首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
3H-Guanidinoethylmercaptosuccinic acid (3H-GEMSA) a very selective inhibitor of enkephalin convertase, binds to the crude rat spinal cord homogenates saturably, reversibly and with high affinity. Scatchard analysis revealed two classes of binding sites with KD: 4.5 nM and 215 nM. A plot of dissociation experiment was nonlinear with the T1/2: 2 min and 6 min, respectively. 3H-GEMSA binding sites are evenly distributed throughout the rat spinal cord and their high density might suggest a physiological significance of enkephalin convertase in that tissue.  相似文献   

2.
A patient with the typical craniofacial features and clinical course of Miller-Dieker syndrome (MDS) was found on autopsy to have focal pachygyria rather than lissencephaly. The brainstem and cerebellum were hypoplastic, but thalami and basal ganglia were normal. We believe that MDS is a syndrome in which multiple specific pathways of neuronal migration are affected selectively, such as migration to the neocortex, migration via corpus pontobulbare, and cerebellar migration. However, another migration pathway (via corpus gangliothalamicum) is spared.  相似文献   

3.
Caspases are cysteine proteases that mediate apoptotic death in a variety of cellular systems, including neurons. Caspases are activated through extrinsic or intrinsic pathways. The latter is used by most neurons in most situations. In this pathway, release of mitochondrial cytochrome c into the cytoplasm induces formation of the apoptosome, which leads to the activation of caspase 9 and subsequently other caspases. Recent data demonstrate that when caspase activation is inhibited at or downstream of the apoptosome, neurons undergo a delayed, caspase-independent death. Furthermore, there are instances, most notably following excitotoxic injury and calcium overload, in which the direct cell death pathway elicited differs from classical apoptosis. The molecular and biochemical features of such caspase-independent, nonapoptotic forms of neuronal death are just beginning to be elucidated, but alterations at the level of the mitochondria and noncaspase proteases play significant roles. Mitochondrial alterations in caspase-independent death may include energy depletion, generation of free radicals, opening of the permeability transition pore, and release of cytotoxic proteins, such as apoptosis-inducing factor. The particular mechanisms employed can be context dependent. In disease states, in which a combination of apoptotic and nonapoptotic death occurs, therapeutic strategies need to take into account both caspase-dependent and -independent pathways.  相似文献   

4.
Social Psychiatry and Psychiatric Epidemiology - Although there is considerable evidence that adversities in childhood such as social deprivation, sexual abuse, separation from parents, neglect and...  相似文献   

5.
We previously reported lesions confined specifically to the hippocampus when produced by occluding eight vessels (the bilateral vertebral, common, internal, and external carotid arteries), which supply blood to the brain. However, histopathological changes in the primate brain, caused by ischemic injury, have not previously been thoroughly investigated. In the present study, macaque monkeys were subjected to 5–18-min ischemia by occluding the eight vessels. After the brains were perfused and fixed 5 days after the occlusion, all regions were histologically investigated for ischemic cell changes. Ischemia for 5 min produced no ischemic cell change. Ischemia for 10–15 min produced cell death limited to the deeper portion of the pyramidal cell layer of the CA1 subfield in the hippocampus. In most monkeys, no cell death was observed in any brain region outside of the hippocampus after ischemia for up to 15 min. Ischemia for 18 min produced more widespread cell death in the CA1 subfield of the hippocampus, and cell death was no longer confined to the hippocampus, but was observed in layers III, V, and VI of the neocortices, the striatum, and some other regions. Brains that were perfused and fixed 1 year after 15-min ischemic insult revealed no ischemic cell morphological change in any region, but the number of pyramidal cells in the CA1 subfield was decreased to about half. The results indicate that the CA1 subfield of the monkey hippocampus is the precise region of the brain most susceptible to ischemic insult in the primate forebrain, and after a critical time (15-min ischemia in this procedure) ischemic cell changes occur suddenly and extensively. Ischemia due to occlusion of eight arteries for 10–15 min could produce a model of human amnesia caused by transient ischemic insult.  相似文献   

6.
Parkin's substrates and the pathways leading to neuronal damage   总被引:4,自引:0,他引:4  
Mutations in the Parkin gene are associated with Parkinson’s disease (PD). The gene product has been shown to be an E3 protein-ubiquitin ligase, catalyzing the addition of ubiquitin to target proteins prior to their destruction via the proteasome. This activity is thus key in regulating the turnover of substrate proteins. A predictive hypothesis for how this results in PD is that the misregulation of proteasomal degradation of Parkin’s substrates is deleterious to neurons. Several different laboratories have identified alternate candidate proteins. In this review, the likelihood of each of the proposed substrates for parkin being robust will be evaluated. The distribution and abundance of the proteins will be examined for clues as to which are the pathologically important substrates for parkin. The possibility that loss of regulation of turnover of one or more of these substrates contributes to the selective neurodegeneration seen in PD is also discussed.  相似文献   

7.
Recent models of psychosis have implicated specific psychological processes in the aetiology of this disorder, and these factors may form a route to later symptoms—either directly or via a mediating pathway after exposure to adversity. Researchers are beginning to bring together findings that look into specific pathways between early experiences of adversity and different symptoms of psychosis, including thought disorder, hallucinations and persecutory delusions. The adversity-specific pathways include parental communication deviance, source monitoring biases, and insecure attachment. Researchers have also begun to utilise specific psychological factors as targets for treatment, and these include a focus on a worrying thinking style, negative beliefs about the self, interpersonal sensitivity, sleep disturbance, anomalous internal experience, and reasoning biases. Research on the impact of psychological processes is beginning to mount and is likely to improve our understanding of aetiology and lead to significant advances in the treatment of psychotic symptoms and disorders.  相似文献   

8.
Brain peptidases: Their possible neuronal and glial localization   总被引:10,自引:0,他引:10  
Neuronal and glial localization of brain peptidases was investigated by means of the kainic acid (KA) lesion technique. Activities of 6 different peptidases were measured in the rat caudate-putamen (CP) and substantia nigra (SN) 2, 7 and 21 days after unilateral intra-CP injection with 2.5 micrograms of KA. As an indicator of KA lesion in CP, substance P content in both CP and SN was also determined. In addition, activities of the same peptidases in the primary and secondary glial cell cultures of fetal rats were measured and compared to those in CP homogenate. After the KA injection, prolyl endopeptidase (Pro-EP) activity was decreased in the lesioned CP and, to a lesser extent, in the ipsilateral SN. The activity of angiotensin-converting enzyme (ACE) in the lesioned CP was decreased with a complex time course, whereas a slow and progressive reduction was observed in the SN. Alanyl and leucyl aminopeptidase (Ala-AP and Leu-AP respectively) activities gave only small changes after the lesion; Ala-AP was decreased and Leu-AP was increased in the lesioned CP, while both were decreased in the SN. Dipeptidyl aminopeptidase (DAP) and arginyl endopeptidase (Arg-EP) activities were increased 5-fold in the CP 7 days after the KA injection. Their increases paralleled that of beta-glucuronidase, the lysosomal marker enzyme. Cultured glial cells contained only a trace amount of ACE activity. Ala-AP and Pro-EP activities were considerably lower in the glial culture cells than in the CP homogenate. In contrast, DAP and Arg-EP as well as lysosomal marker enzymes showed much higher activity in the former than in the latter. These results suggest that (1) Ala-AP and Pro-EP have large neuronal components, (2) ACE is preferencially localized in neurons and (3) DAP and Arg-EP are associated with glial lysosomal function. It is, therefore, concluded that at least a part of the brain peptidases are differentially localized in neurons and glia, and may be involved in specific neuronal or glial function.  相似文献   

9.
Neuroanatomical tracing techniques, and retrograde labelling in particular, are widely used tools for the analysis of neuronal pathways in the central and peripheral nervous system. Over the last 10 years, these techniques have been used extensively to identify enteric neuronal pathways. In combination with multiple-labelling immunohistochemistry, quantitative data about the projections and neurochemical profile of many functional classes of cells have been acquired. These data have revealed a high degree of organization of the neuronal plexuses, even though the different classes of nerve cell bodies appear to be randomly assorted in ganglia. Each class of neurone has a predictable target, length and polarity of axonal projection, a particular combination of neurochemicals in its cell body and distinctive morphological characteristics. The combination of retrograde labelling with targeted intracellular recording has made it possible to target small populations of cells that would rarely be sampled during random impalements. These neuroanatomical techniques have also been applied successfully to human tissue and are gradually unravelling the complexity of the human enteric nervous system.  相似文献   

10.
The availability of several reliable immunohistochemical probes has contributed to a better understanding of the disposition of histaminergic systems and their role in the rat CNS. A small number of perikarya stained with antibodies raised against the amine or its synthetising enzyme are found in several magnocellular nuclei of the hypothalamic mamillary region. Like the major groups of monoaminergic neurons, histaminergic neurons project diffusely and mainly ipsilaterally to large areas of the forebrain. Their functional role can be inferred from this anatomical disposition and from their patterns of activity and modes of action at the cellular level. Histaminergic neurons seem to be involved in the maintenance of states of arousal, and in vegetative and endocrine regulation.  相似文献   

11.
Neuron loss occurs in the myenteric plexus of the aged rat. The myenteric plexus is composed of two mutually exclusive neuronal subpopulations expressing, respectively, nitrergic and cholinergic phenotypes. The goal of the present study, therefore, was to determine if neuron loss is specific to one phenotype, or occurs in both. Ad libitum fed virgin male Fischer 344 rats of 3 and 24 months of age were used in each of two neuronal staining protocols (n=10/age/neuron stain). The stomach, duodenum, jejunum, ileum, colon, and rectum were prepared as whole mounts and processed with either NADPHd or Cuprolinic Blue to stain, respectively, the nitrergic subpopulation or the entire population of myenteric neurons. Neuron numbers and sizes were determined for each preparation. Neuron counts from 24-month-old rats were corrected for changes in tissue area resulting from growth. There was no age-related loss of NADPHd-positive neurons for any of the regions sampled, whereas significant losses of Cuprolinic Blue-labeled neurons occurred in the small and large intestines of 24-month-old rats. At the two ages, the average neuron sizes were similar in the stomach and small intestine for both stains, but neurons in the large intestine were significantly larger at 24 months. In addition, numerous swollen NADPHd-positive axons were found in the large intestine at 24 months. These findings support the hypothesis that age-related cell loss in the small and large intestines occurs exclusively in the cholinergic subpopulation. It appears, however, from the somatic hypertrophy and the presence of swollen axons that the nitrergic neurons are not completely spared from the effects of age.  相似文献   

12.
In the previous 2 papers, we focused on the selective affinities that growth cones display for specific axonal pathways. Little is known, however, about how this orthogonal scaffold of axonal pathways in the CNS is established in the first place, and what, if any, role glia might play in these events. Here we show an important relationship between pioneering growth cones and primitive glial cells in the developing longitudinal connectives and peripheral nerve roots of the grasshopper embryo. We describe a preformed glial pathway for the formation of the intersegmental nerve, one of the major roots exiting the CNS. The growth cones that pioneer this nerve display a selective affinity for the segment boundary cell (SBC), a primitive glial cell that establishes the location of this nerve root. Similar glial cells are also found along the pathway where the longitudinal connectives form, and they too may play an important role in the formation of the first longitudinal axonal pathways. Experimental analysis shows that when the SBC is ablated, the growth cones that normally turn laterally to pioneer the intersegmental nerve do not do so, thus confirming the importance of the guiding role of this glial cell. We postulate that a simple orthogonal scaffold of primitive glia is involved in the initial patterning of axonal pathways within and exiting the insect CNS; this concept is remarkably similar to the blueprint hypothesis proposed by Singer et al. (1979) to explain the development of axon pathways in vertebrates.  相似文献   

13.
Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily of pentameric ligand-gated ion channels, which include GABA (A and C), serotonin, and glycine receptors. Currently, 12 neuronal nAChR subunits have been identified (alpha2-10 and beta2-4) and are generally grouped into alpha subunits, which contain two adjacent cysteine residues essential for ACh binding, and beta subunits, which lack these residues. The majority of neuronal nAChRs fall into two categories: those that bind agonist with high affinity (nM concentrations); and those that bind with lower affinity (microM concentrations). The low-affinity receptors are presumably homomeric alpha7 receptors that are alpha-bungarotoxin sensitive, whereas alpha4beta2 nAChRs account for >90% of the high-affinity nicotinic receptors in the brain (Whiting and Lindstrom, 1986). Their physiological contributions to neurotransmission, signaling, and behavior are not completely understood. Precise mapping of subcellular and neuroanatomical localizations of neuronal nAChR subunits will help elucidate the physiological role of neuronal nAChRs and their role in nicotine addiction.  相似文献   

14.
MAP kinase pathways in neuronal cell death   总被引:1,自引:0,他引:1  
The signaling pathways which contribute to neuronal death during development, aging and disease have been extensively studied. While initial efforts focused on developmental death, increasing evidence suggests that mitogen-activated protein kinase pathways play a role in human pathology. In particular, the c-Jun N-terminal kinases (JNKs), mitogen-activated protein kinases activated by extracellular stimuli including stress, are a major focus. Knock-out mouse studies have demonstrated that removing particular JNK genes can reduce the severity in various disease scenarios, including those which are used to model Parkinson's disease and cerebral ischemia. In addition, activation of JNKs can be seen in human disease tissue. In this review we bring together the evidence for JNK being an important regulator of neuronal loss and outline the advancement of small molecule inhibitors for future therapeutic intervention.  相似文献   

15.
Journal of Neurology - Focal neuronal lipofuscinosis (FNL) is an uncommon epileptic disorder related to an excess of lipofuscin accumulation within dysmorphic-appearing neurons (DANs), whose...  相似文献   

16.
Although morphine and related compounds have been used as drugs for many centuries. It is only in the last few years that an endogenous material has been discovered in the nervous system which appears capable of occupying opiate receptor sites. Our present knowledge, and the exciting future, concerning the enkephalins and related compounds is summarized in this article.  相似文献   

17.
18.
Glial and neuronal localization of cerebroside-metabolizing enzymes   总被引:4,自引:0,他引:4  
Glial and neuronal cell preparations were made from young rat cerebrum and assayed for 3 enzymes involved in sphingolipid metabolism. A galactosyltransferase which makes galactocerebroside, a primary component of myelin, was found in all cell types examined, at fairly similar levels of activity. The same distribution of activities was found for the β-galactosidase which hydrolyzes galactocerebroside. It is suggested that the very low levels of galactocerebroside found in neurons are the result of an inability of neurons to form the lipoidal cerebroside precursor, hydroxy ceramide, or a cerebroside-binding protein.  相似文献   

19.
Houser CR  Zhang N  Peng Z  Huang CS  Cetina Y 《Epilepsia》2012,53(Z1):67-77
The dynamic aspects of epilepsy, in which seizures occur sporadically and are interspersed with periods of relatively normal brain function, present special challenges for neuroanatomical studies. Although numerous morphologic changes can be identified during the chronic period, the relationship of many of these changes to seizure generation and propagation remains unclear. Mossy fiber sprouting is an example of a frequently observed morphologic change for which a functional role in epilepsy continues to be debated. This review focuses on neuroanatomically identified changes that would support high levels of activity in reorganized mossy fibers and potentially associated granule cell activation. Early ultrastructural studies of reorganized mossy fiber terminals in human temporal lobe epilepsy tissue have identified morphologic substrates for highly efficacious excitatory connections among granule cells. If similar connections in animal models contribute to seizure activity, activation of granule cells would be expected. Increased labeling with two activity-related markers, Fos and phosphorylated extracellular signal-regulated kinase, has suggested increased activity of dentate granule cells at the time of spontaneous seizures in a mouse model of epilepsy. However, neuroanatomical support for a direct link between activation of reorganized mossy fiber terminals and increased granule cell activity remains elusive. As novel activity-related markers are developed, it may yet be possible to demonstrate such functional links and allow mapping of seizure activity throughout the brain. Relating patterns of neuronal activity during seizures to the underlying morphologic changes could provide important new insights into the basic mechanisms of epilepsy and seizure generation.  相似文献   

20.
Activation of specific central dopamine pathways: Locomotion and footshock   总被引:2,自引:0,他引:2  
The present study examined whether neostriatal monoamine biochemistry was activated in a bilaterally symmetrical fashion during a non-lateralized forward locomotor task, and whether specific midbrain dopamine (DA) neuronal systems were influenced selectively by specific behavioral tasks. Monoamine concentrations (DA, serotonin and their metabolites) were measured, using high pressure liquid chromatography, in the neostriatum, nucleus accumbens, and medial prefrontal cortex in rats that were either induced to walk forward in a motorized rotating wheel (two speeds) or were exposed to footshock stress (two shock intensities). Our results demonstrate that during locomotor behavior there is an increase in neostriatal DA metabolism, but not in serotonin metabolism. Furthermore, the increase in DA metabolism was found: (a) in both right and left neostriatal nuclei, but with significantly less asymmetry than occurred in non-locomoting control rats; and (b) within the neostriatum at both speeds and also in the nucleus accumbens at the higher speed. Locomotion had no effect on DA metabolism in the prefrontal cortex. With both shock intensities there was increased DA metabolism in the prefrontal cortex, whereas during the low shock intensity there was also an increased DA metabolism in the nucleus accumbens. At the high level of footshock, which evoked jumping and running escape behavior, there was also an increase in neostriatal DA metabolism. These data indicate that a non-lateralized forward locomotor task activates DA metabolism primarily in the less metabolically active hemisphere. Secondly, we found that specific subgroups of midbrain DA neurons can be selectively activated by specific behavioral tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号