首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:研究辛伐他汀对人牙髓干细胞成骨活性的影响.方法:将体外分离培养的人牙髓干细胞分别接种于含有不同浓度辛伐他汀的矿化培养液中诱导培养,测定碱性磷酸酶活性及骨唾液酸蛋白基因的表达情况.结果:与对照组比较,适宜浓度辛伐他汀(1×10^-6mol/L、1×10-7mol/L、1×10-8mol/L)促进人牙髓干细胞的成骨活性作用更为明显,差异具有统计学意义(P<0.05),当辛伐他汀浓度为1×10-7mol/L时,促进作用最显著.结论:适宜浓度的辛伐他汀可以有效促进人牙髓干细胞的成骨活性.  相似文献   

2.
目的 通过对人骨髓基质细胞体外培养及检测,研究地塞米松在骨髓基质细胞体外增生并向成骨细胞定向分化过程中的应用。方 法骨折内固定术扩髓前收集髓腔内骨髓进行原代和传代培养,传代后改用条件培养基(含地塞米松)和基础培养基(不含地塞米松)分别进行培养,应用组织化学及von Kossa方法检测细胞碱性磷酸酶和细胞外基质矿化程度;半定量RT-PCR方法检测Cbfal mRNA和Osterix mRNA在细胞培养过程中不同时间点的表达。并观测地塞米松对上述成骨细胞相关基因表达的影响。结果 条件培养基组细胞Cbfal mRNA和Osterix mRNA的表达峰值高于基础培养基组细胞,并且峰值出现的时间提前。结论 地塞米松通过促进Cbfal mRNA和Osterix mRNA的表达而促进骨髓基质细胞向成骨细胞分化。  相似文献   

3.
Photobiomodulation (PBM) and photodynamic therapy (PDT) are two major methods, which use light in medicine and dentistry. PBM uses low-level laser light to induce cell proliferation and activity. In contrast, PDT use laser light combined with a photosensitizer (PS) to cause cell death. Due to similar, not fully understood mechanisms and biphasic response of light, unexpected and complex outcomes may be observed. In the present study, the effect of 635 nm laser light, with power density 50 mW/cm2, at three different energy densities (0.5, 1, and 2 J/cm2 which last 10, 20, and 40 s, respectively) mediated by methylene blue (MB) on the human osteoblast cell line (ATCC-CRL-11372, Rockville, MD, USA) was investigated. Cell viability (MTT assay and acridine orange/propidium iodide staining) and proliferation (Alamar Blue assay) were assessed at 24, 48, and 72 h post irradiation. Alkaline phosphatase (ALP) activity, mineralization (Alizarin Red staining) and gene expressions (RT-PCR analysis) were analyzed at 7th and 14th days after treatment. Five groups were formed as the control group (no MB, no irradiation), MB (only 0.05 μM MB), MB + 0.5 J/cm2, MB + 1 J/cm2, and MB + 2 J/cm2. Cell viability was decreased at 72 h (ANOVA; p < 0.05) for MB + 0.5 J/cm2, MB + 1 J/cm2, and MB + 2 J/cm2 groups. Although proliferation does not seem to be effected by MB-mediated laser application, osteo-anabolic activity is altered. ALP activity was significantly increased at day 7 (ANOVA; p < 0.05) for MB-combined laser groups; on the other hand, mineralization was significantly decreased (ANOVA; p < 0.05) in all treatment groups. Alkaline phosphatase and collagen-I expressions were upregulated in MB + 2 J/cm2 group at 7th and 14th days, respectively. These results may contribute to the low-dose PDT researches and understanding PBM effects on osteoblast behavior but further studies are needed since inappropriate conditions may lead to undesirable results for both therapies.  相似文献   

4.
目的 探讨反义高迁移率族蛋白1(HMGB1)基因对人胰腺癌细胞的抑制作用。方法 应用分子克隆技术构建反义HMGB1基因真核表达载体pcDNA3 1/anti HMGB1,用脂质体法将其导入人胰腺癌细胞PANC 1中,经G4 18筛选获得可稳定表达反义HMGB1的人胰腺癌细胞克隆,通过逆转录聚合酶链反应、免疫印迹法和噻唑蓝比色法检测转染4 8h后胰腺癌细胞HMGB1基因表达和体外增殖活性的变化,流式细胞仪检测细胞凋亡及细胞周期情况。结果 获得了pcDNA3 1/anti HMGB1真核表达质粒,pcDNA3 1/anti HMGB1转染可使PANC 1细胞HMGB1mRNA和蛋白表达水平显著降低(P <0 .0 1)、肿瘤细胞增殖能力明显受到抑制(P <0. 0 1) ,并出现细胞周期G1期阻滞、凋亡细胞百分数增加。结论 反义HMGB1基因的表达能有效抑制胰腺癌细胞的体外增殖并促进细胞凋亡。  相似文献   

5.
目的 探索葛根素抑制地塞米松诱导的hFOB1.19人成骨细胞凋亡机制的实验研究。方法 MTS检测葛根素对 hFOB1. 19细胞增殖活性影响,免疫荧光检测DEX诱导hFOB1. 19细胞凋亡及葛根素抑制DEX诱导的细胞凋亡的细胞核改变。Western blot检测p-p65、p-IκB的蛋白表达情况。Realtime PCR检测Caspase-3、Caspase-9的基因表达情况。ELISA检测加人NF-kB抑制PDTC后对凋亡的影响。结果 10-8 M和10-9M葛根素明显增加细胞的增殖活性,10-5 M和10-6 M浓度的 DEX作用72h后诱导细胞凋亡,加人10-8M葛根素后细胞凋亡受到抑制。Western blot结果显示,加人DEX后,p-NF-κB4,p- IkB的表达上调,DEX和PUE共同处理后,DEX诱导的NF-κB和IkB的磷酸化受到抑制。Realtime PCR显示DEX处理后 caspase3、caspase8的mRNA基因表达明上调,而DEX和PUE共同作用后,caspase3、caspase8的mRNA基因表达下调。ELISA 显示PUE抑制DEX诱导的细胞凋亡。PDTC、DEX、PUE共同处理后,PUE对DEX诱导的细胞的保护作用受到部分抑制。结论 葛根素抑制地塞米松诱导的hFOB1. 19细胞凋亡通过依赖于Caspase调节NF-κB通路。  相似文献   

6.
XLH in humans and the Hyp phenotype in mice are caused by inactivating Phex mutations. Overexpression of human PHEX under the human beta-actin promoter in Hyp mice rescued the bone phenotype almost completely, but did not affect phosphate homeostasis, suggesting that different, possibly independent, pathophysiological mechanisms contribute to hyperphosphaturia and bone abnormalities in XLH. INTRODUCTION: Mutations in PHEX, a phosphate-regulating gene with homologies to endopeptidases on the X chromosome, are responsible for X-linked hypophosphatemia (XLH) in humans, and its mouse homologs, Hyp, Phex(Hyp-2J), Phex(Hyp-Duk), Gy, and Ska1. PHEX is thought to inactivate a phosphaturic factor, which may be fibroblast growth factor 23 (FGF)-23. Consistent with this hypothesis, FGF-23 levels were shown to be elevated in most patients with XLH and in Hyp mice. The aim of this study was, therefore, to examine whether transgenic overexpression of PHEX under the human beta-actin promoter would rescue the Hyp phenotype. MATERIALS AND METHODS: We tested this hypothesis by generating two mouse lines expressing human PHEX under the control of a human beta-actin promoter (PHEX-tg). With the exception of brain, RT-PCR analyses showed transgene expression in all tissues examined. PHEX protein, however, was only detected in bone, muscle, lung, skin, and heart. To assess the role of the mutant PHEX, we crossed female heterozygous Hyp mice with male heterozygous PHEX-tg mice to obtain wildtype (WT), PHEX-tg, Hyp, and Hyp/PHEX-tg offspring, which were examined at 3 months of age. RESULTS: PHEX-tg mice exhibited normal bone and mineral ion homeostasis. Hyp mice showed the known phenotype with reduced body weight, hypophosphatemia, hyperphosphaturia, and rickets. Hyp/PHEX-tg mice had almost normal body weight relative to WT controls, showed a dramatic improvement in femoral BMD, almost normal growth plate width, and, despite remaining disturbances in bone mineralization, almost normal bone architecture and pronounced improvements of osteoidosis and of halo formation compared with Hyp mice. However, Hyp and Hyp/PHEX-tg mice had comparable reductions in tubular reabsorption of phosphate and were hypophosphatemic relative to WT controls. CONCLUSION: Our data suggest that different, possibly independent, pathophysiological mechanisms contribute to renal phosphate wasting and bone abnormalities in Hyp and XLH.  相似文献   

7.
8.
Behrens P  Wolf E  Bruns J 《Der Orthop?de》2000,29(2):129-134
Different methods are available for the treatment of osseous defects. In recent years the use of autologous bone was established as the golden standard. However, significant disadvantages are limited availability of the bone graft and its harvest implies additional morbidity for the patient. Alternatives to the use of autologous bone, as allogeneic bone from bone banks or biomaterials like hydroxyapatite are therefore of special interest. However, the currently available methods have severe disadvantages; allogenic bone carries a high risk of transmitting infectious diseases, most biomaterials show an unsatisfying osseous integration as well as prolonged healing with disability for the patient. Therefore, the aim has to be the development of a biomaterial that is as close as possible to human bone. In this in vitro study the natural bone mineral Bio-Oss/Orthos was used as a matrix for human osteoblast-like cells isolated from bone marrow of healthy patients. Even after three months the cell showed typical osteblast-like behaviour. Histologic evaluation demonstrated the ability of Bio-Oss/Orthos to guide cell growth within its matrix structure and therefore mimics in vivo situation of the healthy bone. The results show that culturing human osteoblast-like cells under standardised conditions is possible and that the combination of human osteoblast-like cell with an appropriate matrix may have the potential for a new treatment option of osseous defects.  相似文献   

9.
Tibolone is a synthetic steroid which undergoes tissue selective metabolism into several metabolites having estrogenic, progestogenic or androgenic activities. The effects of 3 alpha-hydroxy tibolone (Org 4094), 3 beta-hydroxy tibolone (Org 30126) and their sulfated metabolites were investigated on human fetal osteoblasts (hFOB). Tibolone had no effect on selected osteoblast marker proteins in estrogen-receptor negative hFOB cells. In contrast, 3 alpha-hydroxy and 3beta-hydroxy tibolone resulted in dose-dependent increases in alkaline phosphatase activity in estrogen receptor (ER) alpha-positive hFOB cells. The maximum increase for both metabolites was comparable to the effects of an optimal dose of 17beta-estradiol, and occurred at 10 muM. At 20 muM, both metabolites increased mRNA levels for alkaline phosphatase and type 1 collagen and protein levels for osteocalcin. Sulfated metabolites of tibolone also increased alkaline phosphatase activity. The estrogen receptor antagonist ICI 182, 780 inhibited stimulation of alkaline phosphatase activity by sulfated and non-sulfated tibolone metabolites, but was more potent on the former. Taken together, these results suggest that stable transfection of ER alpha into hFOB cells confers regulation by 3 alpha-hydroxy and 3beta-hydroxy tibolone metabolites of osteoblast metabolism.  相似文献   

10.
Lasers in Medical Science - Dental pulp cells are a source of multipotent mesenchymal stem cells with a high proliferation rate and multilineage differentiation potential. This study investigated...  相似文献   

11.
目的 探讨应用脂质体(LR)介导c-myc基因反义寡核苷酸(ASODN)对人肝癌细胞SMMC-7721(7721细胞)的生物学影响。方法 利用1mg/L LR包裹2μmol/L c-myc ASODN转染于培养的人肝癌细胞,观察其对瘤细胞的作用。结果 四唑盐比色实验(MTT)法测定LR-ASODN组作用48h对瘤细胞生长抑制率(55%)较无LR的ASODN组的生长抑制率(15%)显著提高(P〈0.  相似文献   

12.
Ornithine decarboxylase (ODC), the first enzyme of polyamine biosynthesis, was found to increase in cancer cells, especially prostate cancers. Some chemotherapeutic agents aimed to decrease ODC expression showed inhibitory effects on cancer cells. In this study, we examined the effect of adenoviral-transduced antisense ODC on prostate cancer cells. An adenovirus carrying antisense ODC (rAd-ODC/Ex3as) was infected to prostate cancer cells PC-3 and LNCap. Expression of ODC and concentration of polyamines in cells were determined by Western blotting and HPLC. MTT (3-(4,5-methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay was used to analyze the effect on cell growth. Cell cycle was evaluated by FCM and cellular invasion by Matrigel invasion assay. A nude mouse xenograft model was used to examine tumorigenicity. Expression of ODC in PC-3 and LNCap cells were reduced to 45 and 59%, and three polyamines were also decreased by the rAd-ODC/Ex3as treatment. Consequently, cell growth was substantially inhibited and cell cycle arrested at G1 phase. Matrigel invasion assay showed relatively low invasion. Marked suppression of tumor formation was observed in the xenograft model. This study suggests that rAd-ODC/Ex3as has the antitumor effect on the human prostate cancer cells.  相似文献   

13.
Objective To investigate the effects of antisense recombinant euraryotic expression vector of HCCR-2 on the proliferation and apoptosis of HepG2. Methods The antisense recombinant eukaryotic expression vector of HCCR-2 was constructed. The vector was stably transfected to the HepG2 cells, and positive clones were selected by G418 (antiseuse vector group), pIRES2-EGFP vector was transfected into the HepG2 cells in the same way (pIRES2-EGFP group). The conditions of the nontransfected HepG2 cells were used as control (HepG2 group). Changes in cell growth curve, cell cycle, cell apoptosis and morphology of HepG2 cells after the transfec-tion were detected by MTT method, flow cytometry and transmission electron microscopy, respectively. All the data were analyzed by one-way ANOVA and chi-square test. Results The expression level of HCCR-2 mRNA was down-regulated to 0.39±0.04 in antisense vector group, and the expression level of HCCR-2 mRNA in pIRES2-EGFP group and HepG2 group were 0.62±0.06 and 0.72±0.03, respectively, with significant difference among the 3 groups (F=43.701, P<0.05). The apoptotic rate of HepG2 cells in antisense vector group, pIRES2-EGFP grop and HepG2 group were 13.30%, 2.51% and 2.07%, respectively, with significant difference among the 3 group (χ2=6.793, 8.721, P<0.05). The growth of HepG2 cells in antisense vector group was retarded, and was blocked in G0/G1 stage. Conclusions The HCCR-2 antisense recombinant eukaryotic expression vector can inhibit the mRNA expression of HCCR-2 and promote the apoptosis of cells. HCCR-2 may be involved in cell regulation and the proliferation of hepatocellular carcinoma cells.  相似文献   

14.
Objective To investigate the effects of antisense recombinant euraryotic expression vector of HCCR-2 on the proliferation and apoptosis of HepG2. Methods The antisense recombinant eukaryotic expression vector of HCCR-2 was constructed. The vector was stably transfected to the HepG2 cells, and positive clones were selected by G418 (antiseuse vector group), pIRES2-EGFP vector was transfected into the HepG2 cells in the same way (pIRES2-EGFP group). The conditions of the nontransfected HepG2 cells were used as control (HepG2 group). Changes in cell growth curve, cell cycle, cell apoptosis and morphology of HepG2 cells after the transfec-tion were detected by MTT method, flow cytometry and transmission electron microscopy, respectively. All the data were analyzed by one-way ANOVA and chi-square test. Results The expression level of HCCR-2 mRNA was down-regulated to 0.39±0.04 in antisense vector group, and the expression level of HCCR-2 mRNA in pIRES2-EGFP group and HepG2 group were 0.62±0.06 and 0.72±0.03, respectively, with significant difference among the 3 groups (F=43.701, P<0.05). The apoptotic rate of HepG2 cells in antisense vector group, pIRES2-EGFP grop and HepG2 group were 13.30%, 2.51% and 2.07%, respectively, with significant difference among the 3 group (χ2=6.793, 8.721, P<0.05). The growth of HepG2 cells in antisense vector group was retarded, and was blocked in G0/G1 stage. Conclusions The HCCR-2 antisense recombinant eukaryotic expression vector can inhibit the mRNA expression of HCCR-2 and promote the apoptosis of cells. HCCR-2 may be involved in cell regulation and the proliferation of hepatocellular carcinoma cells.  相似文献   

15.
Objective To investigate the effects of antisense recombinant euraryotic expression vector of HCCR-2 on the proliferation and apoptosis of HepG2. Methods The antisense recombinant eukaryotic expression vector of HCCR-2 was constructed. The vector was stably transfected to the HepG2 cells, and positive clones were selected by G418 (antiseuse vector group), pIRES2-EGFP vector was transfected into the HepG2 cells in the same way (pIRES2-EGFP group). The conditions of the nontransfected HepG2 cells were used as control (HepG2 group). Changes in cell growth curve, cell cycle, cell apoptosis and morphology of HepG2 cells after the transfec-tion were detected by MTT method, flow cytometry and transmission electron microscopy, respectively. All the data were analyzed by one-way ANOVA and chi-square test. Results The expression level of HCCR-2 mRNA was down-regulated to 0.39±0.04 in antisense vector group, and the expression level of HCCR-2 mRNA in pIRES2-EGFP group and HepG2 group were 0.62±0.06 and 0.72±0.03, respectively, with significant difference among the 3 groups (F=43.701, P<0.05). The apoptotic rate of HepG2 cells in antisense vector group, pIRES2-EGFP grop and HepG2 group were 13.30%, 2.51% and 2.07%, respectively, with significant difference among the 3 group (χ2=6.793, 8.721, P<0.05). The growth of HepG2 cells in antisense vector group was retarded, and was blocked in G0/G1 stage. Conclusions The HCCR-2 antisense recombinant eukaryotic expression vector can inhibit the mRNA expression of HCCR-2 and promote the apoptosis of cells. HCCR-2 may be involved in cell regulation and the proliferation of hepatocellular carcinoma cells.  相似文献   

16.
HCCR-2反义核酸对肝癌HepG2细胞的作用   总被引:1,自引:0,他引:1  
目的 研究反义HCCR-2真核表达载体对肝癌HepG2细胞增殖及凋亡的影响.方法 构建反义HCCR-2真核表达载体(反义载体组),转染肝癌HepG2细胞,G418筛选阳性克隆,同样方法获得空载体pIRES2-EGFP稳定表达的细胞株(空载体组),取肝癌HepG2细胞为对照(肝癌HepG2组),用MTT法、流式细胞仪、透射电镜观察反义HCCR-2转染前后肝癌HepG2细胞生长曲线、细胞周期、细胞凋亡及细胞形态的变化.采用单因素方差分析和χ2检验比较各组差异.结果 反义载体组、空载体组、肝癌HepG2组HCCR-2 mRNA表达水平分别为0.39±0.04、0.62±0.06、0.72±0.03,3组比较差异有统计学意义(F=43.701,P<0.05);细胞凋亡率分别为13.30%、2.51%、2.07%,反义载体组与空载体组、肝癌HepG2组比较,差异有统计学意义(χ2=6.793,8.721,P<0.05);反义载体组细胞生长减慢,阻滞于G0/G1期.结论 HCCR-2反义核酸真核表达载体能抑制HCCR-2 mRNA的表达,促进细胞凋亡,HCCR-2蛋白可能参与肝癌细胞的周期调控,并与细胞的生长增殖有关.  相似文献   

17.
Objective To investigate the effects of antisense recombinant euraryotic expression vector of HCCR-2 on the proliferation and apoptosis of HepG2. Methods The antisense recombinant eukaryotic expression vector of HCCR-2 was constructed. The vector was stably transfected to the HepG2 cells, and positive clones were selected by G418 (antiseuse vector group), pIRES2-EGFP vector was transfected into the HepG2 cells in the same way (pIRES2-EGFP group). The conditions of the nontransfected HepG2 cells were used as control (HepG2 group). Changes in cell growth curve, cell cycle, cell apoptosis and morphology of HepG2 cells after the transfec-tion were detected by MTT method, flow cytometry and transmission electron microscopy, respectively. All the data were analyzed by one-way ANOVA and chi-square test. Results The expression level of HCCR-2 mRNA was down-regulated to 0.39±0.04 in antisense vector group, and the expression level of HCCR-2 mRNA in pIRES2-EGFP group and HepG2 group were 0.62±0.06 and 0.72±0.03, respectively, with significant difference among the 3 groups (F=43.701, P<0.05). The apoptotic rate of HepG2 cells in antisense vector group, pIRES2-EGFP grop and HepG2 group were 13.30%, 2.51% and 2.07%, respectively, with significant difference among the 3 group (χ2=6.793, 8.721, P<0.05). The growth of HepG2 cells in antisense vector group was retarded, and was blocked in G0/G1 stage. Conclusions The HCCR-2 antisense recombinant eukaryotic expression vector can inhibit the mRNA expression of HCCR-2 and promote the apoptosis of cells. HCCR-2 may be involved in cell regulation and the proliferation of hepatocellular carcinoma cells.  相似文献   

18.
Objective To investigate the effects of antisense recombinant euraryotic expression vector of HCCR-2 on the proliferation and apoptosis of HepG2. Methods The antisense recombinant eukaryotic expression vector of HCCR-2 was constructed. The vector was stably transfected to the HepG2 cells, and positive clones were selected by G418 (antiseuse vector group), pIRES2-EGFP vector was transfected into the HepG2 cells in the same way (pIRES2-EGFP group). The conditions of the nontransfected HepG2 cells were used as control (HepG2 group). Changes in cell growth curve, cell cycle, cell apoptosis and morphology of HepG2 cells after the transfec-tion were detected by MTT method, flow cytometry and transmission electron microscopy, respectively. All the data were analyzed by one-way ANOVA and chi-square test. Results The expression level of HCCR-2 mRNA was down-regulated to 0.39±0.04 in antisense vector group, and the expression level of HCCR-2 mRNA in pIRES2-EGFP group and HepG2 group were 0.62±0.06 and 0.72±0.03, respectively, with significant difference among the 3 groups (F=43.701, P<0.05). The apoptotic rate of HepG2 cells in antisense vector group, pIRES2-EGFP grop and HepG2 group were 13.30%, 2.51% and 2.07%, respectively, with significant difference among the 3 group (χ2=6.793, 8.721, P<0.05). The growth of HepG2 cells in antisense vector group was retarded, and was blocked in G0/G1 stage. Conclusions The HCCR-2 antisense recombinant eukaryotic expression vector can inhibit the mRNA expression of HCCR-2 and promote the apoptosis of cells. HCCR-2 may be involved in cell regulation and the proliferation of hepatocellular carcinoma cells.  相似文献   

19.
Objective To investigate the effects of antisense recombinant euraryotic expression vector of HCCR-2 on the proliferation and apoptosis of HepG2. Methods The antisense recombinant eukaryotic expression vector of HCCR-2 was constructed. The vector was stably transfected to the HepG2 cells, and positive clones were selected by G418 (antiseuse vector group), pIRES2-EGFP vector was transfected into the HepG2 cells in the same way (pIRES2-EGFP group). The conditions of the nontransfected HepG2 cells were used as control (HepG2 group). Changes in cell growth curve, cell cycle, cell apoptosis and morphology of HepG2 cells after the transfec-tion were detected by MTT method, flow cytometry and transmission electron microscopy, respectively. All the data were analyzed by one-way ANOVA and chi-square test. Results The expression level of HCCR-2 mRNA was down-regulated to 0.39±0.04 in antisense vector group, and the expression level of HCCR-2 mRNA in pIRES2-EGFP group and HepG2 group were 0.62±0.06 and 0.72±0.03, respectively, with significant difference among the 3 groups (F=43.701, P<0.05). The apoptotic rate of HepG2 cells in antisense vector group, pIRES2-EGFP grop and HepG2 group were 13.30%, 2.51% and 2.07%, respectively, with significant difference among the 3 group (χ2=6.793, 8.721, P<0.05). The growth of HepG2 cells in antisense vector group was retarded, and was blocked in G0/G1 stage. Conclusions The HCCR-2 antisense recombinant eukaryotic expression vector can inhibit the mRNA expression of HCCR-2 and promote the apoptosis of cells. HCCR-2 may be involved in cell regulation and the proliferation of hepatocellular carcinoma cells.  相似文献   

20.
Objective To investigate the effects of antisense recombinant euraryotic expression vector of HCCR-2 on the proliferation and apoptosis of HepG2. Methods The antisense recombinant eukaryotic expression vector of HCCR-2 was constructed. The vector was stably transfected to the HepG2 cells, and positive clones were selected by G418 (antiseuse vector group), pIRES2-EGFP vector was transfected into the HepG2 cells in the same way (pIRES2-EGFP group). The conditions of the nontransfected HepG2 cells were used as control (HepG2 group). Changes in cell growth curve, cell cycle, cell apoptosis and morphology of HepG2 cells after the transfec-tion were detected by MTT method, flow cytometry and transmission electron microscopy, respectively. All the data were analyzed by one-way ANOVA and chi-square test. Results The expression level of HCCR-2 mRNA was down-regulated to 0.39±0.04 in antisense vector group, and the expression level of HCCR-2 mRNA in pIRES2-EGFP group and HepG2 group were 0.62±0.06 and 0.72±0.03, respectively, with significant difference among the 3 groups (F=43.701, P<0.05). The apoptotic rate of HepG2 cells in antisense vector group, pIRES2-EGFP grop and HepG2 group were 13.30%, 2.51% and 2.07%, respectively, with significant difference among the 3 group (χ2=6.793, 8.721, P<0.05). The growth of HepG2 cells in antisense vector group was retarded, and was blocked in G0/G1 stage. Conclusions The HCCR-2 antisense recombinant eukaryotic expression vector can inhibit the mRNA expression of HCCR-2 and promote the apoptosis of cells. HCCR-2 may be involved in cell regulation and the proliferation of hepatocellular carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号