首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sensory modalities of taste and touch, for the anterior tongue, are relegated to separate cranial nerves. The lingual branch of the trigeminal nerve mediates touch: the chorda tympani branch of the facial nerve mediates taste. The chorda tympani also contains efferent axons which originate in the superior salivatory nucleus. The central projections of these two nerves have been visualized in the hamster by anterograde labelling with horseradish peroxidase (HRP). Afferent fibers of the chorda tympani distribute to all rostral-caudal levels of the solitary nucleus. They synapse heavily in the dorsal half of the nucleus at its rostral extreme; synaptic endings are sparser and located laterally in caudal regions. These taste afferents travel caudally in the solitary tract and reach different levels by a series of collateral branches which extend medially in the the solitary nucleus, where they exhibit preterminal and terminal swellings. Taste afferent axons range in diameter from 0.2 micrometer to 1.5 micrometers. The thickest axons project exclusively to the rostral and intermediate subdivisions of the solitary nucleus; the find ones may distribute predominantly to the caudal subdivision. Afferent fibers of the lingual nerve terminate heavily in the dorsal one-third of the spinal nucleus of the trigeminal nerve and also as a dense patch in the lateral solitary nucleus at the midpoint between its rostral and caudal poles. This latter projection overlaps that of the chorda tympani. Thus the two sensory nerves which subserve taste and touch from coincident peripheral fields on the tongue converge centrally on the intermediate subdivision of the solitary nucleus. Efferent neurons of the superior salivatory nucleus were labelled retrogradely following application of HRP to the chorda tympani. These cells are located ipsilaterally in the medullary reticular formation ventral to the rostral pole of the solitary nucleus; their dendrites are oriented dorsoventrally. The efferent axons course dorsally, form a genu lateral to the facial somatomotor genu, and course ventrolaterally through the spinal nucleus of the trigeminal nerve to exit the brain ventral to the entering facial afferents.  相似文献   

2.
Afferent and efferent central connections of the lingual-tonsillar branch of the glossopharyngeal nerve (LT-IX) and the superior laryngeal nerve (SLN) in the lamb were traced with horseradish peroxidase (HRP) histochemistry. After entering the brainstem, most LT-IX and SLN afferent fibers turned caudally in the solitary tract (ST). Some afferent fibers of LT-IX terminated in the medial nucleus of the solitary tract slightly caudal to their level of entry. The remaining fibers projected to the dorsolateral, ventrolateral, and interstitial areas of the nucleus of the solitary tract (NST) at the level of the area postrema. Superior laryngeal nerve afferent fibers terminated extensively in the medial and ventral NST at levels near the rostral pole of the area postrema. Further caudal, near the level of obex, SLN afferent terminations were concentrated in the region ventrolateral to the ST and in the interstitial NST. The caudal extent of LT-IX and the rostral extent of SLN terminals projected to similar levels of the NST, but only a relatively small proportion of the total projections overlapped. Lingual-tonsillar and SLN fibers also coursed rostrally to terminate in the caudal pons within and medial to the dorsomedial principal sensory trigeminal nucleus. Other labeled afferent fibers traveled caudally in the dorsal spinal trigeminal tract to terminate in the dorsal two-thirds of the spinal trigeminal nucleus at the level of obex. Large numbers of labeled cells with fibers in the LT-IX or SLN were located in the ipsilateral rostral nucleus ambiguus and surrounding reticular formation. Fewer labeled cells were observed in the inferior salivatory nucleus following HRP application to either the LT-IX or SLN. The LT-IX and SLN projections to areas of the NST associated with upper airway functions, like swallowing and respiration, suggest an important role for these two nerves in the initiation and control of airway reflexes.  相似文献   

3.
The primary gustatory sensory nuclei in catfish are grossly divisible into a vagal lobe and a facial lobe. In this study, the reflex connections of each gustatory lobe were determined with horseradish peroxidase (HRP) tracing methods. In addition, in order to determine the loci and morphology of the other brainstem cranial nerve nuclei, HRP was applied to the trigeminal, facial, glossopharyngeal, or vagus nerve. The sensory fibers of the facial nerve terminate in the facial lobe. The facial lobe projects bilaterally to the posterior thalamic nucleus, superior secondary gustatory nucleus, and medial reticular formation of the rostral medulla. The facial lobe has reciprocal connections with the n. lobobulbaris, medial reticular formation of the rostral medulla, descending trigeminal nucleus, medial and lateral funicular nuclei, and the vagal lobe, ipsilaterally; and with the facial lobe contralaterally. In addition, the facial lobe receives inputs from the raphe nuclei, from a pretectal nucleus, and from perilemniscal neurons located immediately adjacent to the ascending gustatory lemniscal tract at the level of the trigeminal motor nucleus. The gustatory fibers of the vagus nerve terminate in the vagal lobe, while the general visceral sensory fibers terminate in a distinct general visceral nucleus. The vagal lobe projects ipsilaterally to the superior secondary gustatory nucleus, lateral reticular formation, and n. ambiguus; and bilaterally to the commissural nucleus of Cajal. The vagal lobe has reciprocal connections with the ipsilateral lobobulbar nucleus and facial lobe. In addition, the vagal lobe receives input from neurons of the medullary reticular formation and perilemniscal neurons of the pontine tegmentum. In summary, the facial gustatory system has connections consonant with its role as an exteroceptive system which works in correlation with trigeminal and spinal afferent systems. In contrast, the vagal gustatory system has connections (e.g., with the n. ambiguus) more appropriate to a system involved in control of swallowing. These differences in central connectivity mirror the reports on behavioral dissociation of the facial and vagal gustatory systems.  相似文献   

4.
The post eromedial ventral nucleus (VPM) of the cat is divided cytoar-chitectonically into the magnocellular (VPMmc), lateral parvocellular (VPMpcl), and medial parvocellular (VPMpcm) divisions. Cell bodies of neurons in the VPMpcm are small, while those in the VPMpcl are small to medium-sized. The VPMmc contains large neurons. Direct projections from the lower brain stem structures to each of the three divisions of the VPM were examined by the retrograde horseradish peroxidase (HRP) method. When HRP injection was done into the VPMmc, labeled neurons were mainly located conlralaterally in the ventral division of the principal sensory trigeminal nucleus (Vp), in the rostral part of the oral subnucleus in the spinal trigeminal nucleus (Vsp), and in the interpolar sub-nucleus of the Vsp; a few labeled neurons were also found contralaterally in lamina I of the caudal subnucleus of the Vsp. When HRP injection was restricted to the VPMpcl or VPMpcm, HRP-labeled neurons were mainly observed ipsilaterally, respectively, in the dorsal division of the Vp, or in the parabrachiaJ nucleus (PBN) regions dorsomedial and ventromedial to the brachium conjunctivum. After HRP injection into the parvocellular part of the VPM (VPMpc), labeled neurons were also seen contralaterally in the Vsp, but these were far less numerous than those seen after HRP injections into the VPMmc. Thus, each of the three divisions of the VPM receives main ascending afferent fibers from different brain stem structures; the VPMpcm, VPMpcl, or VPMmc receives afferent fibers, respectively, from the PEN ipsilaterally, from the dorsal division of Vp ipsilaterally, or from the ventral division of the Vp and the Vsp contralaterally.  相似文献   

5.
Previous studies have shown that sensory fibers of intermediate and vagal nerve origin are present in facial nerve branches to the mimetic muscles in the cat. In the present study the central course of these fibers has been examined by transganglionic transport of horseradish peroxidase (HRP). In some of these experiments the facial nerve proper was transected central to the site of HRP application. In this way, the central course of the vagal fibers could be studied separately. For comparison HRP-conjugated wheat germ agglutinin was injected into the geniculate ganglion, revealing the central course of the entire afferent component of the intermediate nerve. The results show that labeled sensory intermediate nerve fibers, at their level of entrance in the brainstem, form a tract at the dorsal margin of the spinal trigeminal tract (5T). While some fibers ascend from this level to terminate in the main sensory trigeminal nucleus, and a few fibers terminate in the rostral part of the solitary tract nucleus, the majority take a descending course. The main site of termination for these descending fibers is in the medial part of the C2 dorsal horn. Terminal labeling is also seen in the ventrolateral part of the cuneate nucleus (CUN) and in a small area of gray substance between CUN and trigeminal nucleus caudalis. After entering the brainstem some sensory vagal fibers project to the trigeminal nucleus interpolaris and to an interstitial nucleus within the 5T, but the larger part joins the descending tract of intermediate nerve fibers. These descending vagal fibers have a terminal distribution pattern similar to the intermediate nerve fibers.  相似文献   

6.
The existence of afferent fibers in the cat hypoglossal nerve was studied by transganglionic transport of horseradish peroxidase (HRP). Injections of wheat germ agglutinin-conjugated HRP (WGA-HRP) into the hypoglossal nerve resulted in some retrograde labeling of cell bodies within the superior ganglia of the ipsilateral glossopharyngeal and vagal nerves. A few labeled cell bodies were also present ipsilaterally within the inferior ganglion of the vagal nerve and the spinal ganglion of the C1 segment. Some of the labeled glossopharyngeal and vagal fibers reached the nucleus of the solitary tract by crossing the dorsal portion of the spinal trigeminal tract. Others distributed to the spinal trigeminal nucleus pars interpolaris and to the ventrolateral part of the medial cuneate nucleus by descending through the dorsal portion of the spinal trigeminal tract. In the spinal cord these descending fibers, intermingling with labeled dorsal root fibers, distributed to laminae I, IV-V and VII-VIII of the C1 and C2 segments. Additional HRP experiments revealed that the fibers in laminae VII-VIII originate mainly from dorsal root of the C1 segment.  相似文献   

7.
Central projections of the Arnold's nerve (the auricular branch of the vagus nerve; ABV) of the cat were examined by the transganglionic HRP method. After applying HRP to the central cut end of the ABV, HRP-labeled neuronal somata were seen in the superior ganglion of the vagus nerve. Main terminal labeling was seen ipsilaterally in the solitary nucleus, in the lateral portions of the ventral division of the principal sensory trigeminal nucleus, in the marginal regions of the interpolar subnucleus of the spinal trigeminal nucleus, in the marginal and magnocellular zones of the caudal subnucleus of the spinal trigeminal nucleus, in the ventrolateral portions of the cuneate nucleus, and in the dorsal horn of the C1–C3 cord segments. In the solitary nucleus, labeled terminals were seen in the interstitial, dorsal, dorsolateral and commissural subnuclei; some of these terminals may be connected monosynaptically with solitary nucleus neurons which send their axons to the somatomotor and/or visceromotor centers in the brainstem and spinal cord.  相似文献   

8.
The central connections of the afferents of the facial nerve have been studied by the Nauta-Gygax and Fink-Heimer techniques in the rat, cat, and the rhesus, cynomolgus, and squirrel monkeys. Descending components that entered the spinal V and solitary tract were found in all species studied. The spinal V fibers terminated in the upper cervical dorsal horn, making a minor contribution to the various subdivisions of the spinal V nucleus, and are probably concerned with pain; the solitary fibers terminated in the solitary nucleus, predominantly at levels rostral to the obex. A few degeneration fibers were seen in reticular formation medial to the spinal V tract in all species. An ascending component was found in both the cat and monkey. The identification of some fibers from cranial VII, which ascend and terminate on a prefacial, probably gustatory, portion of the solitary nucleus provides the first confirmation in nerve degeneration studies of Nageotte's results in man. Some ascending fibers also terminated on the most medial cells of the main trigeminal sensory nucleus, a connection not previously described, that probably mediates touch from the auricular region. Another previously unreported connection found only in the monkey was that of some fibers which terminated on a nucleus (paratrigeminal nucleus), dorsolateral to the spinal V tract; this nucleus may represent an oral extension of the lateral cuneate nucleus, and if this is so, the axons terminating in it would be a part of the afferent cerebellar system.  相似文献   

9.
The motor nuclei of the oculomotor, trochlear, and abducens nerves of the reptile Varanus exanthematicus and the neurons that subserve the sensory innervation of the extraocular muscles were identified and localized by retrograde and anterograde transport of horseradish peroxidase (HRP). The highly differentiated oculomotor nuclear complex, located dorsomedially in the tegmentum of the midbrain, consists of the accessory oculomotor nucleus and the dorsomedial, dorsolateral, intermediate, and ventral subnuclei. The accessory oculomotor nucleus projects ipsilaterally to the ciliary ganglion. The dorsomedial, dorsolateral, and intermediate subnuclei distribute their axons to the ipsilateral orbit, whereas the ventral subnucleus, which innervates the superior rectus muscle, has a bilateral, though predominantly contralateral projection. The trochlear nucleus, which rostrally overlaps the oculomotor nuclear complex, is for the greater part a comma-shaped cell group situated lateral, dorsal, and medial to the medial longitudinal fasciculus. Following HRP application to the trochlear nerve, almost all retrogradely labeled cells were found in the contralateral nucleus. The nuclear complex of the abducens nerve consists of the principal and accessory abducens nuclei, both of which project ipsilaterally. The principal abducens nucleus is located just beneath the fourth ventricle laterally adjacent to the medial longitudinal fasciculus and innervates the posterior rectus muscle. The accessory abducens nucleus has a ventrolateral position in the brainstem in close approximation to the ophthalmic fibers of the descending trigeminal tract. It innervates the retractor bulbi and bursalis muscles. The fibers arising in the accessory abducens muscles form a loop in or just beneath the principal abducens nucleus before they join the abducens nerve root. The afferent fibers conveying sensory information from the extraocular muscles course in the oculomotor nerve and have their perikarya in the ipsilateral trigeminal ganglion, almost exclusively in its ophthalmic portion.  相似文献   

10.
The efferent and afferent pathways of the chick tangential nucleus were studied by using horseradish peroxidase (HRP: Sigma type VI) to label nerve cell bodies and fibers. Depositions of HRP into the tangential nucleus, as well as into the second cervical level of the spinal cord, show that the axons of tangential neurons on leaving the nucleus form an anteriorly coursing tract that passes through the ventrolateral vestibular nucleus without branching and then to the contralateral medial longitudinal fasciculus (MLF). Within the MLF, the tangential axons course posteriorly, forming collaterals that innervate the abducens nucleus, and then proceed to the cervical spinal cord. This pathway was demonstrated for the axons of the two main neurons, the principal and elongate cells, in 1-day, 1-week, and 7-week-old animals. In addition, we propose the existence of an unidentified, ipsilateral pathway to the spinal cord for the tangential axons, since HRP injections into one side of the spinal cord resulted in the bilateral labeling of tangential neurons. No labeled cells were found in the tangential nucleus following HRP depositions into the uvula, flocculus, pontine reticular formation, nucleus piriformis, nucleus jumeaux, vestibulocerebellar nucleus, retrotangential nucleus, or the dorsomedial part of the medial vestibular nucleus. The tangential nucleus receives afferents from the colossal vestibular fibers (spoon endings), small collaterals of fine vestibular ampullary fibers, flocculus, and high cervical levels of the spinal cord. From our small sample, it appears that the spinal cord fibers form most of the afferent terminals in the tangential nucleus in 1-day, 1-week, and 7-week-old animals.  相似文献   

11.
Horseradish peroxidase (HRP) was injected intra-axonally into functionally identified primary afferent fibers within the rat spinal trigeminal tract in order to study the morphology of their central terminations. They were physiologically determined to be large, myelinated afferent fibers from periodontium or oral mucosa by means of electrical and mechanical stimulation of their receptive fields. Twenty-eight axons that innervated the periodontium of incisors and 21 axons that innervated the oral mucosa were stained for distances of 2-5 mm from the injection sites at the levels of the main sensory nucleus (Vms), spinal trigeminal nucleus and rostral cervical spinal cord. The collaterals of these primary afferent fibers formed terminal arbors in the medial or dorsomedial part of the Vms, and the oral and interpolar spinal trigeminal nuclei (Vo and Vi). In the caudal spinal trigeminal nucleus (Vc), the collaterals of one half of the periodontium afferent fibers terminated mainly in lamina V at the rostral and middle levels of Vc. On the other hand, the collaterals of the other half of the periodontium afferent fibers terminated mainly in lamina IV at the rostral level of Vc, and rostrally these terminal areas shifted to the most medial part of Vi. The collaterals of mucosa afferent fibers terminated in lamina V at the rostral level of Vc, and these terminal areas shifted gradually to laminae III and IV as the parent axons traveled more caudally. These shifts were staggered rostrocaudally according to the rostrocaudal locations of the receptive fields. The density of collaterals of periodontium afferent fibers in Vi was significantly larger than that of mucosa afferent fibers. The average size of the varicosities of periodontium afferent fibers was significantly larger than those of mucosa afferent fibers in Vo, Vi and Vc. The average number of varicosities belonging to single collaterals of slowly-adapting periodontium afferent fibers in Vi were significantly larger than those in Vo. In Vi, the average number of varicosities of single collaterals of slowly-adapting periodontium afferent fibers were significantly larger than those of rapidly-adapting periodontium afferent fibers.  相似文献   

12.
The central projections of the ethmoidal, glossopharyngeal, and superior laryngeal nerves were determined in the muskrat by use of the transganglionic transport of a mixture of horseradish peroxidase (HRP) and wheat germ agglutinin (WGA)-HRP. The ethmoidal nerve projected to discrete areas in all subdivisions of the ipsilateral trigeminal sensory complex. Reaction product was focused in ventromedial portions of the principal nucleus, subnucleus oralis, and subnucleus interpolaris. The subnucleus oralis also contained sparse reaction product in its dorsomedial part. Projections were dense to ventrolateral parts of laminae I and II of the rostral medullary dorsal horn, with sparser projections to lamina V. Label in laminae I and V extended into the cervical dorsal horn. A few labeled fibers were followed to the contralateral dorsal horn. The interstitial neuropil of the ventral paratrigeminal nucleus was densely labeled. Extratrigeminal primary afferent projections in ethmoidal nerve cases involved the K?lliker-Fuse nucleus and ventrolateral part of the parabrachial nucleus, the reticular formation surrounding the rostral ambiguous complex, and the dorsal reticular formation of the closed medulla. Retrograde labeling in the brain was observed in only the mesencephalic trigeminal nucleus in these cases. The cervical trunk of the glossopharyngeal and superior laryngeal nerves also projected to the trigeminal sensory complex, but almost exclusively to its caudal parts. These nerves terminated in the dorsal and ventral paratrigeminal nuclei as well as lamina I of the medullary and cervical dorsal horns. Lamina V received sparse projections. The glossopharyngeal and superior laryngeal nerves projected to the ipsilateral solitary complex at all levels extending from the caudal facial nucleus to the cervical spinal cord. At the level of the obex, these nerves projected densely to ipsilateral areas ventral and ventromedial to the solitary tract. Additional ipsilateral projections were observed along the dorsolateral border of the solitary complex. Near the obex and caudally, the commissural area was labeled bilaterally. Labeled fibers from the solitary tract projected into the caudal reticular formation bilaterally, especially when the cervical trunk of the glossopharyngeal nerve received tracer. Labeled fibers descending further in the solitary tract gradually shifted toward the base of the cervical dorsal horn. The labeled fibers left the solitary tract and entered the spinal trigeminal tract at these levels. Retrogradely labeled cells were observed in the ambiguous complex, especially rostrally, and in the rostral dorsal vagal nucleus after application of HRP and WGA-HRP to either the glossopharyngeal or superior laryngeal nerves. In glossopharyngeal nerve cases, retrogradely labeled neurons also were seen in the inferior salivatory nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
T. Tanaka  T. Asahara 《Brain research》1981,212(1):188-193
Synaptic potentials in facial motoneurons of cats were intracellularly recorded on stimulation of the vagal nerve, superior laryngeal nerve, solitary tract nucleus and spinal trigeminal tract nucleus. A possible disynaptic excitation was elicited in the facial motoneurons by stimulation of the vagal nerves and superior laryngeal nerves on both sides. Activation of the neurons in the solitary tract nucleus and/or trigeminal tract nucleus induced monosynaptic excitatory postsynaptic potentials (EPSPs) in the facial motoneurons.  相似文献   

14.
The projections of primary afferents from rostral cervical segments to the brainstem and the spinal cord of the rat were investigated by using anterograde and transganglionic transport techniques. Projections from whole spinal ganglia were compared with those from single nerves carrying only exteroceptive or proprioceptive fibers. Injections of horseradish peroxidase (HRP) or wheat germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) were performed into dorsal root ganglia C2, C3, and C4. Free HRP was applied to the cut dorsal rami C2 and C3, greater occipital nerve, sternomastoid nerve, and to the C1/2 anastomosis, which contains afferents from suboccipital muscles and the atlanto-occipital joint. WGA-HRP injections into ganglia C7 and L5 were performed for comparative purposes. Injections of WGA-HRP or free HRP into rostral cervical dorsal root ganglia and HRP application to C2 and C3 dorsal rami produced labeling in dorsal and ventral horns at the level of entrance, the central cervical nucleus, and in external and main cuneate nuclei. From axons ascending to pontine and descending to upper thoracic spinal levels, medial collaterals were distributed to medial and descending vestibular, perihypoglossal and solitary nuclei, and the intermediate zone and Clarke's nucleus dorsalis in the spinal cord. Lateral collaterals projected mainly to the trigeminal subnucleus interpolaris and to lateral spinal laminae IV and V. Results from HRP application to single peripheral nerves indicated that medial collaterals were almost exclusively proprioceptive, whereas lateral collaterals were largely exteroceptive with a contribution from suboccipital proprioceptive fibers. WGA-HRP injections into dorsal root ganglia C7 and L5 failed to produce significant labeling within vestibular and periphypoglossal nuclei, although they demonstrated classical projection sites within the brainstem and spinal cord. The consistent collateralisation pattern of rostral cervical afferents along their whole rostrocaudal course enables them to contact a variety of precerebellar, vestibulospinal, and preoculomotor neurons. These connections reflect the well-known significance of proprioceptive neck afferents for the control of posture, head position, and eye movements.  相似文献   

15.
The connections of the amygdala with the trigeminal motor nucleus were studied by light and electron microscopy. Horseradish peroxidase (HRP) experiments showed that the pontine reticular formation, ventromedial to the spinal trigeminal nucleus at the level rostral to the genu of the facial nerve, receives fibers from the central nucleus of the amygdala ipsilaterally and sends fibers to the trigeminal motor nucleus contralaterally. Electron microscopic observations were carried out on the pontine reticular formation after electrolytic lesions in the central nucleus of the amygdala and HRP injections into the contralateral trigeminal motor nucleus were made on the same animal. These experiments using the combined degeneration and HRP technique clearly demonstrated that degenerating amygdaloid fibers made synaptic contacts with retrogradely labeled neurons.  相似文献   

16.
The neuronal connections in the central gustatory system of the crucian carp were examined by means of degeneration and HRP methods. Cell morphology in the primary gustatory lobes was studied in Golgi-impregnated material. Medium-sized neurons of the facial lobe emit axons which project to the secondary gustatory nucleus. The nucleus intermedius facialis of Herrick ('05) projects bilaterally. Large neurons send axons through the spinal trigeminal tract to terminate in the spinal trigeminal nucleus and in the medial funicular nucleus. In the vagal lobe, second-order neurons for the ascending projections are located in the superficial part of the sensory zone. These neurons project exclusively to the ipsilateral secondary gustatory nucleus. Neurons located in the deeper part of the sensory zone send axons to the motor zone and to the brainstem reticular formation to form short reflex arcs. The glossopharyngeal lobe has similar neuronal connections to the vagal sensory zone. Both facial and vagal lobes receive afferent projections from the following central structures: nucleus posterioris thalami, nucleus diffusus lobi inferioris, optic tectum, motor nucleus of the trigeminal nerve, medullary reticular formation, and the gray matter of the upper spinal cord. The facial lobe has an additional afferent from the mesencephalic reticular formation. The major sources to the medullary gustatory lobes are the nucleus posterioris thalami and nucleus diffusus lobi inferioris. Each type of neuron classified by morphology and location in the facial, glossopharyngeal, and vagal lobes was correlated with its particular destination. Topographic projections were demonstrated in the secondary and tertiary gustatory centers.  相似文献   

17.
The objective of this study is to define the development of all components in the chick embryonic trigeminal primary sensory-motor complex, from their first appearance through the formation of central and peripheral axonal projections up to stage 34 (8 days of incubation). This was accomplished by two labeling procedures: application of the monoclonal antibody HNK-1, which binds to the precursors of all these components except the placode-derived neurons, and application of HRP to axons cut immediately distal to the trigeminal ganglion. Single immunopositive motor neuron precursors are present at stage 12. These accumulate in the transient medial motor column, whose neurons initiate axon outgrowth by stage 13–14, concomitant with the onset of translocation of their somata to form the definitive trigeminal lateral motor column (LMC). Intiially these translocating somata accumulate on the medial margin of the LMC. Beginning on incubation day 5, axons growing from newly formed motor neurons pass beside the lateral margin of the LMC, and the nuclei of these cells subsequently follow this pathway. These events follow a rostral-to-caudal sequence, and this phase of motor nucleus formation is complete by day 8. The lateral translocation of some caudally located nuclei is arrested beginning on day 5. This cessation, which proceeds rostrally, demarcates neurons that form the dorsal motor nucleus of the trigeminal complex. Sensory neurite formation is intiated in ophthalmic placode-derived cells at stage 14.5, one stage later by maxillomandibular neurons, and from mesencephalic V cells at stage 15. Neural crest cells do not initiate axon formation until at least day 4 to 5. Following application of HRP distal to the condensing ganglion at stage 16, labeled ophthalmic nerve projections appear in contact with the wall of the hindbrain centrally and overlying the optic vesicle peripherally. Fibers forming the descending tract elongate rapidly, reaching the level of the VIIth nerve root (200 m?m caudal to the trigeminal root) by stage 18 and the cervical cord by stage 22. Labeled terminal arborizations of descending trigeminal afferents are first visible at stage 22 and are evident along the entire descending and proximal ascending tracts by stage 27. Later-developing descending axons grow in close association with existing trigeminal fibers, though a few growth cones are consistently evident superficial to the other fibers. No projections different from those reported in adult birds are seen, nor are there any contralateral afferent projections. Peripheral axons from neurons in the mesencephalic trigeminal nucleus emerge from the trigeminal ganglion beginning at stage 21. These cells are labeled only when tracer is applied to the mandibular nerve.  相似文献   

18.
The sensory projections and the motor complex of the trigeminal nerve of the reptile Varanus exanthematicus were studied with the methods of anterograde degeneration and anterograde and retrograde axonal transport. The primary afferent fibers diverge in the brainstem into a short ascending and a long descending tract. The former distributes its fibers to the principal sensory trigeminal nucleus, where nerves V1, V2, and V3 are represented along a lateromedial axis. The fibers of the descending tract enter the nucleus of this tract and the reticular formation. Both in the tract and its nucleus, nerves V1, V2 and V3 occupy successively more dorsal positions. A small contingent of nerve V1 fibers course to the accessory abducens nucleus. The descending tract extends caudally into the first and second cervical segments of the spinal cord. The trigeminal motor complex consists of dorsal, ventral, and dorsomedial nuclei. The m. adductor mandibulae externus (the main jaw closer) is represented in the dorsal nucleus, predominantly in its rostral part. The muscles innervated by nerve V3 are represented in the ventral nucleus, mainly in its caudal part. All three divisions of the trigeminal nerve contain peripheral branches of the mesencephalic trigeminal system. Collaterals of the central branches of this system were traced to the ventral motor and the principal sensory trigeminal nuclei.  相似文献   

19.
The central projections of primary trigeminal afferents in Pacific hagfish (Eptatretus stouti) were examined by transganglionic transport of horseradish peroxidase (HRP) placed in the principal nerves of the trigeminal complex. Central to the trigeminal ganglia, labeled afferents in the ophthalmic, external and dental nerves coursed caudally in the descending trigeminal tract of the ipsilateral medulla. The trigeminal tract occupies an extensive portion of the dorsolateral medulla and is subdivided into a consistent pattern of longitudinal fascicles surrounded by narrow cellular bands. Primary trigeminal afferents were arranged somatotopically in the fascicles. Large-diameter afferents of the ophthalmic, external and dental nerves segregated into separate medial fascicles extending from the dorsomedial to the ventrolateral descending trigeminal tract. Fine-fibered afferents of the ophthalmic and external nerves formed separate dorsolateral fascicles. Additional dental afferents spread through these lateral fascicles. Labeled trigeminal fibers reached the dorsolateral funiculus of the rostral spinal cord. In addition, HRP injections of the descending trigeminal tract revealed a largely crossed projection to the mesencephalic tectum. Tectal injections of HRP retrogradely labeled neurons in the contralateral sensory trigeminal tract, confirming the existence of a tract nucleus comprised in part of neurons located in the bands of cells bordering the primary afferent fascicles.  相似文献   

20.
The hypothalamus is closely involved in a wide variety of behavioral, autonomic, visceral, and endocrine functions. To find out which descending pathways are involved in these functions, we investigated them by horseradish peroxidase (HRP) and autoradiographic tracing techniques. HRP injections at various levels of the spinal cord resulted in a nearly uniform distribution of HRP-labeled neurons in most areas of the hypothalamus except for the anterior part. After HRP injections in the raphe magnus (NRM) and adjoining tegmentum the distribution of labeled neurons was again uniform, but many were found in the anterior hypothalamus as well. Injections of 3H-leucine in the hypothalamus demonstrated that: The anterior hypothalamic area sent many fibers through the medial forebrain bundle (MFB) to terminate in the ventral tegmental area of Tsai (VTA), the rostral raphe nuclei, the nucleus Edinger-Westphal, the dorsal part of the substantia nigra, the periaqueductal gray (PAG), and the interpeduncular nuclei. Further caudally a lateral fiber stream (mainly derived from the lateral parts of the anterior hypothalamic area) distributed fibers to the parabrachial nuclei, nucleus subcoeruleus, locus coeruleus, the micturition-coordinating region, the caudal brainstem lateral tegmentum, and the solitary and dorsal vagal nucleus. Furthermore, a medial fiber stream (mainly derived from the medial parts of the anterior hypothalamic area) distributed fibers to the superior central and dorsal raphe nucleus and to the NRM, nucleus raphe pallidus (NRP), and adjoining tegmentum. The medial and posterior hypothalamic area including the paraventricular hypothalamic nucleus (PVN) sent fibers to approximately the same mesencephalic structures as the anterior hypothalamic area. Further caudally two different fiber bundles were observed. A medial stream distributed labeled fibers to the NRM, rostral NRP, the upper thoracic intermediolateral cell group, and spinal lamina X. A second and well-defined fiber stream, probably derived from the PVN, distributed many fibers to specific parts of the lateral tegmental field, to the solitary and dorsal vagal nuclei, and, in the spinal cord, to lamina I and X, to the thoracolumbar and sacral intermediolateral cell column, and to the nucleus of Onuf. The lateral hypothalamic area sent many labeled fibers to the lateral part of the brainstem and many terminated in the caudal brainstem lateral tegmentum, including the parabrachial nuclei, locus coeruleus, nucleus subcoeruleus, and the solitary and dorsal vagal nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号