首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Role of Runx proteins in chondrogenesis   总被引:2,自引:0,他引:2  
  相似文献   

3.
4.
5.
6.
Secondary cartilages including mandibular condylar cartilage have unique characteristics. They originate from alkaline phosphatase (ALP)-positive progenitor cells of the periosteum, and exhibit characteristic modes of differentiation. They also have a unique extracellular matrix, and coexpress type I, II and X collagens. We have previously shown that there is a total absence of secondary cartilages in Runx2-deficient (Runx2-/-) mice. To clarify whether Runx2 is essential for chondrocytic differentiation of secondary cartilages, we performed an organ culture system using mandibular explants derived from Runx2-/- mice at embryonic day 18.0. Since mRNA for bone morphogenetic protein 2 (BMP2) was strongly expressed in osteoblasts of condylar anlagen in wild-type mice, and was down-regulated in those of Runx2-/- mice, we chose to investigate BMP2 effects on secondary cartilage formation. Condensed mesenchymal cells of mandibular condylar anlagen in precultured explants were ALP-positive and expressed type I collagen and Sox9. After culture with recombinant human (rh) BMP2, chondrocytic cells showing ALP activity and expressing Sox5, Sox9, and type I and II collagens, appeared from mesenchymal condensation. This expression profile was comparable with the reported pattern of chondrocytes in mouse secondary cartilages. However, chondrocyte hypertrophy was not observed in the explants. These findings indicate that BMP2 partially rescued chondrocyte differentiation but not chondrocyte hypertrophy in secondary cartilage formation in Runx2-/- mice. Runx2 is required for chondrocyte hypertrophy in secondary cartilage formation, and it is likely that BMP2, which is abundantly secreted by osteoblasts in condylar anlagen, contributes to the early process of secondary cartilage formation.  相似文献   

7.
We cloned zebrafish runx3/aml2/cbfa3 and examined its expression and function during embryogenesis. In the developing embryo, runx3 is dynamically expressed in hematopoietic, neuronal, and cartilaginous tissues. Hematopoietic expression of runx3 commences late in embryogenesis in the ventral tail intermediate cell mass and later colocalizes with spi1 and lyz in circulating blood cells. In the cloche mutant, hematopoietic expression was absent, suggesting that Runx3 functions downstream of cloche in a hematopoietic pathway. Neuronal tissues expressing runx3 include the trigeminal ganglia and Rohon-Beard neurons. Runx3 appears to contribute to normal development of primitive and definitive hematopoietic cells. When Runx3 function was compromised using morpholino oligonucleotides, a reduction in the number of mature blood cells was observed. Furthermore, Runx3 depletion decreased runx1 expression in the ventral wall of the dorsal aorta and reduced the number of spi1- and lyz-containing blood cells. Conversely, ubiquitous overexpression of runx3 led to an increase in primitive blood cell numbers, together with an increase in runx1-expressing cells in the ventral wall of the dorsal aorta. We propose a role for Runx3 in the regulation of blood cell numbers.  相似文献   

8.
9.
The differentiation of mesenchymal cells into chondrocytes and chondrocyte proliferation and maturation are fundamental steps in skeletal development. Runx2 is essential for osteoblast differentiation and is involved in chondrocyte maturation. Although chondrocyte maturation is delayed in Runx2-deficient (Runx2(-/-)) mice, terminal differentiation of chondrocytes does occur, indicating that additional factors are involved in chondrocyte maturation. We investigated the involvement of Runx3 in chondrocyte differentiation by generating Runx2-and-Runx3-deficient (Runx2(-/-)3(-/-)) mice. We found that chondrocyte differentiation was inhibited depending on the dosages of Runx2 and Runx3, and Runx2(-/-)3(-/-) mice showed a complete absence of chondrocyte maturation. Further, the length of the limbs was reduced depending on the dosages of Runx2 and Runx3, due to reduced and disorganized chondrocyte proliferation and reduced cell size in the diaphyses. Runx2(-/-)3(-/-) mice did not express Ihh, which regulates chondrocyte proliferation and maturation. Adenoviral introduction of Runx2 in Runx2(-/-) chondrocyte cultures strongly induced Ihh expression. Moreover, Runx2 directly bound to the promoter region of the Ihh gene and strongly induced expression of the reporter gene driven by the Ihh promoter. These findings demonstrate that Runx2 and Runx3 are essential for chondrocyte maturation and that Runx2 regulates limb growth by organizing chondrocyte maturation and proliferation through the induction of Ihh expression.  相似文献   

10.
The study of human embryonic stem cells (hESCs) can provide invaluable insights into the development of numerous human cell and tissue types in vitro. In this study, we addressed the potential of hESCs to undergo chondrogenesis and demonstrated the potential of hESC-derived embryoid bodies (EBs) to undergo a well-defined full-span chondrogenesis from chondrogenic induction to hypertrophic maturation. We compared chondrogenic differentiation of hESCs through EB direct-plating outgrowth system and EB-derived high-density micromass systems under defined serumfree chondrogenic conditions and demonstrated that cell-to-cell contact and bone morphogenetic protein 2 (BMP2) treatment enhanced chondrocyte differentiation, resulting in the formation of cartilaginous matrix rich in collagens and proteoglycans. Provision of a high-density three-dimensional (3D) microenvironment at the beginning of differentiation is critical in driving chondrogenesis because increasing EB seeding numbers in the EB-outgrowth system was unable to enhance chondrogenesis. Temporal order of chondrogenic differentiation and hypertrophic maturation indicated by the gene expression profiles of Col 1, Col 2, and Col 10, and the deposition of extracellular matrix (ECM) proteins, proteoglycans, and collagen II and X demonstrated that the in vivo progression of chondrocyte maturation is recapitulated in the hESC-derived EB model system established in this study. Furthermore, we also showed that BMP2 can influence EB differentiation to multiple cell fates, including that of extraembryonic endodermal and mesenchymal lineages in the EB-outgrowth system, but was more committed to driving the chondrogenic cell fate in the EB micromass system. Overall, our findings provide a potential 3D model system using hESCs to delineate gene function in lineage commitment and restriction of chondrogenesis during embryonic cartilage development.  相似文献   

11.
12.
13.
14.
The Prx1 homeobox gene is critical for cartilage and bone development as suggested by previous expression studies and demonstrated by gene targeting. However, neither approach assessed the individual roles of the two isoforms Prx1a and Prx1b. In this study, Western blot analysis demonstrates that, in the early stages of chondrogenesis, during mesenchymal condensation, only Prx1a is expressed. Higher level Prx1b expression is concomitant with the formation of a defined perichondrium. Prx1a overexpression in limb micro mass cultures results in an increase in the number of prechondrogenic condensations and cartilage nodules, whereas overexpression of Prx1b results in a decrease. Prx1a increases the percentage of proliferating cells in micro mass cultures and decreases apoptosis. The Prx1b isoform does not alter proliferation, but it does increase apoptosis, which is opposite of Prx1a. These results suggest that the Prx1a:Prx1b ratio and the alternative splicing mechanism that generates these two isoforms are critical in controlling chondrogenesis.  相似文献   

15.
16.
Products of the Frizzled family of tissue polarity genes have been identified as putative receptors for the Wnt family of signaling molecules. Wnt-signaling is implicated in the regulation of limb mesenchymal chondrogenesis, and our recent study indicates that N-cadherin and related activities are functionally involved in Wnt-7a-mediated inhibition of chondrogenesis. By using an in vitro high-density micromass culture system of chick limb mesenchymal cells, we have analyzed the spatiotemporal expression patterns and the effects on chondrogenesis of RCAS retroviral-mediated misexpression of Chfz-1 and Chfz-7, two Frizzled genes implicated in chondrogenic regulation. Chfz-1 expression was localized at areas surrounding the cartilaginous nodules at all time points examined, whereas Chfz-7 expression was limited to cellular aggregates during initial mesenchymal condensation, and subsequently was down-regulated from the centers toward the periphery of cartilage nodules at the time of chondrogenic differentiation, resembling the pattern of N-cadherin expression. Chondrogenesis in vitro was inhibited and limited to a smaller area of the culture upon misexpression of Chfz-7, but not affected by Chfz-1 misexpression. Analyses of cellular condensation and chondrogenic differentiation showed that the inhibitory action of Chfz-7 is unlikely to be at the chondrogenic differentiation step, but instead affects the earlier precartilage aggregate formation event. At 24 hr, expression of N-cadherin, a key component of the cellular condensation phase of chondrogenesis, was delayed/suppressed in Chfz-7 misexpressing cultures, and was limited to a significantly smaller cellular condensation area within the entire culture at 48 hr, when compared with control cultures. Chfz-1 misexpressing cultures appeared similar to control cultures at all time points. However, neither Chfz-1 nor Chfz-7 misexpression affected mesenchymal cell proliferation in vitro. These results suggest that Chfz-7 is active in regulating N-cadherin expression during the process of limb mesenchymal chondrogenesis and that Chfz-1 and Chfz-7 are involved in different Wnt-signaling pathways.  相似文献   

17.
18.
Multipotent mesenchymal stromal cells (MSCs) were first isolated from bone marrow and then from various adult tissues including placenta, cord blood, deciduous teeth, and amniotic fluid. MSCs are defined or characterized by their ability to adhere to plastic, to express specific surface antigens, and to differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. Although the molecular mechanisms that control MSC proliferation and differentiation are not well understood, the involvement of microRNAs has been reported. In the present study, we investigated the role of miR-125b during osteoblastic differentiation in humans. We found that miR-125b increased during osteoblastic differentiation, as well as Runx2 and ALPL genes. To study whether the gain or loss of miR-125b function influenced osteoblastic differentiation, we transfected MSCs with pre-miR-125b or anti-miR-125b and cultured the transfected cells in an osteoblastic differentiation medium. After transfection, no change was observed in osteoblastic differentiation, and Runx2, OPN, and ALPL gene expression were not changed. These results suggest that the gain or loss of miR-125b function does not influence levels of Runx2, OPN, and ALPL during osteoblastic differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号