首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new triple-barrelled ion-sensitive microelectrode was used to investigate the importance of bicarbonate for the regulation of intracellular Na+ and pH (Nai and pHi, respectively) of neuropile glial cells in the central nervous system of the leech Hirudo medicinalis. Addition of CO2/HCO 3 produced an increase of the Nai activity and an intracellular alkalinization, indicating bicarbonate accumulation in the glial cells. Changes of external pH (from 7.4 to 7.0 and 7.8) produced large and rapid shifts of pHi and Nai and of the membrane potential in the presence, but not in the absence, of bicarbonate. Thus, acid/base transport and Na+ movements across the glial membrane into and out of the cells were accelerated severalfold in CO2/HCO 3 -buffered saline as compared to a CO2/HCO 3 -free, HEPES-buffered saline. The results suggest that the electrogenic, reversible, cotransport of Na+ and HCO 3 in the glial cell membrane [3, 9] can produce significant changes in intraglial pH and Na activity, and can carry a significant fraction of the total Na+ flux across the cell membrane.  相似文献   

2.
Conventional ion-sensitive microelectrodes cannot be used in small cells, since they create too large an electrical leak at the site of penetration. Membrane potentials can be measured in such cells with the whole-cell configuration of the patch-clamp technique, after obtaining a high-resistance seal (giga-seal) to the cell membrane. Achieving such seals with patch-type microelectrodes silanized and filled with ion-sensitive cocktails has proved very difficult. Since ion-sensitive microelectrodes offer advantages over fluorescent techniques, we have developed a method which enables whole-cell recordings of membrane potential and intracellular pH to be achieved with silanized microelectrodes. We have been able to obtain high-resistance seals with silanized tips by dipping them in mineral oil. We describe the method for both single-barrel and theta-glass double-barreled microelectrodes. Double-barreled microelectrodes can be used to measure and control membrane potential in the whole-cell patch-clamp configuration while also measuring ionic activities with the adjacent barrel. We present illustrative experiments showing intracellular pH recordings in snail neurones and rat dorsal root ganglion cells, and we suggest the method can also be applied to other liquid-sensor ion-sensitive microelectrodes.  相似文献   

3.
 We have evaluated the pyrene-based ratiometric fluorescent dye, 8-hydroxypyrene-1,3,6-trisulphonic acid (HPTS), by using it in conjunction with glass pH-sensitive microelectrodes to measure intracellular pH (pHi) in voltage-clamped snail neurones. Intracellular acidification with propionic acid, and alkalinization following the activation of H+ channels allowed the calibration of the dye to be compared with that of the pH microelectrode over the pH range 6.50–7.50. HPTS calibrated in vitro and glass pH-sensitive microelectrodes produced similar absolute resting pHi values, 7.16±0.05 (n=10) and 7.17±0.06 (n=9) respectively in nominally CO2/HCO3 -free saline. At both extremes of the pH range there were small discrepancies. At acidic pHi, 6.87±0.09 (n=5), the intracellular HPTS measurement differed by –0.08±0.03 pH units from the pH-sensitive microelectrode measurement. At alkaline pHi,7.32±0.10 (n=5), HPTS measurements produced pH values that differed by +0.07±0.04 pH units from those of the pH-sensitive microelectrode. Some of the discrepancy could be accounted for by the slow response of the recessed-tip pH-sensitive microelectrode (time constant 77±15 s, n=3). Further experiments showed that HPTS, used at an intracellular concentration of 200 μM to 2 mM, did not block activity-dependent pHi changes. The intracellular HPTS concentration was calculated by measurement of intracellular chloride during a series of HPTS-KCl injections. Comparison of HPTS with 2′,7′-bis(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF), at the same concentration, showed that HPTS produces a larger change in ratio over the pH range 6.00–8.00. Received: 19 February 1998 / Received after revision and accepted: 22 April 1998  相似文献   

4.
Summary The 2,3-DPG content of human red blood cells can be elevated in vitro to a maximum of 24 Moles/g by incubating the cells in media containing inosine, pyruvate and inorganic phosphate (=IPP media). The rate of accumulation depends on the extracellular phosphate level. The concentrations of organic phosphate fractions other than 2,3-DPG also increase during the initial phase of incubation in IPP media, but rediminish thereafter. As a consequence of these changes, the total concentration of acid-soluble organic phosphates in the red cells rises from 14 to 55 Moles P/g red cells. This increase of non-penetrating anions produces a shifting of the Donnan ratio H e +/H i + to lower values and thereby diminishes progressively the intracellular pH of the red cells during incubation in IPP media. The extent of these changes can be calculated on the basis of equations derived by van Slyke.The Donnan induced intracellular acidification causes a gradual impairment of red cell metabolism as the 2,3-DPG concentration increases, thus imposing a selflimitation to the accumulation of 2,3-DPG in the presence of IPP and leading to an inhibition of glucose consumption in IPP-pretreated cells.The findings are discussed with respect to their metabolic and biophysical basis and in view of possible implications for the regulation of red cell metabolism and function.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

5.
We have investigated the effects of acidic stimuli upon [Ca2+]i in isolated carotid body type I cells from the neonatal rat using indo-1 (AM-loaded). Under normocapnic, non-hypoxic conditions (23 mM HCO3 , 5% CO2 in air, pHo=7.4), the mean [Ca2+]i for single cells was 102±5.0 nM (SEM, n=55) with 58% of cells showing sporadic [Ca2+]i fluctuations. A hypercapnic acidosis (increase in CO2 to 10%–20% at constant HCO3 , pHo 7.15–6.85), an isohydric hypercapnia (increase in CO2 to 10% at constant pHo=7.4) and an isocapnic acidosis (pHo=7.0, constant CO2) all increased [Ca2+]i in single cells and cell clusters. The averaged [Ca2+]i response to both hypercapnic acidosis and isohydric hypercapnia displayed a rapid rise followed by a secondary decline. The averaged [Ca2+]i response to isocapnic acidosis displayed a slower rise and little secondary decline. The rise of [Ca2+]i in response to all the above stimuli can be attributed to no single factor other than to a fall of pHi. The hypercapnia-induced rise of [Ca2+]i was almost completely abolished in Ca2+-free solution, suggesting a role for Ca2+ influx in triggering and/or sustaining the [Ca2+]i response. These results are consistent with a role for type I cell [Ca2+]i in mediating pH/PCO2 chemoreception.  相似文献   

6.
The present study was performed to test the influence of sodium coupled transport of neutral substrates on intracellular pH and sodium activity in proximal tubules of the amphibian kidney. To this end, kidneys of rana esculenta have been isolated and perfused both through the portal vein (peritubular capillaries) and the aorta (luminal perfusate). The potential difference across the peritubular membrane of proximal tubule cells has been redorced with conventional (PDpt) as well as with sodium (PDna) and hydrogen ion (PDh) selective microelectrodes continuously before during and after the luminal application of 10 mmol/l phenylalanine, replacing 10 mmol/l raffinose. PDb and PDna allowed the calculation of intracellular pH (pHi) and sodium activity (Nai), respectively. In the absence of phenylalanine in the tubule lumen, PDpt approximates –57.5±2.3 mV (n=27), pHi 7.73±0.04 (n=14, extracellular pH 7.77), and Nai 13.3±0.9 mmol/l (n=13, extracellular sodium activity 74 mmol/l). Within 1 min the luminal application of phenylalanine leads to a depolarisation of PDpt by +32±2 mV, as well as an increase of pHi by 0.24±0.04 and of Nai by 5.2±1.0 mmol/l. At 8 min from luminal application of phenylalanine, Nai plateaus 5±1 mmol/l above control value, PDpt increases again to a value of +12±2 mV below and pHi decreases to a value 0.04±0.07 above their respective control values. All changes are fully reversed after removal of phenylalanine from the tubule lumen. The steady state of intracellular sodium activity might be explained by an extrusion of sodium via the sodium/potassium-ATPase, which approaches the entry across the luminal membrane, the intracellular alkalinisation is probably due to the reduced exit of bicarbonate across the peritubular cell membrane following the depolarisation of PDpt.  相似文献   

7.
We have investigated the role of the electrogenic hydrogen ion pump in the regulation of intracellular sodium ion activity (a Na i ) and intracellular pH (pHi) in frog skin epithelial cells using double-barreled ion sensitive microelectrodes. WhenRana esculenta skin is mounted in an Ussing chamber and bathed in 1 mM Na2SO4 buffered to pH 7.34 with imidazole on the apical side and in normal Ringer on the serosal side, the apical addition of the carbonic anhydrase inhibitor, ethoxzolamide (10–4M) blocks net H+ ion excretion and Na absorption, producing a depolarization of 25–30 mV of the apical membrane, potential (mc). We demonstrate the these changes are accompanied by a fall ina Na i from 6.2±0.5 mmol/l to 3.4±0.6 mmol/l and an increase in pHi from 7.20±0.03 to 7.38±0.08 (n=12 skins). Voltage clamping mc to its control value in the presence of ethoxzolamide restoreda Na i but the pHi remained alkaline. Furthermore, the fall ina Na i produced by ethoxzolamide could be mimicked by voltage clamping mc towards the value of the Nernst potential for Na at the apical membrane. These results indicate that the maintenance of the cellular Na+ transport pool is dependent on a favourable electrical driving force and counter-current generated by an electrogenic H+ pump at the apical membrane.Addition of amiloride (10–5 mol/l) or substitution of external Na+ by Mg2+ or K+ caused a hyperpolarization of mc and a fall ina Na i . These effects were accompanied by an inhibition of H+ excretion and a fall in pHi of 0.14 ±0.08 units (n=6 skins). However, when the effect, of Na+ transport inhibition on mc was prevented by imposing a voltage clamp no effects of amiloride on H+ excretion or pHi were observed. Moreover, the effect of amiloride on pHi could be reproduced in control skins by voltage clamping mc to –100 mV. The metabolic inhibitors vanadate (1 mmol/l) and di-cyclo hexyl carbodiimide (5×10–5 mol/l) inhibited H+ excretion and decreased pHi from 7.28±0.08 to 7.02±0.06 and from 7.30±0.06 to 7.12±0.05 (n=6 skins), respectively.These results indicate that an apical membrane H+ ATPase plays a role in regulating pHi and the mechanism is sensitive to membrane potential.  相似文献   

8.
We report a method for the concurrent measurement of intracellular [Na+] ([Na+ ]i) and pH (pHi) in cells co-loaded with SBFI, a Na+-sensitive fluorophore, and either carboxy SNARF-1 or SNARF-5F, H+-sensitive fluorophores. With the optical filters specified, fluorescence emissions from SBFI and either SNARF derivative were sufficiently distinct to allow the accurate measurement of [Na+]i and pHi in rat hippocampal neurons. Neither the Na+ sensitivity of SBFI nor the pH sensitivities of carboxy SNARF-1 or SNARF-5F was affected by the presence of a SNARF derivative or SBFI, respectively. In addition, the calibration parameters obtained in neurons single-loaded with SBFI, carboxy SNARF-1 or SNARF-5F were not significantly influenced by the presence of a second fluorophore. In contrast to the established weak sensitivity of SBFI for protons, both SNARF derivatives appeared essentially insensitive to changes in [Na+]i. The utility of the technique was demonstrated in neurons co-loaded with SBFI and SNARF-5F, which was found to have a lower p Ka in situ than carboxy SNARF-1. There were no significant differences in the changes in [Na+]i and pHi observed in response either to intracellular acid loads imposed by the NH4+ prepulse technique or to transient periods of anoxia in neurons single-loaded with SBFI or SNARF-5F or co-loaded with both probes. The findings support the feasibility of using SBFI in conjunction with either carboxy SNARF-1 or SNARF-5F to concurrently and accurately measure [Na+]i and pHi.  相似文献   

9.
 To investigate the Mg2+ regulation in neuropile glial (NG) cells and pressure (P) neurones of the leech Hirudo medicinalis the intracellular free Mg2+ ([Mg2+]i) and Na+ ([Na+]i) concentrations, as well as the membrane potential (E m), were measured using Mg2+- and Na+-selective microelectrodes. The mean steady-state values of [Mg2+]i were found to be 0.91 mM (mean E m=–63.6 mV) in NG cells and 0.20 mM (mean E m=–40.6 mV) in P neurones with a [Na+]i of 6.92 mM (mean E m=–61.6 mV) and 7.76 mM (mean E m=–38.5 mV), respectively. When the extracellular Mg2+ concentration ([Mg2+]o) was elevated, [Mg2+]i in P neurones increased within 5–20 min whereas in NG cells a [Mg2+]i increase occurred only after long-term exposure (6 h). After [Mg2+]o was reduced back to 1 mM, a reduction of the extracellular Na+ concentration ([Na+]o) decreased the inwardly directed Na+ gradient and reduced the rate of Mg2+ extrusion considerably in both NG cells and P neurones. In P neurones Mg2+ extrusion was reduced to 15.4% in Na+-free solutions and to 6.0% in the presence of 2 mM amiloride. Mg2+ extrusion from NG cells was reduced to 6.2% in Na+-free solutions. The results suggest that the major [Mg2+]i-regulating mechanism in both cell types is Na+/ Mg2+ antiport. In P neurones a second, Na+-independent Mg2+ extrusion system may exist. Received: 11 August 1998 / Received after revision: 14 October 1998 / Accepted: 15 October 1998  相似文献   

10.
The dependence of intracellular pH (pHi) and transepithelial H+ secretion on the cell membrane potential (V m) was tested applying pH-sensitive and conventional microelectrodes in giant cells fused from single epithelial cells of the diluting segment and in intact tubules of the frog kidney. An increase of extracellular K+ concentration from 3 to 15 mmol/l decreasedV m from –49±4 to –29±1 mV while pHi increased from 7.44±0.04 to 7.61±0.06. Addition of 1 mmol/l Ba2+ depolarizedV m from –45±3 to –32±2 mV, paralleled by an increase of pHi from 7.46±0.04 to 7.58±0.03. Application of 0.05 mmol/l furosemide hyperpolarizedV m from –48±3 to –53±3 mV and decreased pHi from 7.47±0.05 to 7.42±0.05. In the intact diluting segment of the isolated-perfused frog kidney an increase of peritubular K+ concentration from 3 to 15 mmol/l increased the luminal pH from 7.23±0.08 to 7.41±0.08. Addition of Ba2+ to the peritubular perfusate also increased luminal pH from 7.35±0.07 to 7.46±0.07. Addition of furosemide decreased luminal pH from 7.32±0.03 to 7.24±0.05. We conclude: cell depolarization reduces the driving force for the rheogenic HCO 3 exit step across the basolateral cell membrane. HCO 3 accumulates in the cytoplasm and pHi increases. An alkaline pHi inactivates the luminal Na+/H+ exchanger. This diminishes transepithelial H+ secretion. Cell hyperpolarization leads to the opposite phenomenon. Thus, pHi serves as signal transducer between cell voltage and Na+/H+ exchange.  相似文献   

11.
 To investigate the role of Cl in the regulation of the basolateral transporters of salivary acinar cells, we have measured cell volume and intracellular pH (pHi) in perfused rat mandibular glands using proton NMR spectroscopy and BCECF fluorometry respectively. When perfusate Cl was replaced by glucuronate, isethionate, methylsulphate, nitrate or thiocyanate, cell volume decreased slowly by about 15% over a 10-min period. Replacement with bromide, which substitutes for Cl on the Na+-K+-2Cl cotransporter, caused only a small (4%) reduction in cell volume. Replacement of Cl by glucuronate, isethionate or methylsulphate evoked a biphasic increase in pHi consisting of a rapid initial increase followed by a slower secondary rise whose time course was similar to that of cell shrinkage. As judged by the effects of HCO3 omission, 100 μM 4,4’-diisothiocyanatostilbene-2,2’-disulphonic acid (DIDS) and 1 mM amiloride, the initial rise in pHi was due to Cl/HCO3 exchange while the secondary rise resulted from activation of Na+/H+ exchange. Although replacement of Cl by nitrate or thiocyanate also caused cell shrinkage, these substituting anions were less effective in activating the exchanger. Therefore, while the upregulation of the exchanger following Cl replacement may be due in part to cell shrinkage, there is also evidence for the involvement of an anion-sensitive regulatory mechanism. This would be consistent with the hypothesis that both changes in cell volume and in intracellular Cl concentration contribute to the up-regulation of the exchanger following muscarinic stimulation. Received: 12 November 1996 / Received after revision: 11 August 1997 / Accepted: 18 August 1997  相似文献   

12.
The intracellular pH (pHi) of the colonic tumour cell line HT29 cl.19A was studied by microspectrofluorometry using the pH-sensitive dye BCECF. Single cells within a confluent monolayer, grown in a polarized manner on permeable supports, were examined. An amiloride-sensitive Na+/H+ exchange and a stilbene-insensitive Cl /HCO3 exchange mechanism have been identified in the basolateral membrane. Removal of Na+ from the basolateral solution caused a decrease of pHi by 0.50±0.09 unit (n=4). Amiloride or Na+-free solution at the apical side had no effect on pHi. Cl removal at the basolateral side led to an increase of pHi by 0.20±0.03 unit (n=4) whereas apical removal had no influence on pHi. This effect was independent of Na+ and was insensitive to 0.2 mM 4,4-diisothiocyanatodihydrostilbene-2, 2-disulphonic acid. A basolateral Cl/ HCO3 exchanger is the most likely explanation for this observation. The Na+/H+ exchange mechanism in the basolateral membrane is an acid extruder, whereas the C1/HCO3 exchanger is an acid loader. Both of these mechanisms are important for the maintenance of intracellular pH in HT29 cl.19A cells.  相似文献   

13.
In skeletal muscle, intracellular pH is more alkaline than would be predicted if H+ were passively distributed across the sarcolemma. Therefore, the passive influx of H+ must be counteracted by transport processes mediating H+ efflux. In resting skeletal muscle, these transport processes are Na+/H+ exchange and bicarbonate-dependent systems. During periods of high energy demand, skeletal muscle produces large amounts of lactic acid. The internal accumulation of lactic acid reduces pH, which may cause fatigue. It is therefore important for muscle cells to be able to regulate pH during and after activity. A part of the accumulated lactate and H+ is metabolized, but a considerable fraction is released from the cell. The efflux of H+ and lactate might be mediated by the lactate/proton co-transport system found in almost all cell types in the body. The role of lactate/proton co-transport in pH regulation has been studied both with intact cells and with sarcolemmal vesicles. In intact cells, inhibitors of lactate/proton transport have been shown to accelerate the development of fatigue, and to delay the recovery after activity. A comparison with vesicles has demonstrated that, at low pH, and with a high lactate concentration, the capacity for H+ removal is higher via the lactate/proton co-transport system than via the sum of the Na+/H+ exchange and bicarbonate-dependent exchange systems. Therefore, the carrier-mediated lactate/proton efflux is of major importance for pH regulation in connection with muscle activity. The lactate/proton transport system has been shown to undergo long-term changes depending on the level of physical activity. The capacity of the system was enhanced after intense training or chronic stimulation, and reduced after denervation. It is concluded that the lactate/proton transport system is of major importance for pH regulation in skeletal muscle, and that changes in the amount of transporters are one of the many adaptations to physical activity.  相似文献   

14.
The effects of intracellular pH and calcium on the activity of the leech mechanosensitive cation channels have been studied. These channels exhibited two activity modes denoted as spike-like (SL) and multiconductance (MC). In the absence of mechanical stimulation, acidification of the intracellular side of membrane patches from 7.2 to 6.2 reversibly increased the mean channel open time as well as the opening frequency in the SL mode. Channels in MC mode were activated by a pHi reduction from 7.2 to 6.2, but were inhibited at pHi 5.5. Unlike MC mode, SL mode was strongly activated by intracellular Ca2+. Fura-2 imaging experiments showed that intracellular calcium was induced to increase by hypotonic cell swelling. The major component of this response did not require extracellular calcium. A component of the swelling-induced calcium response was sensitive to blockers of stretch-sensitive cation channels. The results indicate that the two activity modes of mechanosensitive channels of leech neurons respond differently to changes of intracellular pH and calcium. The sensitivity of the channel to micromolar concentrations of internal free calcium, along with its permeability to this ion, is consistent with a role in the amplification of mechanically induced Ca2+ signals in leech neurons.  相似文献   

15.
 The purpose of this study was to examine how intracellular pH (pHi) regulation and histamine release are affected by HCO3 in rat peritoneal mast cells. The pHi was measured using the pH-sensitive dye 2′, 7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). We observed a pHi of 6.88±0.012 (n=24) in resting mast cells exposed to a HEPES buffer (pH 7.4), but a sustained drop of 0.21 pH units to 6.67±0.015 (n=23) when we exposed the mast cells to a HEPES/HCO3 buffer equilibrated at all time with 5% CO2 (pH 7.4). This fall in pHi is inhibited by the carbonic anhydrase inhibitor dichlorphenamide and is Na+-independent, indicating the involvement of Na+-independent Cl/HCO3 exchange activity. Furthermore removal of external Clin the presence but not in the absence of HCO3 reversed the Cl/HCO3 exchange and induced an alkaline load. The recovery from this alkaline load was dependent on external Clbut independent of Na+. Both the alkalinization and the recovery were inhibited by the anion transport inhibitor 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS). In addition, 36Cluptake measurements confirm the presence of a Cl/HCO3 exchanger. Histamine release stimulated by antigen and compound 48/80 was substantially reduced in the presence of HEPES/ HCO3 buffer (pHo 7.4, pHi 6.66). Histamine release was increased, however, when pHi was clamped to 6.66 in HCO3 -free media (pHo 6.9). We conclude that: (1) Na+-independent Cl/HCO3 exchange determines steady-state pHi in rat peritoneal mast cells; and (2) the reduction in histamine release observed in the presence of HCO3 is not due to its effect on pHi per se, but rather on other changes in ion transport. Received: 29 January 1998 / Received after revision and accepted: 3 April 1998  相似文献   

16.
To examine the intracellular pH (pHi) regulation in primary cultures of rabbit distal convoluted tubules (DCTb) we used the pH-sensitive dye 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF/AM) and a video-microscopy technique. DCTb segments were microdissected from rabbit kidney cortex and cultured in a hormonally defined medium. The culture epithelia were grown on semi-transparent permeable supports. Before pHi measurement, DCTb primary cultures were maintained for 48–96 h in growth-factor-free medium to obtain quiescent cells. We had previously shown that two mechanisms are involved in the regulation of intracellular pH: a basolateral Na+/H+ exchanger and an apical Cl/HCO 3 exchanger [1]. The pHi of DCTb cells was significantly decreased by the addition of 60 nM human calcitonin (from 7.30±0.04 to 7.08±0.04). This response to calcitonin was dose-dependent and mimicked by both forskolin and permeant cyclic AMP derivatives. An initial acidification (of 0.25 pH unit in 7–8 min) was observed after the addition of basolateral amiloride (1 mM). The persistence of the effect induced by human calcitonin in these conditions, suggests that the Na+/H+ exchanger is not involved in the response. However, the acidification response was blocked in both the absence of chloride at the apical side and by the apical addition of 0.1 mM 4,4-diisothiocyanostilbene-2,2-disulphonic acid (DIDS). These experiments suggest that the target for the human calcitonin effect on pHi is the Cl/HCO 3 exchanger. This study confirms the importance of this transporter in pHi regulation within the physiological pHi range and the influence of calcitonin in the regulation of DCTb cell function.  相似文献   

17.
1. Intracellular pH (pH(i)), Cl(-) and Na(+) levels were recorded in snail neurones using ion-sensitive micro-electrodes, and the mechanism of the pH(i) recovery from internal acidification investigated.2. Reducing the external HCO(3) (-) concentration greatly inhibited the rate of pH(i) recovery from HCl injection.3. Reducing external Cl(-) did not inhibit pH(i) recovery, but reducing internal Cl(-), by exposing the cell to sulphate Ringer, inhibited pH(i) recovery from CO(2) application.4. During pH(i) recovery from CO(2) application the internal Cl(-) concentration decreased. The measured fall in internal Cl(-) concentration averaged about 25% of the calculated increase in internal HCO(3) (-).5. Removal of external Na inhibited the pH(i) recovery from either CO(2) application or HCl injection.6. During the pH(i) recovery from acidification there was an increase in the internal Na(+) concentration ([Na(+)](i)). The increase was larger than that occurring when the Na pump was inhibited by K-free Ringer.7. The increase in [Na(+)](i) that occurred during pH(i) recovery from an injection of HCl was about half of that produced by a similar injection of NaCl.8. The inhibitory effects of Na-free Ringer and of the anion exchange inhibitor SITS on pH(i) recovery after HCl injection were not additive.9. It is concluded that the pH(i) regulating system involves tightly linked Cl(-)-HCO(3) (-) and Na(+)-H(+) exchange, with Na entry down its concentration gradient probably providing the energy to drive the movement inwards of HCO(3) (-) and the movement outward of Cl(-) and H(+) ions.  相似文献   

18.
The dependence of intracellular free calcium ([Ca2+]i) and tension on membrane potential and intracellular pH (pHi) was studied in single isolated fibres of the crayfish claw-opener muscle using ion-selective microelectrodes. Tension (T) was quantified as a percentage of the maximum force, or as force per cross-sectional area (N/cm2). In resting fibres, pHi had a mean value of 7.06. Contractions evoked by an increase extracellular potassium ([K+]0) produced a fall in pHi of 0.01–0.05 units. The lowest measured levels of resting [Ca2+]i corresponded to a pCai (= –log [Ca2+]i) of 6.8. Intracellular Ca2+ transients recorded during K+-induced contractions did not reveal any distinct threshold for force development. Both the resting [Ca2+]i and resting tension were decreased by an intracellular alkalosis and increased by an acidosis. The sensitivity of resting tension to a change in pHi (quantified as –dT/ dpHi) showed a progressive increase during a fall in pHi within the range examined (pHi 6.2–7.5). The pHi/[Ca2+]i and pHi/tension relationships were monotonic throughout the multiphasic pHi change caused by NH4Cl. A fall of 0.5–0.6 units in pHi did not produce a detectable shift in the pCai/tension relationship at low levels of force development. The results indicate that resting [Ca2+]i is slightly higher than the level required for contractile activation. They also show that the dependence of tension on pHi in crayfish muscle fibres is attributable to a direct H+ and Ca2+ interaction at the level of Ca2+ sequestration and/or transport. Finally, the results suggest that in situ, the effect of pH on the Ca2+ sensitivity of the myofibrillar system is not as large as could be expected on the basis of previous work on skinned crustacean muscle fibres.  相似文献   

19.
Kinetic properties of the Na+-H+ antiport in the acinar cells of the isolated, superfused mouse lacrimal gland were studied by measuring intracellular pH (pHi) and Na+ activity (aNai) with the aid of double-barreled H+- and Na+-selective microelectrodes, respectively. Bicarbonate-free solutions were used throughout. Under untreated control conditions, pHi was 7.12±0.01 and aNai was 6.7±0.6 mmol/l. The cells were acid-loaded by exposure to an NH 4 + solution followed by an Na+-free N-methyl-d-glucamine (NMDG+) solution. Intracellular Na+ and H+ concentrations were manipulated by changing the duration of exposure to the above solutions. Subsequent addition of the standard Na+ solution rapidly increased pHi. This Na+-induced increase in pHi was almost completely inhibited by 0.5 mmol/l amiloride and was associated with a rapid, amiloride-sensitive increase in aNai. The rate of pHi recovery induced by the standard Na+ solution increased in a saturable manner as pHi decreased, and was negligible at pHi 7.2–7.3, indicating an inactivation of the Na+-H+ antiport. The apparent K m for intracellular H+ concentration was 105 nmol/l (pH 6.98). The rate of acid extrusion from the acid-loaded cells increased proportionally to the increase in extracellular pH. Depletion of aNai to less than 1 mmol/l by prolonged exposure to NMDG+ solution significantly increased the rate of Na+-dependent acid extrusion. The rate of acid extrusion increased as the extracellular Na+ concentration increased following Michaelis-Menten kinetics (V max was 0.55 pH/min and the apparent K m was 75 mmol/l at pHi 6.88). The results clearly showed that the Na+-H+ antiport activity is dependent on the chemical potential gradient of both Na+ and H+ ions across the basolateral membrane, and that the antiporter is asymmetric with respect to the substrate affinity of the transport site. The data agree with the current model of activation and inactivation of the antiporter by an intracellular site through changes in the intracellular Na+ and H+ concentrations.  相似文献   

20.
The aim of this study was to investigate the myotoxic effects of bupivacaine, ropivacaine, and levobupivacaine which were applied intramuscularly to rat skeletal muscle. Forty Wistar-Albino rats were divided into four groups. In the study, .5% bupivacaine (Group B), .5% ropivacaine (Group R), .5% levobupivacaine (Group L), or .9% normal saline (Group SF) was applied intramuscularly to the right gastrocnemius muscle of rats. The rats in each group were sacrificed on the second day after injection. Sections of muscle samples were stained with hematoxylin–eosin for light microscopic investigation and prepared for the evaluation of ultrastructural changes in the subcellular level with transmission electron microscopy. All three local anesthetic agents caused qualitatively similar skeletal muscle damage. The most observed muscle damage was in Group B, muscle damage of Group R was less than that of Group B, and the least damage was seen in Group L quantitatively. Electron microscopic examination of each group that caused cellular damage was qualitatively similar. The most subcellular damage was observed in the group receiving bupivacaine, less was seen in the ropivacaine group, and the least was observed in the levobupivacaine group. The results indicated that bupivacaine caused more myotoxic damage than the other two agents in the skeletal muscle of rats and that levobupivacaine caused less myotoxic damage than both bupivacaine and ropivacaine at the cell and tissue levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号