首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The present study used quantitative volume estimates of the hippocampus based on structural magnetic resonance imaging (MRI) to predict memory performance of individuals with epilepsy of temporal lobe origin (TLE). Twenty individuals with TLE completed standardized neuropsychological tests and a quality of life inventory, and participated in a brain MRI protocol designed to obtain high-resolution images of the hippocampus. The combined volume of the left and right hippocampi was found to be the best predictor of objective verbal memory performance. This finding is consistent with the functional adequacy model of hippocampal function. In contrast, the asymmetry between right and left hippocampal volume was the best predictor of subjective ratings of cognitive functioning, which is consistent with the functional reserve model. The collective and complementary functions of the left and right hippocampi merit further exploration in prospective studies of memory function and TLE.  相似文献   

3.
Purpose:   Temporal lobe epilepsy (TLE) is often associated with Ammon's horn sclerosis (AHS) characterized by hippocampal cell death and dentate gyrus granule cell dispersion (GCD). Granule cells survive AHS and have been proposed to be hyperexcitable in TLE. Here we studied whether the passive excitability of granule cells correlates with the severity of AHS.
Methods:   We analyzed the passive membrane properties of identified granule cells using patch-clamp recordings in acute tissue slices obtained from TLE surgery. Independent Wyler grading and GCD measurements were used to assess the severity of AHS.
Results:   The input resistances and membrane time constants of granule cells were reduced in high-grade versus low-grade AHS samples and negatively correlated with the degree of GCD. Granule cells possessed large Ba2+-sensitive, inwardly rectifying K+ conductances.
Discussion:   The increased leak conductance, likely mediated by K+ channels, does not argue for an increased excitability of granule cells but rather points to a neuroprotective mechanism in the sclerotic focus in TLE.  相似文献   

4.
After pilocarpine-induced status epilepticus, many granule cells born into the postseizure environment migrate aberrantly into the dentate hilus. Hilar ectopic granule cells (HEGCs) are hyperexcitable and may therefore increase circuit excitability. This study determined the distribution of their axons and dendrites. HEGCs and normotopic granule cells were filled with biocytin during whole-cell patch clamp recording in hippocampal slices from pilocarpine-treated rats. The apical dendrite of 86% of the biocytin-labeled HEGCs extended to the outer edge of the dentate molecular layer. The total length and branching of HEGC apical dendrites that penetrated the molecular layer were significantly reduced compared with apical dendrites of normotopic granule cells. HEGCs were much more likely to have a hilar basal dendrite than normotopic granule cells. They were about as likely as normotopic granule cells to project to CA3 pyramidal cells within the slice, but were much more likely to send at least one recurrent mossy fiber into the molecular layer. HEGCs with burst capability had less well-branched apical dendrites than nonbursting HEGCs, their dendrites were more likely to be confined to the hilus, and some exhibited dendritic features similar to those of immature granule cells. HEGCs thus have many paths along which to receive synchronized activity from normotopic granule cells and to transmit their own hyperactivity to both normotopic granule cells and CA3 pyramidal cells. They may therefore contribute to the highly interconnected granule cell hubs that have been proposed as crucial to development of a hyperexcitable, potentially seizure-prone circuit.  相似文献   

5.
6.
Purpose: Temporal lobe epilepsy is often accompanied by neuron loss and rewiring in the hippocampus. We hypothesized that the interaction of subnetworks of the entorhinal–hippocampal loop between epileptic events should show significant signatures of these pathologic changes. Methods: We combined simultaneous recording of local field potentials in entorhinal cortex (EC) and dentate gyrus (DG) in freely behaving kainate‐injected mice with histologic analyses and computational modeling. Key Findings: In healthy mice, theta band activity was synchronized between EC and DG. In contrast, in epileptic mice, theta activity in the EC was delayed with respect to the DG. A computational neural mass model suggests that hippocampal cell loss imbalances the coupling of subnetworks, introducing the shift. Significance: We show that pathologic dynamics in epilepsy encompass ongoing activity in the entorhinal‐hippocampal loop beyond acute epileptiform activity. This predominantly affects theta band activity, which links this shift in entorhinal‐hippocampal interaction to behavioral aspects in epilepsy.  相似文献   

7.
Temporal lobe seizures are frequently associated with a characteristic pattern of hippocampal pathology (hippocampal sclerosis), as well as pathology in other temporal lobe structures. Despite more than a century of study, the relationship between pathology and epileptogenesis remains unclear. Endfolium sclerosis, which is characterized by the loss of dentate hilar neurons that are presumed to govern dentate granule cell excitability, is evident whenever hippocampal sclerosis exists and is the only temporal lobe pathology in some patients. Because prolonged seizures or head trauma produce endfolium sclerosis and granule cell hyperexictability in experimental animals, hilar neuron loss may be the common pathological denominator and primary network defect underlying development of a hippocampal seizure “focus.” Physiological studies suggest that vulnerable hilar mossy cells normally excite neurons that mediate granule cell inhibition. Recent anatomical studies indicate that the axons of mossy cells project longitudinally, out of the lamellar plane in which their cell bodies lie. If mossy cells in one lamella excite inhibitory neurons in surrounding lamellae, neocortical excitation of one segment of the granule cell layer may produce lateral inhibition and limit neocortical excitation to the targeted lamella. In patients who have had status epilepticus, prolonged febrile seizures, head trauma, or encephalitis, loss of dentate mossy cells may deafferent inhibitory neurons, render them “dormant,” and thereby disinhibit an encephalitis, loss of dentate mossy cells may deafferent inhibitory neurons, render them “dormant,” and thereby disinhibit an enlarged expanse of the granule cell layer. The selective loss of neurons that normally govern lateral inhibition in the dentate gyrus may cause functional delamination of the granule cell layer and result in synchronous, multilamellar discharges in response to cortical stimuli. Repetitive seizures may ultimately produce the full pattern of hippocampal and mesial temporal sclerosis by destroying cells within the seizure circuit that were not injured irreversibly by the initial insult. Thus, hippocampal pathology may be both the cause and effect of seizures that originate in the temporal lobe.  相似文献   

8.
PURPOSE: Patients with temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS) often suffer from material-specific memory impairments. The purpose of this study was to use functional magnetic resonance imaging (fMRI) to study the organization of specific memory functions in these patients. METHODS: We report 14 patients with unilateral TLE and HS, and 10 controls, performing an fMRI memory paradigm of word, picture, and face encoding. RESULTS: Compared with controls, patients with left TLE demonstrated less left MTL and greater right MTL activation and patients with right TLE demonstrated less right MTL and greater left MTL activation. Correlations between fMRI activation and memory performance revealed greater activation in the damaged left hippocampus to be correlated with better verbal memory performance in left TLE patients and greater right hippocampal activation to be correlated with better nonverbal memory in right TLE patients. Conversely, greater fMRI activation in the contralateral hippocampus correlated with worse memory performance. CONCLUSIONS: Our findings suggest that memory function in unilateral TLE is better when it is sustained by activation within the damaged hippocampus and that reorganization to the undamaged MTL is an inefficient process, incapable of preserving memory function.  相似文献   

9.
10.
Alterations in synaptic inhibition are associated with epileptiform activity in several acute animal models; however, it is not clear if there are changes in inhibition in chronically epileptic tissue. We have used intracellular recordings from granule cells of patients with temporal lobe epilepsy to determine whether synaptic inhibition is compromised. Two groups of patients with medial temporal lobe epilepsy were used, those with medial temporal lobe sclerosis (MTLE), and those with extrahippocampal masses (MaTLE) where the cell loss and synaptic reorganization that characterize MTLE are not seen. Although the level of tonic inhibition at the somata was not significantly different in the two patient groups, there was a reduction in the conductance of polysynaptic perforant path–evoked fast and slow inhibitory postsynaptic potentials (IPSPs) (53% and 66%, respectively). We found that there was a comparable decrease in the monosynaptic IPSP conductances examined in the presence of glutamatergic antagonists as that seen for the polysynaptically evoked IPSPs. These data suggest that the decrease in inhibition seen in normal artificial cerebrospinal fluid in MTLE granule cells cannot be solely explained by a decrease in excitatory input onto inhibitory interneurons and may reflect changes at the interneuron–granule cells synapse or in the number of specific inhibitory interneurons. Ann Neurol 1999;45:92–99  相似文献   

11.
In human mesial temporal lobe epilepsy (mTLE), seizure occurrence peaks in the late afternoon and early evening. This temporal binding of seizures has been replicated in animal models of mTLE following electrically-induced status epilepticus (SE). We hypothesized that in chronic epilepsy, alterations of circadian excitatory and inhibitory functions of the dentate gyrus (DG), which is believed to regulate the generation of limbic seizures, pathophysiologically contribute to the temporal binding of ictogenesis. We performed electrophysiological single and paired pulse measurements hourly over 24h in the DG of epileptic rats (n=8) 8 weeks after electrically induced SE. Results were compared to individual data obtained before induction of SE and to those of control animals (n=3). Pre and post SE data were analyzed in two distinct phases of the day, i.e. a high-seizure phase between 2p.m. and 10p.m. and a low-seizure phase between 10p.m. and 2p.m. In chronic epileptic animals, latency of evoked potentials was significantly reduced in the high-seizure phase (p=0.027) but not in the low-seizure phase. Compared to baseline values, paired pulse inhibition was significantly increased during the low-seizure phase (interpulse interval (IPI) 25ms, p=0.003; IPI 30ms; p<0.001) but not in the high-seizure phase. Similarly, when compared to controls, inhibition at IPI 20ms was diminished only in the high-seizure phase (p=0.027). Thus, in chronic epileptic animals, DG excitability is increased in the afternoon and early evening possibly contributing to the time of day-dependency of spontaneous seizures in this model system of mTLE. Alterations of circadian DG excitability in epileptic animals may be influenced by changes in hypothalamus-regulated superordinate functions such as excretion of endocrine hormones but further studies are needed.  相似文献   

12.
Calbindin (CB) is a calcium-binding protein that is present in principal cells as well as in interneurons of the hippocampal formation of various species including humans. Studies with transgenic mice revealed that CB is essential for long-term potentiation and synaptic plasticity which are the cellular basis of learning and memory. In a previous study we have shown that CB expression in granule cells of the dentate gyrus correlates with the functional maturation of the hippocampal formation in the rat.  相似文献   

13.
PURPOSE: Temporal lobe epilepsy patients are well known to present deficits on explicit verbal memory procedures (e.g., recall, recognition). The integrity of implicit memory procedures in these patients is not established. Previous studies in this area used implicit memory measures contaminated by the effects of explicit memory. METHODS: We examined the integrity of verbal implicit and explicit memory in left temporal lobe epilepsy (LTLE) patients and hypothesized that a clear dissociation in performance would be found with a relative preservation of implicit memory. TLE patients (n = 15) and age- and education-matched healthy normal patients (n = 15) were shown a 40-word study list, followed by a test phase requiring completion of word stems based on the study words or new/unseen words. Experimental conditions involved instructions to provide either the old (study) words or novel/nonlist words when completing the stem. Measures of automaticity and recollection provided uncontaminated indices of implicit and explicit memory, respectively. RESULTS: The data showed a significant difference (p < 0.001) between the patients (Recollection, 0.12; SD, 0.18) and controls (0.50, SD, 0.15) on the measure of explicit memory. In contrast, the patients (Automaticity, 0.51; SD, 0.11) and controls (0.45, SD, 0.18) performed similarly on the implicit memory measure, with patient scores clearly at normative levels based on other Process Dissociation Procedure data. CONCLUSIONS: The data demonstrate the integrity of implicit memory in LTLE patients. Finding a dissociation between the two forms of verbal memory in LTLE patients provides evidence that they rely on different neuroanatomic systems.  相似文献   

14.
Dendritic morphology was studied in human hippocampal dentate granule cells (DGCs) by intracellularly-injecting biocytin in slice preparations that were obtained from temporal lobe epilepsy patients who underwent a surgical treatment for medically-intractable seizures. These DGCs had a fan-shaped dendritic domain of 54.1°±4.1 S.E.M. with 13.8±1.1 branch points and an estimated total dendritic length of 11535.6 μm±3045.4. Dendritic spines were counted, and spine density was calculated to be 0.25 spines/μm±0.16 S.E.M.. However, when the cells were categorized into two groups based on the presence or absence of the aberrant mossy fiber collaterals, the number of dendritic branches was significantly lower and spine density was significantly higher in DGCs that had aberrant collaterals. In particular, in the proximal dendrite, the spine density was 5 times higher in DGCs whose own mossy fibers were reorganized sending aberrant collaterals to this dendritic region (0.750 spines/μm±0.203 S.E.M.: P<0.01) than the DGCs without such collaterals (0.082 spines/μm±0.021 S.E.M.). These results suggest that the axonal reorganization may have an effect on the morphology of DGC dendrites directly or indirectly in such a way that dendritic structure and spines could be protected from seizure-induced excitotoxic cell damage.  相似文献   

15.
Similar to rats, systemic pilocarpine injection causes status epilepticus (SE) and the eventual development of spontaneous seizures and mossy fiber sprouting in C57BL/6 and CD1 mice, but the physiological correlates of these events have not been identified in mice. Population responses in granule cells of the dentate gyrus were examined in transverse slices of the ventral hippocampus from pilocarpine-treated and untreated mice. In Mg(2+)-free bathing medium containing bicuculline, conditions designed to increase excitability in the slices, electrical stimulation of the hilus resulted in a single population spike in granule cells from control mice and pilocarpine-treated mice that did not experience SE. In SE survivors, similar stimulation resulted in a population spike followed, at a variable latency, by negative DC shifts and repetitive afterdischarges of 3-60 s duration, which were blocked by ionotropic glutamate receptor antagonists. Focal glutamate photostimulation of the granule cell layer at sites distant from the recording pipette resulted in population responses of 1-30 s duration in slices from SE survivors but not other groups. These data support the hypothesis that SE-induced mossy fiber sprouting and synaptic reorganization are relevant characteristics of seizure development in these murine strains, resembling rat models of human temporal lobe epilepsy.  相似文献   

16.
M. Paradisi, M. Fernández, G. Del Vecchio, G. Lizzo, G. Marucci, M. Giulioni, E. Pozzati, T. Antonelli, G. Lanzoni, G. P. Bagnara, L. Giardino and L. Calzà (2010) Neuropathology and Applied Neurobiology 36, 535–550
Ex vivo study of dentate gyrus neurogenesis in human pharmacoresistant temporal lobe epilepsy Aims: Neurogenesis in adult humans occurs in at least two areas of the brain, the subventricular zone of the telencephalon and the subgranular layer of the dentate gyrus in the hippocampal formation. We studied dentate gyrus subgranular layer neurogenesis in patients subjected to tailored antero‐mesial temporal resection including amygdalohippocampectomy due to pharmacoresistant temporal lobe epilepsy (TLE) using the in vitro neurosphere assay. Methods: Sixteen patients were enrolled in the study; mesial temporal sclerosis (MTS) was present in eight patients. Neurogenesis was investigated by ex vivo neurosphere expansion in the presence of mitogens (epidermal growth factor + basic fibroblast growth factor) and spontaneous differentiation after mitogen withdrawal. Growth factor synthesis was investigated by qRT‐PCR in neurospheres. Results: We demonstrate that in vitro proliferation of cells derived from dentate gyrus of TLE patients is dependent on disease duration. Moreover, the presence of MTS impairs proliferation. As long as in vitro proliferation occurs, neurogenesis is maintained, and cells expressing a mature neurone phenotype (TuJ1, MAP2, GAD) are spontaneously formed after mitogen withdrawal. Finally, formed neurospheres express mRNAs encoding for growth (vascular endothelial growth factor) as well as neurotrophic factors (brain‐derived neurotrophic factor, ciliary neurotrophic factor, glial‐derived neurotrophic factor, nerve growth factor). Conclusion: We demonstrated that residual neurogenesis in the subgranular layer of the dentate gyrus in TLE is dependent on diseases duration and absent in MTS.  相似文献   

17.
C R Houser 《Brain research》1990,535(2):195-204
The distribution of granule cells in the dentate gyrus of the hippocampal formation was studied in control autopsy and temporal lobe epilepsy (TLE) specimens. In control tissue, the granule cell somata were closely approximated and formed a narrow lamina with a distinct, regular border with the molecular layer. In 11 of 15 TLE specimens, the granule cell somata were dispersed and formed a wider than normal granule cell layer. The granule cell somata extended into the molecular layer to varying extents, creating an irregular boundary between the lamina. The dispersed granule cells were frequently aligned in columns, and many of these neurons displayed elongated bipolar forms. The extent of granule cell dispersion appeared to be related to the amount of cell loss in the polymorph layer of the dentate gyrus. Granule cell dispersion was not consistently associated with granule cell loss although 5 of the 11 specimens with granule cell dispersion also showed moderate to marked granule cell loss. The most common features in the histories of the TLE cases with granule cell dispersion were severe febrile seizures or seizures associated with meningitis or encephalitis during the first 4 years of life. The dispersion of the granule cells suggests that there has been some alteration in the patterns of cell migration in a subpopulation of cases with severe TLE. The resultant ectopic positions of the granule cells could lead to changes in both the afferent and efferent connections of these neurons and, thus, contribute to the altered circuitry of the hippocampal formation in TLE.  相似文献   

18.
19.

Objective

The relationship between hippocampal histopathological abnormalities, epileptogenesis and neurogenesis remains rather unclear.

Methods

Tissue samples including the subgranular zone of dentate gyrus (DG) were freshly collected for tissue culture for neurospheres generation in 16 patients who underwent surgery for drug-resistant temporal lobe epilepsy. Remaining tissues were histologically examined to assess the presence of mesial temporal sclerosis (MTS) and focal cortical dysplasia.

Results

MTS was detected in 8 cases. Neurospheres were formed in 10/16 cases. Only three out of these 10 cases exhibited MTS; on the contrary 5/6 cases lacking neurosphere proliferation presented MTS. There was a significant correlation between presence of MTS and absence of proliferation (p = 0.0389). We also observed a correlation between history of febrile seizures (FS) and presence of MTS (p = 0.0004) and among the 6 cases lacking neurosphere proliferation, 4 cases (66.6%) had experienced prolonged FS. Among “proliferating” cases the percentage of granular cells pathology (GCP) was lower (20% vs 50%) compared to “non proliferating” cases.

Conclusion

A decreased potential to generate neurosphere from the SGZ is related to MTS and to alterations of dentate gyrus granule cells, especially in MTS type 1b and GCP type 1. These histological findings may have different prognostic implications, regarding seizure and neuropsychological outcome, compared to patients with other epileptogenic lesions (such as FCD, glioneuronal tumours, vascular lesions).  相似文献   

20.
Hippocampal depth electrodes are often used to localize seizure onset in patients who may have temporal lobe epilepsy (TLE). A number of features of the spontaneous seizures and of their ictal onset patterns can be analyzed from these recordings. We compared a number of the typical electroencephalographic (EEG) changes at seizure onset with several cellular parameters recorded in dentate granule cells from the same 14 patients diagnosed with medial temporal sclerosis (MTS) to examine the pathophysiological correlates of this spontaneous EEG activity in this form of TLE. The intracellularly recorded parameters include the propensity to fire evoked epileptiform bursts, the absence of evoked inhibitory potentials, the presence of polysynaptic excitatory postsynaptic potentials, and the presence of spontaneous excitatory activity. We noted several correlations between the EEG data and the intracellular recordings. The absence of synaptically evoked bursts was correlated with the presence of low-voltage fast activity at seizure onset. In addition, the loss of inhibitory postsynaptic potentials was correlated with the presence of periodic spiking pre-ictally. Several other correlations were also noted. These data indicate that EEG findings may be predictive of anatomical and cellular pathological changes and provide clues to the physiological mechanisms involved in this form of epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号