首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA replication machinery stalls at damaged sites on DNA. Postreplicaton repair (PRR) is a system to avoid cell death in such circumstances of deadlock. In Saccharomyces cerevisiae, the Rad6/Rad18 heterodimer plays pivotal roles in PRR. It promotes translesion synthesis via the monoubiquitylation of the DNA sliding clamp, PCNA. Ubc13/Mms2/Rad5 can extend the ubiquitin chain from this monoubiquitylated PCNA with a non-canonical lysine 63-linked ubiquitin-chain, resulting in an error-free mode of bypass. In this study, we identified and characterized the RAD5 homolog in Neurospora crassa, which we named mus-41. A mus-41 mutant was sensitive to several DNA-damaging agents including UV and MMS. Genetic analyses indicated that uvs-2 (RAD18 homolog) was epistatic to mus-41, suggesting a role for mus-41 in postreplication repair. Additionally, it was shown that mus-41 has a role independent from TLS gene upr-1 (REV3 homolog) and works in the error-free pathway, indicating that the function of mus-41 as a RAD5 homolog is also conserved in N. crassa. However, mus-41 is not essential for the ubiquitylation of PCNA that is detected in the wild-type background, suggesting that there is another ubiquitin ligase catalyzing ubiquitylation of PCNA in response to UV in N. crassa.  相似文献   

2.
Using a gel electrophoresis DNA band-shift assay, we have identified 2 DNA-binding protein complexes in wild-type Drosophila embryonic cells which have high affinity for UV-irradiated, double-stranded DNA. Screening of Drosophila mutants deficient in DNA repair led to the identification of 5 mutants which lacked either one of the 2 protein complexes. Four excision repair-deficient mutants (mus-201, phr, mus-308 and mus-205) lacked one protein complex (Factor 2). The other protein complex (Factor 1) was not detectable in the post-replication repair-deficient mutant mus-104. These findings might suggest the possible involvement of these gene products in lesion recognition and repair of UV-induced photoproducts in DNA.  相似文献   

3.
We cloned a DNA repair gene, mus-8, of Neurospora crassa and sequenced the genomic DNA and cDNA. Nucleotide-sequence analysis indicated that the mus-8 gene contains an open reading frame (ORF) of 456 bp, interrupted by three small introns. The deduced amino-acid sequence showed that the mus-8 gene encodes a 17 kDa protein which has 77.5% and 83.3% identity to the Rad6 protein of Saccharomyces cerevisiae and the rhp6+ protein of Schizosaccharomyces pombe, respectively. The Rad6 protein is a ubiquitin-conjugating enzyme (E2) and is required for DNA repair, mutagenesis, and sporulation in yeast. Introduction of the mus-8 gene into a S. cerevisiae rad6 mutant resulted in significant recovery of DNA repair functions, especially UV-mutagenesis, and also sporulation, both of which are defective in the rad6 mutant. It is therefore postulated that mus-8 of Neurospora has a function very similar to that demonstrated for RAD6 of S. cerevisiae. Received: 27 February / 23 April 1996  相似文献   

4.
An allele called mus-19 was identified by screening temperature-sensitive and mutagen-sensitive mutants of Neurospora crassa. The mus-19 gene was genetically mapped to a region near the end of the right arm of linkage group I, where a RecQ homologue called qde-3 had been physically mapped in the Neurospora database. Complementation tests between the mus-19 mutant and the qde-3 RIP mutant showed that mus-19 and qde-3 were the same gene. The qde-3 genes of both mutants were cloned and sequenced; and the results showed that they have mutation(s) in their qde-3 genes. The original mus-19 and qde-3 RIP mutants are defective in quelling, as reported for other qde-3 mutants. The mutants show high sensitivity to methyl methanesulfonate, ethyl methanesulfonate, N-methyl-N-nitro-N-nitrosoguanidine, tert-butyl hydroperoxide, 4-nitroquinoline-1-oxide, hydroxyurea and histidine. Epistasis analysis indicated that the qde-3 gene belongs both to the uvs-6 recombination repair pathway and the uvs-2 postreplication repair pathway. The qde-3 mutation has no effect on the integration of a plasmid carrying the mtr gene by homologous recombination. In homozygous crosses, the qde-3 mutant is defective in ascospore production.Communicated by U. Kück  相似文献   

5.
In mammalian nucleotide excision repair (NER), the ERCC1 protein is known to act as a complex with ERCC4 (XPF) protein, which is necessary for stability of ERCC1, and this complex introduces an incision on the 5′ side of a damaged site in DNA. ERCC1 also binds to XPA protein to make a large protein complex at the site of DNA damage. Since no human disease associated with ERCC1 has been identified, Chinese hamster ovary (CHO) cell lines defective in ERCC1 are a unique source for characterization of ERCC1 deficiency in mammalian cells. We have isolated the full length ERCC1 cDNA from a wild-type CHO cell line and analyzed mutations in two CHO cell lines which fall into complementation group 1 of UV-sensitive rodent cell lines. One cell line, 43-3B, has a missense mutation at the 98th residue (V98E). The in vitro translated mutant protein of 43-3B is unable to bind to XPA protein. Although the mutant protein is able to bind to XPF protein in vitro, the mutant protein is highly unstable in vivo. These defects presumably cause the NER deficiency of this cell line. Another mutant, UV-4, has an insertion mutation in the middle of the coding sequence, resulting in a truncated protein due to a nonsense codon arising from the frameshift. Thus, these two mutant cell lines are deficient in the function of the ERCC1 gene for NER.  相似文献   

6.
7.
Nucleotide excision repair (NER) is an essential DNA repair pathway devoted to the removal of bulky lesions such as photoproducts induced by the ultraviolet (UV) component of solar radiation. Deficiencies in NER typically result in a group of heterogeneous distinct disorders ranging from the mild UV sensitive syndrome to the cancer-prone xeroderma pigmentosum and the neurodevelopmental/progeroid conditions trichothiodystrophy, Cockayne syndrome and cerebro-oculo-facio-skeletal-syndrome. A complicated genetic scenario underlines these disorders with the same gene linked to different clinical entities as well as different genes associated with the same disease. Overlap syndromes with combined hallmark features of different NER disorders can occur and sporadic presentations showing extra features of the hematological disorder Fanconi Anemia or neurological manifestations mimicking Hungtinton disease-like syndromes have been described. Here, we discuss the multiple functions of the five major pleiotropic NER genes (ERCC3/XPB, ERCC2/XPD, ERCC5/XPG, ERCC1 and ERCC4/XPF) and their relevance in phenotypic complexity. We provide an update of mutational spectra and examine genotype-phenotype relationships. Finally, the molecular defects that could explain the puzzling overlap syndromes are discussed.  相似文献   

8.
9.
Deletion mutants for the yeast transketolase gene TKL1 were constructed by gene replacement. Transketolase activity was below the level of detection in mutant crude extracts. Transketolase protein could be detected as a single protein band of the expected size by Western-blot analysis in wild-type strains but not in the delection mutant. Deletion of TKL1 led to a reduced but distinct growth in synthetic medium without an aromatic amino-acid supplement. We also isolated double and triple mutants for transketolase (tkl1), transaldolase (tal1), and glucose 6-phosphate dehydrogenase (zwf1) by crossing the different mutants. A tal1 tkl1 double mutant grew nearly like wild-type in rich medium. Only the tkl1 zwf1 double and the tal1 tkl1 zwf1 triple mutant grew more slowly than the wild-type in rich medium. This growth defect could be partly alleviated by the addition of xylulose but not ribose. The triple mutant still grew slowly on a synthetic mineral salts medium without a supplement of aromatic amino acids. This suggests the existence of an alternative but limited source of pentose phosphates and erythrose 4-phosphate in the tkl1 zwf1 double mutants. Hybridization with low stringency showed the existence of a sequence with homology to transketolase, possibly a second gene.  相似文献   

10.
11.
To study the influence of nucleotide excision repair (NER) on mutagenesis in vivo, ERCC1+/−, XP−/−, and wild-type (ERCC1+/+ and XP+/+, respectively) λlacZ-transgenic mice were treated i.p. with N-hydroxy-2-acetylaminofluorene (N-OH-AAF) and lacZ mutant frequencies were determined in liver. No significant effect of the treatment on the mutant frequency in wild-type or ERCC1-heterozygous mice was observed. The liver mutant frequency appeared to be significantly increased in treated XP−/− mice only. To distinguish N-OH-AAF-induced from spontaneous mutations, lacZ mutants derived from treated XP−/− mice were subjected to DNA-sequence analysis and the spectrum obtained was compared to that established for lacZ mutants in liver of PBS-treated λlacZ-transgenic mice of the parentstrain 40.6. The N-OH-AAF-induced mutation spectrum appeared to be significantly different from the spontaneous mutation spectrum: the former consisted of mainly (19/22) single bp substitutionstargeted at G, of which the majority (12/19) were G:C → T:A transversions, suggesting that N-(deoxyguanosin-8-yl)-2-aminofluorene [dG-C8-A], the major DNA adduct in N-OH-AAF-treated mice, is the premutagenic lesion. After analysis of 21 spontaneous mutants, only ten single bp substitutions targeted at G were found, of which five were G:C → T:A transversions. This study with XP−/− λlacZ-transgenic mice shows that one of the components of NER, that is, the XPA protein, suppresses mutagenesis in vivo. Environ. Mol. Mutagen. 31:41–47, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
13.
Mutations in two branch‐point sequences (BPS) in intron 3 of the XPC DNA repair gene affect pre‐mRNA splicing in association with xeroderma pigmentosum (XP) with many skin cancers (XP101TMA) or no skin cancer (XP72TMA), respectively. To investigate the mechanism of these abnormalities we now report that transfection of minigenes with these mutations revealed abnormal XPC pre‐mRNA splicing that mimicked pre‐mRNA splicing in the patients' cells. DNA oligonucleotide‐directed RNase H digestion demonstrated that mutations in these BPS disrupt U2 snRNP–BPS interaction. XP101TMA cells had no detectable XPC protein but XP72TMA had 29% of normal levels. A small amount of XPC protein was detected at sites of localized ultraviolet (UV)‐damaged DNA in XP72TMA cells which then recruited other nucleotide excision repair (NER) proteins. In contrast, XP101TMA cells had no detectable recruitment of XPC or other NER proteins. Post‐UV survival and photoproduct assays revealed greater reduction in DNA repair in XP101TMA cells than in XP72TMA. Thus mutations in XPC BPS resulted in disruption of U2 snRNP‐BPS interaction leading to abnormal pre‐mRNA splicing and reduced XPC protein. At the cellular level these changes were associated with features of reduced DNA repair including diminished NER protein recruitment, reduced post‐UV survival and impaired photoproduct removal. Hum Mutat 30:1–9, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   

14.
15.
Mice that are genetically engineered are becoming increasingly more powerful tools for understanding the molecular pathology of many human hereditary diseases, especially those that confer an increased predisposition to cancer. We have generated mouse strains defective in the Xpc gene, which is required for nucleotide excision repair (NER) of DNA. Homozygous mutant mice are highly prone to skin cancer following exposure to UVB radiation, and to liver and lung cancer following exposure to the chemical carcinogen acetylaminofluorene (AAF). Skin cancer predisposition is significantly augmented when mice are additionally defective in Trp53 (p53) gene function. We also present the results of studies with mice that are heterozygous mutant in the Apex (Hap1, Ref-1) gene required for base excision repair and with mice that are defective in the mismatch repair gene Msh2. Double and triple mutant mice mutated in multiple DNA repair genes have revealed several interesting overlapping roles of DNA repair pathways in the prevention of mutation and cancer.  相似文献   

16.
Many studies have suggested that individual susceptibility to age‐related cataract (ARC) may be associated with DNA sequence polymorphisms affecting gene regulation. As DNA repair is implicated in ARC pathogenesis and single‐nucleotide polymorphisms (SNPs) in the 3′‐terminal untranslated region (3′‐UTR) targeted by microRNAs (miRNAs) can alter the gene function, we hypothesize that the miRNA‐binding SNPs (miRSNPs) in DNA double‐strand break repair (DSBR) and nucleotide excision repair (NER) pathways might associate with ARC risk. We genotyped nine miRSNPs of eight genes in DSBR and NER pathways in Chinese population and found that ZNF350‐ rs2278414:G>A was significantly associated with ARC risk. Even though the Comet assay of cellular DNA damage indicated that all the subtypes of ARC patients had more DNA breaks in peripheral lymphocytes than the controls independent of rs2278414 genotypes, individuals carrying the variant A allele (AA and AG) had lower ZNF350 mRNA levels compared with individuals with GG genotype. Moreover, the in vitro experiment indicated that miR‐21‐3p and miR‐150‐5p specifically downregulated luciferase reporter expression in the cell lines transfected with rs2278414 A allele compared with rs2278414 G. These results suggested that the association of SNP rs2278414 with ARC might involve an altered miRNA regulation of ZNF350.  相似文献   

17.
Stationary-phase Saccharomyces cerevisiae can serve as a model for post-mitotic cells of higher eukaryotes. Phosphorylation and activation of the checkpoint kinase Rad53 was observed after more than 2 days of culture if two major pathways of oxidative DNA damage repair, base excision repair (BER) and nucleotide excision repair (NER), are inactive. The wild type showed a low degree of Rad53 phosphorylation when the incubation period was drastically increased. In the ber ner strain, Rad53 phosphorylation can be abolished by inclusion of antioxidants or exclusion of oxygen. Furthermore, this modification and enhanced mutagenesis in extended stationary phase were absent in rho° strains, lacking detectable mitochondrial DNA. This checkpoint response is therefore thought to be dependent on reactive oxygen species originating from mitochondrial respiration. There was no evidence for progressive overall telomere shortening during stationary-phase incubation. Since Rad50 (of the MRN complex) and Mec1 (the homolog of ATR) were absolutely required for the observed checkpoint response, we assume that resected random double-strand breaks are the critical lesion. Single-strand resection may be accelerated by unrepaired oxidative base damage in the vicinity of a double-strand break.  相似文献   

18.
Multiple sequence changes that are simultaneously introduced in a single DNA transaction have a higher probability of altering gene function than do single base substitutions. DNA polymerase zeta (Pol ζ) has been shown to introduce such clustered mutations under specific selective and/or DNA damage‐producing conditions. In this study, a forward mutation assay was used to determine the specificity of spontaneous mutations generated in Saccharomyces cerevisiae when either wild‐type Pol ζ or a mutator Pol ζ variant (rev3‐L979F) bypasses endogenous lesions. Mutagenesis in strains proficient for nucleotide excision repair (NER) was compared to mutagenesis in NER‐deficient strains that retain unrepaired endogenous DNA lesions in the genome. Compared to NER‐proficient strains, NER‐deficient rad14Δ strains have elevated mutation rates that depend on Pol ζ. Rates are most strongly elevated for tandem base pair substitutions and clusters of multiple, closely spaced mutations. Both types of mutations depend on Pol ζ, but not on Pol η. Rates of each are further elevated in yeast strains bearing the rev3‐979F allele. The results indicate that when Pol ζ performs mutagenic bypass of endogenous, helix‐distorting lesions, it catalyzes a short track of processive, error‐prone synthesis. We discuss the implications of this unique catalytic property of Pol ζ to its evolutionary conservation and possibly to multistage carcinogenesis.Environ. Mol. Mutagen., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The PSO3 gene of Saccharomyces cerevisiae was molecularly cloned by complementing the cold-sensitivity phenotype of a pso3-1 mutant and was found to be allelic to RNR4, encoding one of the two DNA damage-inducible small subunits of the ribonucleotide reductase (RNR) complex. Compared to a rnr4Δ mutant that allows only very little mutation induction at very low doses of 254nm ultraviolet light (UVC), the pso3-1 mutant allele confers leakiness in that it permits some DNA damage-induced mutagenesis at low doses of UVC. Similarly, the pso3 mutant is slightly less sensitive to UVC than an rnr4Δ mutant. Cloning and sequencing of the RNR4 locus of the pso3-1 mutant revealed that its intermediate phenotype is attributable to a G → A transition at nucleotide 352, leading to replacement of glycine by arginine [G118R] in the mutant’s protein. Both RNR4 mutant alleles confer significantly less sensitivity to UVC than mutant alleles of non-UVC-mutable REV3, indicating that, apart from nucleotide excision repair, RAD6-dependent error-free DNA repair may still be functional. The phenotype of a strongly reduced UVC-induced mutagenesis for rnr4 mutant alleles has not yet been described; it suggests the importance of this gene for a fully functional RNR providing correct amounts of DNA precursor molecules, thereby, allowing translesion synthesis (error-prone) of UVC-damaged DNA. Stationary phase cells of the rnr4Δ mutant, but not of the original pso3-1 mutant, are swollen with a fourfold to eightfold increase in volume. The central role of RNR in DNA precursor metabolism and its complex regulation allow for several modes of suppression that may influence the phenotypes of RNR4 mutants, especially those containing the leaky pso3-1 mutant allele.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号