in control slices and in slices from kindled animals with a 28-day seizure-free interval. Therefore, NMDA receptors seem to play a critical role in the acute throughput of seizure activity and in the induction of the kindled state but not in the persistence of enhanced seizure susceptibility.  相似文献   

6.
Using the single-electrode voltage-clamp technique, we have examined the effects of a non-N-methyl-D-aspartate (NMDA) antagonist. Joro spider toxin (JSTX), and of an NMDA antagonist, zinc, on excitatory postsynaptic currents (EPSCs) evoked by stimulation of stratum radiatum in CA1 pyramidal cells of the guinea-pig hippocampal slice. Pressure application of a synthesized JSTX (JSTX-3) at 10-200 microM greatly reduced the EPSCs (14/19 cells). The block by JSTX-3 was observed in pyramidal cells where the EPSCs showed linear peak current-voltage (I-V) relations in the control. EPSCs remaining after JSTX-3 application showed non-linear peak I-V relationships (10/14 cells), and were blocked by puff application of the selective NMDA receptor antagonist DL-2-amino-5-phosphonovalerate (APV) at 200 microM (6/10 cells). In the presence of JSTX-3, the decay time constant of the EPSC was increased and was less affected by membrane potential. JSTX-3 had no detectable effects on EPSCs apparently mediated solely by NMDA receptor. These observations suggest that JSTX-3 blocks excitatory synaptic transmission mainly by suppressing non-NMDA-receptor-mediated EPSCs, and that the JSTX-3-insensitive component is mediated at least in part by NMDA receptors in the hippocampal slice. Zinc (100-200 microM) reversibly attenuated EPSCs (6/9 cells) and appeared to block a slower component of the EPSCs, suggesting that mainly NMDA receptor-mediated currents were affected.  相似文献   

7.
Thalamic ventrobasal (VB) relay neurons receive information via two major types of glutamatergic synapses, that is, from the medial lemniscus (lemniscal synapses) and primary somatosensory cortex (corticothalamic synapses). These two synapses influence and coordinate firing responses of VB neurons, but their precise operational mechanisms are not yet well understood. In this study, we compared the composition of glutamate receptors and synaptic properties of corticothalamic and lemniscal synapses. We found that the relative contribution of NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) to non-NMDA receptor-mediated EPSCs was significantly greater in corticothalamic synapses than in lemniscal synapses. Furthermore, NMDA receptor 2B-containing NMDA receptor- and kainate receptor-mediated currents were observed only in corticothalamic synapses, but not in lemniscal synapses. EPSCs in corticothalamic synapses displayed the postsynaptic summation in a frequency-dependent manner, in which the summation of the NMDA receptor-mediated component was largely involved. The summation of kainate receptor-mediated currents also partially contributed to the postsynaptic summation in corticothalamic synapses. In contrast, the contribution of NMDA receptor-mediated currents to the postsynaptic summation of lemniscal EPSCs was relatively minor. Furthermore, our results indicated that the prominent NMDA receptor-mediated component in corticothalamic synapses was the key determinant for the late-persistent firing of VB neurons in response to corticothalamic stimuli. In lemniscal synapses, in contrast, the onset-transient firing in response to lemniscal stimuli was regulated mainly by AMPA receptors.  相似文献   

8.
AMPA and N-methyl-D-aspartate (NMDA) receptor-mediated synaptic responses expressed differential paired-pulse plasticity when examined in the same cell using intracellular or whole cell voltage-clamp recordings. Electrical stimulation of corticostriatal afferents in brain slices bathed in artificial cerebrospinal fluid containing bicuculline produces excitatory postsynaptic potentials and excitatory postsynaptic currents (EPSCs) mediated primarily by AMPA receptors. Cell-to-cell variation existed in AMPA receptor paired-pulse plasticity, but within-cell plasticity was stable over a range of stimulation intensities. Addition of 6-cyano-7-nitroquinoxalene-2,3-dione blocked most of the synaptic response leaving behind a small AP-5-sensitive component. Increasing the stimulation intensity produced large, long-lasting NMDA receptor-mediated responses. In contrast to AMPA receptor-mediated responses, NMDA receptor responses consistently showed an increase in paired-pulse potentiation with increasing stimulation intensity. This relationship was restricted to interstimulus intervals shorter than 100 ms. Paired-pulse potentiation of NMDA receptor responses was voltage-dependent and reduced by removal of extracellular Mg(2+). Block of postsynaptic L-type Ca(2+) channels with nifedipine produced a voltage-dependent reduction of NMDA receptor excitatory postsynaptic currents (EPSCs) and a voltage-dependent reduction of NMDA receptor paired-pulse potentiation. These data indicate depolarization during the first NMDA receptor response causes facilitation of the second by removing voltage-dependent block of NMDA receptors by Mg(2+) and by activating voltage-dependent Ca(2+) channels.  相似文献   

9.
A novel sulfonylamino compound, 4-[2-(phenylsulfonylamino)-ethylthio]-2,6-difluoro-phenoxyaceta mide (PEPA) has been shown to selectively potentiate glutamate-induced currents in Xenopus oocytes expressing recombinant AMPA receptor subunits, GluR1-GluR4, by attenuation of desensitization. Here, we examined the effects of PEPA on responses to excitatory amino acids as well as on excitatory synaptic transmission in dentate granule cells of rat hippocampal slices using the whole-cell patch clamp technique. PEPA at 100 microM produced a 3-4-fold increases in the peak amplitude of current responses to AMPA and glutamate applied iontophoretically in the dentate granule cells, whereas it showed no effect on NMDA-induced currents. Excitatory postsynaptic currents (EPSCs) evoked in these neurons by stimulation of the perforant path had fast and slow components mediated by AMPA and NMDA receptors, respectively. PEPA at concentrations between 10 and 100 microM potentiated only the AMPA component of the EPSC (AMPA EPSC) in a dose-dependent manner without affecting the NMDA component. Although the potentiating effect of PEPA on the amplitude of the AMPA EPSC was weaker than that on the AMPA-induced current, it clearly prolonged the duration of the EPSC. PEPA at 100 microM increased the peak amplitude of the AMPA EPSC by 17%, and increased the area enclosed by the AMPA EPSC by 72%.  相似文献   

10.
Postsynaptic currents were studied by whole cell recordings in visually identified large neurons of the deep cerebellar nuclei (DCN) in slices of 4- to 11-day-old mice. Spontaneous postsynaptic currents were abolished by the GABA(A) receptor antagonist bicuculline and had a single-exponential decay with a mean time constant of 13.6 +/- 3.2 (SD) ms. Excitatory postsynaptic currents (EPSCs) were evoked in 48/56 neurons recorded. The addition of AMPA and N-methyl-D-aspartate (NMDA) receptor antagonists together completely abolished all synaptic responses. In 1 mM [Mg(2+)](o) and at a holding potential of -60 mV, the peak amplitude of the NMDA component of the EPSC (NMDA-EPSC) was 83.2 +/- 21.2% of the AMPA component (AMPA-EPSC). This indicates that in DCN neurons, at a physiological [Mg(2+)](o) and at the resting membrane potential, NMDA receptors contribute to the synaptic signal. AMPA-EPSCs had a linear current-voltage relationship with a reversal potential of +2.3 +/- 0.4 mV and a single-exponential decay with a voltage-dependent time constant that at -60 mV was 7.1 +/- 3.3 ms. In 10 microM glycine and 1 mM [Mg(2+)](o), the I-V relationship of NMDA-EPSCs had a reversal potential of -0.5 +/- 3.3 mV and a maximal inward current at -33.4 +/- 5.8 mV. The apparent dissociation constant (K(D)) of Mg(2+) for the NMDA receptor-channel at -60 mV, measured by varying [Mg(2+)](o), was 135.5 +/- 55.3 microM, and when measured by fitting the I-V curves with a theoretical function, it was 169.9 +/- 119.5 microM. Thus in the DCN, NMDA receptors have a sensitivity to Mg(2+) that corresponds to subunits that are weakly blocked by this ion (epsilon 3 and epsilon 4) of which the DCN express epsilon 4. NMDA-EPSCs had a double-exponential decay with voltage-dependent time constants that at -60 mV were 20.2 +/- 8.9 and 136.4 +/- 62.8 ms. At positive voltages, the time constants were slower and their contributions were about equal, while in the negative slope conductance region of the I-V curve, the faster time constant became predominant, conferring faster kinetics to the EPSC. The weak sensitivity to Mg(2+) of NMDA receptors, together with a relatively fast kinetics, provide DCN neurons with strong excitatory inputs in which fast dynamic signals are relatively well preserved.  相似文献   

11.
Zhang L  Warren RA 《Neuroscience》2008,154(4):1440-1449
We have recorded excitatory postsynaptic currents (EPSCs) evoked by local electrical stimulation in 243 nucleus accumbens (nAcb) neurons in vitro during postnatal development from the day of birth (postnatal day 0; P0) to P27 and in young adults rats (P59-P71). An EPSC sensitive to glutamatergic antagonists was found in all neurons. In the majority of cases (189/243), the EPSC had two distinct components: an early one sensitive to 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and a late one that was sensitive to d-2-amino-5-phosphonovaleric acid (APV) showing that early and late components of the EPSC were mediated by AMPA/kainate (KA) and N-methyl-d-aspartate (NMDA) receptors respectively. During the first four postnatal days, the amplitudes of both the AMPA/KA and NMDA components of the EPSC were relatively small and then began to increase until the end of the second postnatal week. Whereas the amplitude of the early component appeared to stabilize from that point on, the late component began to decrease and became virtually undetectable in preparations from animals older than 3 weeks unless the AMPA/KA response was blocked with CNQX. In addition, the ratio between the amplitude of the NMDA and AMPA/KA receptor-mediated components of the EPSC followed a developmental pattern parallel to that of the NMDA receptor component showing an increase during the first two postnatal weeks followed by a decrease. Together, these results show that, during postnatal development, there is a period when NMDA receptor-mediated EPSC are preeminent and that time frame might represent a period during which the development of the nAcb might be sensitive to environmental manipulation.  相似文献   

12.
Substance P (SP) is an undecapeptide that is co-localized with conventional transmitters in the nucleus accumbens (NAc). Its neurochemical and behavioral effects resemble those of cocaine and amphetamine. How SP accomplishes these effects is not known, partly because its cellular and synaptic effects are not well characterized. Using whole cell and nystatin-perforated patch recording in rat forebrain slices, we show here that SP, an excitatory neuropeptide, depresses evoked excitatory postsynaptic currents (EPSCs) and potentials (EPSPs) in NAc through intermediate neuromodulators. SP caused a partially reversible, dose-dependent decrease in evoked EPSCs. This effect was mimicked by a neurokinin-1 (NK1) receptor-selective agonist, [Sar(9), Met (O(2))(11)]-SP and blocked by a NK1 receptor-selective antagonist, L 732 138. Both the SP- and [Sar(9), Met (O(2))(11)]-SP-induced synaptic depressions were accompanied by increases in paired pulse ratio (PPR), effects that were also blocked by L 732 138. In contrast to its effect on PPR, SP did not produce significant changes in the holding current, input resistance, EPSC decay rate (tau), and steady-state I-V curves of the recorded cells. The SP-induced synaptic depressions were prevented by dopamine receptor blockade using SCH23390 and haloperidol, but not by sulpiride. In addition, the SP-induced synaptic depression was blocked by an adenosine A1 receptor blocker 8-cyclopentyltheophylline (8-CPT) but not the N-methyl-D-aspartate (NMDA) receptor antagonist D-APV. These data show that SP, by activating presynaptic NK1 receptors, depresses excitatory synaptic transmission indirectly by enhancing extracellular dopamine and adenosine levels. Since the cellular and synaptic effects of SP resemble those of cocaine and amphetamine, it may serve as an endogenous psychogenic peptide.  相似文献   

13.
The N-methyl-D-aspartate (NMDA) receptor has been implicated in the formation of synaptic connections. To investigate the role of the epsilon2 (NR2B) NMDA receptor subunit, which is prominently expressed during early development, we used neurons from mice lacking this subunit. Although epsilon2(-/-) mice die soon after birth, we examined whether NMDA receptor targeting to the postsynaptic membrane was dependent on the epsilon2 subunit by rescuing hippocampal neurons from these mice and studying them in autaptic cultures. In voltage-clamp recordings, excitatory postsynaptic currents (EPSCs) from epsilon2(-/-) neurons expressed an NMDA receptor-mediated EPSC that was apparent as soon as synaptic activity developed. However, compared with wild-type neurons, NMDA receptor-mediated EPSC deactivation kinetics were much faster and were less sensitive to glycine, but were blocked by Mg(2+) or AP5. Whole cell currents from epsilon2(-/-) neurons were also more sensitive to block by low concentrations of Zn(2+) and much less sensitive to the epsilon2-specific antagonist ifenprodil than wild-type currents. The rapid NMDA receptor-mediated EPSC deactivation kinetics and the pharmacological profile from epsilon2(-/-) neurons are consistent with the expression of zeta1/epsilon1 diheteromeric receptors in excitatory hippocampal neurons from mice lacking the epsilon2 subunit. Thus epsilon1 can substitute for the epsilon2 subunit at synapses and epsilon2 is not required for targeting of NMDA receptors to the postsynaptic membrane.  相似文献   

14.
As a first step in understanding the development of synaptic activation in the locomotor network of the zebrafish, we examined the properties of spontaneous, glutamatergic miniature excitatory postsynaptic currents (mEPSCs). Whole cell patch-clamp recordings were obtained from visually identified hindbrain reticulospinal neurons and spinal motoneurons of curarized zebrafish 1-5 days postfertilization (larvae hatch after the 2nd day of embryogenesis). In the presence of tetrodotoxin (TTX) and blockers of inhibitory receptors (strychnine and picrotoxin), we detected fast glutamatergic mEPSCs that were blocked by the AMPA/kainate receptor-selective antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). At positive voltages or in the absence of Mg(2+), a second, slower component of the mEPSCs was revealed that the N-methyl-D-aspartate (NMDA) receptor-selective antagonist DL-2-amino-5-phosphonovalerate (AP-5) abolished. In the presence of both CNQX and AP-5, all mEPSCs were eliminated. The NMDA component of reticulospinal mEPSCs had a large single-channel conductance estimated to be 48 pS. Larval AMPA/kainate and NMDA components of the mEPSCs decayed with biexponential time courses that changed little during development. At all stages examined, approximately one-half of synapses had only NMDA responses (lacking AMPA/kainate receptors), whereas the remainder of the synapses were composed of a mixture of AMPA/kainate and NMDA receptors. There was an overall increase in the frequency and amplitude of mEPSCs with an NMDA component in reticulospinal (but not motoneurons) during development. These results indicate that glutamate is a prominent excitatory transmitter in the locomotor regions of the developing zebrafish and that it activates either NMDA receptors alone at functionally silent synapses or together with AMPA/kainate receptors.  相似文献   

15.
The peptide cholecystokinin (CCK) is abundant in the rat nucleus accumbens (NAc). Although it is colocalized with dopamine (DA) in afferent terminals in this region, neurochemical and behavioural reports are equally divided as to whether CCK enhances or diminishes DA's actions in this nucleus. To better understand the role of this peptide in the physiology of the NAc, we examined the effects of CCK on excitatory synaptic transmission and tested whether these are dependent on DA and/or other neuromodulators. Using whole-cell recording in rat forebrain slices containing the NAc, we show that sulphated CCK octapeptide (CCK-8S), the endogenously active neuropeptide, consistently depolarized cells and depressed evoked excitatory postsynaptic currents (EPSCs) in the rostral NAc. It caused a reversible, dose-dependent decrease in evoked EPSC amplitude that was accompanied by an increase in the decay constant of the EPSC but with no apparent change in paired pulse ratio. It was mimicked by unsulphated CCK-8 (CCK-8US), a CCKB receptor-selective agonist, and blocked by LY225910, a CCKB receptor-selective antagonist. Both CCK-8S and CCK-8US induced an inward current with a reversal potential around −90 mV that was accompanied by an increase in input resistance and action potential firing. The CCK-8S-induced EPSC depression was slightly reduced in the presence of SCH23390 but not in the presence of sulpiride or 8-cyclopentyltheophylline. By contrast, it was completely blocked by CGP55845, a potent GABAB receptor-selective antagonist. These results indicate that CCK excites NAc cells directly while depressing evoked EPSCs indirectly, mainly through the release of GABA.  相似文献   

16.
Kainate (KA) receptors are expressed widely in the CNS. However, little is known about their functional characterization, molecular identity, and role in synaptic transmission in the forebrain of adult mice. Patch-clamp recordings in genetically modified mice show that postsynaptic KA receptors contribute to fast synaptic transmission in pyramidal neurons in the anterior cingulate cortex (ACC), a forebrain region critical for higher-order cognitive brain functions such as memory and mental disorders. Single-shock stimulation could induce small KA receptor-mediated excitatory postsynaptic currents (KA EPSCs) in the presence of picrotoxin, D-2-amino-5-phosphono-pentanoic acid, and a selective AMPA receptor antagonist, GYKI 53655. KA EPSCs had a significantly slower rise time course and decay time constant compared with AMPA receptor-mediated EPSCs. High-frequency repetitive stimulation significantly facilitated the KA EPSCs. Genetic deletion of the GluR6 or GluR5 subunit significantly reduced, and GluR5 and 6 double knockout completely abolished, KA EPSCs and KA-activated currents in ACC pyramidal neurons. Our results show that KA receptors contribute to synaptic transmission in adult ACC pyramidal neurons and provide a synaptic basis for the physiology and pathology of KA receptors in ACC-related functions.  相似文献   

17.
We have investigated the role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors on synaptic transmission in vivo between Ia primary afferents and cat spinal motoneurones using a selective non-N-methyl-d -aspartate (non-NMDA) receptor antagonist, GYKI 52466. Both microionophoretic and intravenous application of GYKI 52466 depressed the Ia excitatory post-synaptic potential (Ia EPSP) in a dose-dependent manner, without any apparent effect on membrane conductance or resting potential of the motoneurone. GYKI 52466 reduced selectively α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)- but not N-methyl-d -aspartate (NMDA)-induced depolarizations. Our results suggest that a large part of the Ia EPSP is mediated by AMPA receptors. The participation of other excitatory amino-acid receptors in the Ia EPSP is also discussed.  相似文献   

18.
Focal developmental abnormalities in neocortex, including ectopic collections of neurons in layer I (ectopias), have been associated with behavioral and neurological deficits. In this study, we used infrared differential interference contrast microscopy and whole cell patch-clamp to complete the first characterization of neurons within and surrounding neocortical ectopias. Current-clamp recordings revealed that neurons within ectopias display multiple types of action potential firing patterns, and biocytin labeling indicated that approximately 20% of the cells in neocortical ectopias can be classified as nonpyramidal cells and the rest as atypically oriented pyramidal cells. All cells had spontaneous excitatory (glutamatergic) and inhibitory (GABAergic) postsynaptic currents. Exhibitory postsynaptic currents consisted of both N-methyl-D-aspartate (NMDA) receptor-mediated and AMPA/kainate (A/K) receptor-mediated currents. The NMDA receptor-mediated component had decay time constants of 15.35 +/- 2.2 (SE) ms, while the A/K component had faster decay kinetics of 7.6 +/- 1.7 ms at -20 mV. GABA(A) receptor-mediated synaptic currents in ectopic cells reversed at potentials near the Cl- equilibrium potential and had decay kinetics of 16.65 +/- 1.3 ms at 0 mV. Furthermore we show that cells within ectopias receive direct excitatory and inhibitory input from adjacent normatopic cortex and can display a form of epileptiform activity.  相似文献   

19.
1. The effects of specific excitatory amino acid (EAA) antagonists on evoked excitatory synaptic responses were studied in the hypothalamic paraventricular nucleus (PVN) of the guinea pig, by the use of the in vitro slice preparation. Intracellular recordings were obtained from paraventricular neurons, and excitatory postsynaptic potentials (EPSPs) and currents (EPSCs) were induced by perifornical electrical stimulation. To reduce the influence of a potential gamma-aminobutyric acidA (GABAA) inhibitory component on the synaptic responses, all experiments were performed in the presence of 50 microM picrotoxin. 2. Of 20 cells tested, 13 had electrophysiological characteristics similar to magnocellular neuropeptidergic cells (MNCs) and 7 displayed low-threshold Ca2+ spikes (LTSs). No difference was detected in the effect of the antagonists on the synaptic responses of cells with or without LTS potentials. 3. The broad-spectrum EAA antagonist kynurenic acid decreased the amplitude of the EPSPs and EPSCs in a dose-dependent manner: the mean decrease was 5% for 100 microM, 43% for 300 microM, and 70% for 1 mM. 4. The quisqualate/kainate-receptor-selective antagonist 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (CNQX) induced a dose-dependent decrease of the EPSPs and EPSCs: 1 microM had no detectable effect, 3 and 10 microM caused 30 and 70% decreases, respectively, and 30 microM blocked the response almost completely. This effect was not accompanied by a change in resting membrane potential or input resistance and was slowly reversible. 5. The N-methyl-D-aspartate (NMDA)-receptor-selective antagonist DL-2-amino-5-phosphonopentanoic acid (AP5), applied at 30 and 300 microM, reduced slightly the amplitude of the decay phase of the EPSP but did not significantly affect the peak amplitude. In some cells, the current-voltage relationship of the decay phase of the EPSC revealed a region of negative slope conductance between -70 and -40 mV. 6. These results suggest that 1) glutamate or a related EAA is responsible for the fast excitatory input to magnocellular and parvocellular neurons in the PVN and probably also for cells around PVN, 2) a quisqualate/kainate receptor type is responsible for the rising phase and peak amplitude of the synaptic current, and 3) an NMDA receptor contributes to the late part of the synaptic response.  相似文献   

20.
Excitatory pathways from the dorsal commissure (DCM) to L(6)-S(1) parasympathetic preganglionic neurons (PGN) were examined using whole-cell patch-clamp recording techniques in spinal cord slices from neonatal rats. PGN were identified by retrograde axonal transport of a fluorescent dye injected into the intraperitoneal space. Excitatory postsynaptic currents (EPSCs) were evoked in PGN by stimulation of DCM in the presence of bicuculline methiodide (10 microM) and strychnine (1 microM) to block inhibitory pathways. Electrical stimulation of DCM evoked two types of inward currents. In the majority of PGN (n = 66), currents (mean amplitude, 47.9 +/- 4.7 pA) occurred at a short and relatively constant latency (3.8 +/- 0.1 ms) and presumably represent monosynaptic EPSCs (Type 1). However, in other neurons (n = 20), a different type of EPSC (Type 2) was noted, consisting of a fast monosynaptic component followed by a prolonged inward current with superimposed fast transients presumably representing excitatory inputs mediated by polysynaptic pathways. Type 1 EPSCs were pharmacologically dissected into two components. A fast component was blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 5 microM) and a slowly decaying component was blocked by 2-amino-5-phosphonovalerate (APV, 50 microM). The fast component of Type 1 EPSCs had a linear current-voltage relationship and reversed at a membrane potential of -7.6 +/- 1.3 mV (n = 5). The fast component of Type 2 EPSCs was also blocked by 5 microM CNQX and the remaining slower component was blocked by 50 microM APV. When the DCM was stimulated in the presence of 50 microM APV, the time to peak and decay time constant in Type 1 EPSCs were 1.9 +/- 0.2 and 4.1 +/- 0.8 ms, respectively. Examination of the NMDA receptor-mediated component of the EPSCs in the presence of 5 microM CNQX revealed a current-voltage relationship that had a region of negative slope conductance (from -20 to -80 mV), which was abolished in Mg(2+)-free external solution. The time to peak and decay time constant of this component were 14.2 +/- 2.0 and 91.0 +/- 12.4 ms, respectively. Type 1 EPSCs in some PGN responded in an all-or-none manner and presumably represented unitary synaptic responses; whereas Type 2 EPSCs always exhibited a graded stimulus intensity-response relationship. Paired-pulse facilitation (50-ms interstimulus intervals; 141 +/- 5.6% increase, n = 8) of EPSCs was observed. These results indicate that PGN receive monosynaptic and polysynaptic glutamatergic excitatory inputs from neurons and/or axonal pathways in the DCM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号