首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of ubiquitin or ubiquitin chains to target proteins leads to their mono- or polyubiquitination, respectively. Whereas polyubiquitination targets proteins for degradation, monoubiquitination is thought to regulate receptor internalization and endosomal sorting. Cbl proteins are major ubiquitin ligases that promote ligand-dependent polyubiquitination and degradation of receptor tyrosine kinases. They also recruit CIN85-endophilin in the complex with activated receptors, thus controlling receptor endocytosis. Here we show that the adaptor protein CIN85 and its homologue CMS are monoubiquitinated by Cbl/Cbl-b after epidermal growth factor (EGF) stimulation. Monoubiquitination of CIN85 required direct interactions between CIN85 and Cbl, the intact RING finger domain of Cbl and a ubiquitin acceptor site present in the carboxyl terminus of CIN85. Cbl-b and monoubiquitinated CIN85 are found in the complex with polyubiquitinated EGF receptors during prolonged EGF stimulation and are degraded together in the lysosome. Dominant interfering forms of CIN85, which have been shown previously to delay EGF receptor degradation, were also impaired in their monoubiquitination. Thus, our data demonstrate that Cbl/Cbl-b can mediate polyubiquitination of cargo as well as monoubiquitination of CIN85 to control endosomal sorting and degradation of receptor tyrosine kinases.  相似文献   

2.
Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2) or phosphotyrosine interaction domains (PID). Additionally, several cytoplasmic proteins that may or may not associate with the receptor undergo tyrosine phosphorylation. To identify several components of the EGFR signaling pathway in a single step, we have immunoprecipitated molecules that are tyrosine phosphorylated in response to EGF and analyzed them by one-dimensional gel electrophoresis followed by mass spectrometry. Combining matrix-assisted laser desorption/ionization (MALDI) and nanoelectrospray tandem mass spectrometry (MS/MS) led to the identification of nine signaling molecules, seven of which had previously been implicated in EGFR signaling. Several of these molecules were identified from low femtomole levels of protein loaded onto the gel. We identified Vav-2, a recently discovered guanosine nucleotide exchange factor that is expressed ubiquitously, as a substrate of the EGFR. We demonstrate that Vav-2 is phosphorylated on tyrosine residues in response to EGF and associates with the EGFR in vivo. Binding of Vav-2 to the EGFR is mediated by the SH2 domain of Vav-2. In keeping with its ubiquitous expression, Vav-2 seems to be a general signaling molecule, since it also associates with the platelet-derived growth factor (PDGF) receptor and undergoes tyrosine phosphorylation in fibroblasts upon PDGF stimulation. The strategy suggested here can be used for routine identification of downstream components of cell surface receptors in mammalian cells.  相似文献   

3.
Ligand activation of the epidermal growth factor receptor (EGFR) causes the binding of Cbls, which leads to EGFR polyubiquitination and internalization through endophilin complexes that contain the adaptor protein SH3-domain encoding, expressed in tumorigenic astrocytes/Cbl-interacting protein of 85 kDa/regulator of ubiquitous kinase (SETA/CIN85/Ruk). In cells grown at high density, high levels of SETA interfered in the recruitment of Casitas B-lineage (Cbl) proteins to the EGFR and reduced its polyubiquitination, suggesting that SETA has a regulatory function in the formation of the EGFR-Cbl-endophilin complex and in EGFR down-regulation. In a situation where there is EGFR signaling but no internalization or down-regulation, as is the case with the EGFR with exons 2-7 deleted (DeltaEGFR) oncogene, these proteins were absent altogether. By using mAb 806, which recognizes an EGFR-activation state and preferentially immunoprecipitates DeltaEGFR, we show that DeltaEGFR did not interact with Cbls, SETA, or endophilin A1, providing a mechanistic explanation for its lack of internalization. As would be expected by the absence of Cbl proteins in the DeltaEGFR complex, the mutant receptor was also not polyubiquitinated. The intracellular C terminus and tyrosine autophosphorylation pattern of DeltaEGFR are similar to wild-type EGFR, but it signals at a lower intensity as determined by levels of EGFR phosphotyrosine. To test the implication that the lack of interaction with the Cbl-SETA-endophilin complex is because of differences in signal intensity, EGFR-expressing cells were treated with tyrphostin AG1478 EGFR inhibitor. Attenuation of wild-type EGFR signal to levels similar to that found in DeltaEGFR resulted in the dissociation of SETA and Cbl proteins and a concomitant attenuation of receptor internalization.  相似文献   

4.
Huang Y  Chang Y  Wang X  Jiang J  Frank SJ 《Endocrinology》2004,145(7):3297-3306
Epidermal growth factor receptor (EGFR) is a transmembrane protein that binds EGF in its extracellular domain and initiates signaling via intrinsic tyrosine kinase activity in its cytoplasmic domain. EGFR is important in development, cellular proliferation, and cancer. GH is a critical growthpromoting and metabolic regulatory hormone that binds the GH receptor, thereby engaging various signaling pathways, including ERKs. Prior studies suggest cross-talk between the GH receptor and EGFR signaling systems. Using the GH- and EGF-responsive 3T3-F442A preadipocyte, we previously observed that GH, in addition to causing EGFR tyrosine phosphorylation, also induced EGFR phosphorylation that was detected by PTP101, an antibody reactive with ERK consensus phosphorylation sites. This latter phosphorylation was prevented by pretreatment with MAPK kinase (MEK)1 inhibitors, suggesting ERK pathway dependence. Furthermore, GH cotreatment with EGF markedly slowed EGF-induced EGFR degradation and down-regulation, thereby potentiating EGF-induced EGFR signaling. These effects were also MEK1 dependent and suggested ERK pathway-dependent influence of GH on EGF-induced EGFR postendocytic trafficking and signaling. We now explore the impact of GH on cell surface binding of EGF in 3T3-F442A cells. We found that GH pretreatment caused transient, but substantial, lessening of (125)I-EGF binding. Competitive binding experiments revealed that the decreased binding was primarily due to decreased affinity, rather than a change in the number of EGF binding sites. The effect of GH on EGF binding was concentration dependent and temporally correlated with GH-induced ERK activation and EGFR PTP101-reactive phosphorylation. Blockade of the MEK1/ERK but not the protein kinase C pathway, prevented GH's effects on EGF binding, and our results indicate that the mechanisms of GH- and phorbol-12-myristate-13-acetateinduced inhibition of EGF binding differ substantially. Overall, our findings suggest that GH can modulate both EGF binding kinetics and the EGFR's postbinding signaling itinerary in a MEK1/ERK pathway-dependent fashion.  相似文献   

5.
The phosphotyrosine residues of receptor tyrosine kinases serve as unique binding sites for proteins involved in intracellular signaling, which contain SRC homology 2 (SH2) domains. Since overexpression or activation of the pp60c-src kinase has been reported in a number of human tumors, including primary human breast carcinomas, we examined the interactions of the SH2 and SH3 domains of human SRC with target proteins in human carcinoma cell lines. Glutathione S-transferase fusion proteins containing either the SH2, SH3, or the entire SH3/SH2 region of human SRC were used to affinity purify tyrosine-phosphorylated proteins from human breast carcinoma cell lines. We show here that in human breast carcinoma cell lines, the SRC SH2 domain binds to activated epidermal growth factor receptor (EGFR) and p185HER2/neu. SRC SH2 binding to EGFR was also observed in a nontumorigenic cell line after hormone stimulation. Endogenous pp60c-src was found to tightly associate with tyrosine-phosphorylated EGFR. Association of the SRC SH2 with the EGFR was blocked by tyrosyl phosphopeptides containing the sequences surrounding tyrosine-530, the regulatory site in the SRC C terminus, or sequences surrounding the major sites of autophosphorylation in the EGFR. These results raise the possibility that association of pp60c-src with these receptor tyrosine kinases is an integral part of the signaling events mediated by these receptors and may contribute to malignant transformation.  相似文献   

6.
A number of proteins involved in intracellular signaling contain regions of homology to the product of the src oncogene that are termed Src-homology (SH) 2 domains. SH2 domains are believed to mediate the association of these proteins with various tyrosine-phosphorylated receptors in a growth factor-dependent manner. We have examined the kinetic characteristics of one of these interactions, the binding of the SH2 domains of phospholipase C gamma 1 with the receptor for epidermal growth factor (EGF). Bacterial fusion proteins were prepared containing the two SH2 domains of PLC gamma 1 and labeled metabolically with [35S]methionine/cysteine. A fusion protein containing both SH2 domains bound to the purified EGF receptor from EGF-treated cells, whereas no binding to receptors from control cells was detected. Binding was rapid, reaching apparent equilibrium by 10 min. Dissociation of the complex occurred only in the presence of excess unlabeled SH2 protein and exhibited two kinetic components. Similarly, analysis of apparent equilibrium binding revealed a nonlinear Scatchard plot, further indicating complex binding kinetics that may reflect cooperative behavior. The binding of the fusion protein containing both SH2 domains was inhibited by a fusion protein containing only the amino-terminal SH2 domain, although at concentrations an order of magnitude higher than that observed with the complete fusion protein. Fusion proteins containing SH2 domains from the GTPase-activating protein, the p85 regulatory subunit of phosphatidylinositol 3'-kinase, or the Abl oncoprotein competed less effectively. Binding of the PLC gamma 1 SH2 fusion protein to a mutant EGF receptor lacking the two carboxyl-terminal tyrosine phosphorylation sites exhibited a significantly lower affinity than that observed with the wild type, suggesting that this region of the receptor may play an important role. This binding assay represents a means with which to evaluate the pleiotropic nature of growth factor action.  相似文献   

7.
Cohen S  Dadi H  Shaoul E  Sharfe N  Roifman CM 《Blood》1999,93(6):2013-2024
Protein tyrosine phosphatases act in conjunction with protein kinases to regulate the tyrosine phosphorylation events that control cell activation and differentiation. We have isolated a previously undescribed human phosphatase, Lyp, that encodes an intracellular 105-kD protein containing a single tyrosine phosphatase catalytic domain. The noncatalytic domain contains four proline-rich potential SH3 domain binding sites and an NXXY motif that, if phosphorylated, may be recognized by phosphotyrosine binding (PTB) domains. Comparison of the Lyp amino acid sequence with other known proteins shows 70% identity with the murine phosphatase PEP. The human Lyp gene was localized to chromosome 1p13 by fluorescence in situ hybridization analysis. We also identified an alternative spliced form of Lyp RNA, Lyp2. This isoform encodes a smaller 85-kD protein with an alternative C-terminus. The lyp phosphatases are predominantly expressed in lymphoid tissues and cells, with Lyp1 being highly expressed in thymocytes and both mature B and T cells. Increased Lyp1 expression can be induced by activation of resting peripheral T lymphocytes with phytohemagglutinin or anti-CD3. Lyp1 was found to be constitutively associated with the proto-oncogene c-Cbl in thymocytes and T cells. Overexpression of lyp1 reduces Cbl tyrosine phosphorylation, suggesting that it may be a substrate of the phosphatase. Thus, Lyp may play a role in regulating the function of Cbl and its associated protein kinases.  相似文献   

8.
Cytoplasmic proteins that regulate signal transduction or induce cellular transformation, including cytoplasmic protein-tyrosine kinases, p21ras GTPase-activating protein (GAP), phospholipase C gamma, and the v-crk oncoprotein, possess one or two copies of a conserved noncatalytic domain, Src homology region 2 (SH2). Here we provide direct evidence that SH2 domains can mediate the interactions of these diverse signaling proteins with a related set of phosphotyrosine ligands, including the epidermal growth factor (EGF) receptor. In src-transformed cells GAP forms heteromeric complexes, notably with a highly tyrosine phosphorylated 62-kDa protein (p62). The stable association between GAP and p62 can be specifically reconstituted in vitro by using a bacterial polypeptide containing only the N-terminal GAP SH2 domain. The efficient phosphorylation of p62 by the v-Src or v-Fps tyrosine kinases depends, in turn, on their SH2 domains and correlates with their transforming activity. In lysates of EGF-stimulated cells, the N-terminal GAP SH2 domain binds to both the EGF receptor and p62. Fusion proteins containing GAP or v-Crk SH2 domains complex with similar phosphotyrosine proteins from src-transformed or EGF-stimulated cells but with different efficiencies. SH2 sequences, therefore, form autonomous domains that direct signaling proteins, such as GAP, to bind specific phosphotyrosine-containing polypeptides. By promoting the formation of these complexes, SH2 domains are ideally suited to regulate the activation of intracellular signaling pathways by growth factors.  相似文献   

9.
Engagement of the T cell antigen receptor (TCR) leads to rapid activation of protein tyrosine kinases, which in turn phosphorylate downstream enzymes and adapter proteins. Some adapter proteins, such as SLP-76, Vav, and LAT, positively regulate TCR-mediated signal transduction, whereas others, such as Cbl, play an inhibitory role. SLAP (Src-like adapter protein), an adapter protein containing a Src homology 3 and a Src homology 2 domain, was isolated from a yeast interacting screen by using N-terminal Cbl as bait. N-terminal Cbl interacts with SLAP in vivo and in vitro in a tyrosine phosphorylation-independent manner. We observed that SLAP is expressed in T cells, and upon TCR activation, SLAP interacts with ZAP-70, Syk, LAT, and TCRzeta chain in Jurkat T cells. In transiently transfected COS-7 cells, SLAP forms separate complexes with ZAP-70, Syk, and LAT through its Src homology 2 domain. Overexpression of a C-terminal-truncated SLAP mutant down-regulates nuclear factor of activated T cells-AP1 activity. We have evidence that SLAP forms homodimers through its C-terminal region. Serial truncations and mutations in the C terminus of SLAP demonstrate that there is a correlation between the loss of dimerization and the inhibition of nuclear factor of activated T cells-AP1 activity. The in vivo association of SLAP with key signaling molecules and its inhibition of T cell activation suggests that SLAP plays an important role in TCR-mediated signal transduction.  相似文献   

10.
The Cbl protooncogene product has emerged as a negative regulator of receptor and nonreceptor tyrosine kinases. We recently demonstrated that oncogenic Cbl mutants upregulate the endogenous tyrosine kinase signaling machinery when expressed in the NIH 3T3 cells, and identified the platelet-derived growth factor receptor-α (PDGFRα) as one of the tyrosine kinases targeted by these oncogenes. These findings suggested a role for the normal Cbl protein in negative regulation of the PDGFRα. However, the mechanism of such negative regulation remained to be determined. Here we show that overexpression of the wild-type Cbl enhances the ligand-induced ubiquitination of the PDGFRα. Concomitantly, the PDGFRα in Cbl-overexpressing cells undergoes a faster ligand-induced degradation compared with that in the control cells. These results identify a role for Cbl in the regulation of ligand-induced ubiquitination and degradation of receptor tyrosine kinases and suggest one potential mechanism for evolutionarily conserved negative regulatory influence of Cbl on tyrosine kinases.  相似文献   

11.
Counteradhesive proteins are a group of genetically and structurally distinct multidomain proteins that have been grouped together for their ability to inhibit cell-substrate interactions. Three counteradhesive proteins that influence endothelial cell behavior include thrombospondin (TSP)1, (SPARC) (Secreted Protein Acidic and Rich in Cysteine), also known as osteonectin, and tenascin. More recently, these proteins have been shown to regulate not only cell-matrix interactions but cell-cell interactions as well. TSP1 increases tyrosine phosphorylation of components of the cell-cell adherens junctions or zonula adherens (ZA) and opens the paracellular pathway in human lung microvascular endothelia. The epidermal growth factor (EGF)-repeats of TSP1 activate the (EGF) receptor (EGFR) and ErbB2, and these two receptor protein tyrosine kinases (PTK)s participate in ZA protein tyrosine phosphorylation and barrier disruption in response to the TSP1 stimulus. For the barrier response to TSP1, EGFR/ErbB2 activation is necessary but insufficient. Protein tyrosine phosphatase (PTP)mu counter-regulates phosphorylation of selected tyrosine residues within the cytoplasmic domain of EGFR. Although tenascin, like TSP1, also contains EGF-like repeats and is known to activate EGFR, whether it also opens the paracellular pathway is unknown. In addition to TSP1, tenascin, and the other TSP family members, there are numerous other proteins that also contain EGF-like repeats and participate in hemostasis, wound healing, and tissue remodeling. EGFR not only responds to direct binding of EGF motif-containing ligands but can also be transactivated by a wide range of diverse stimuli. In fact, several established mediators of increased vascular permeability and/or lung injury, including thrombin, tumor necrosis factor-alpha, platelet-activating factor, bradykinin, angiopoietin, and H(2)O(2), transactivate EGFR. It is conceivable that EGFR serves a pivotal signaling role in a final common pathway for the pulmonary response to selected injurious stimuli. SPARC/Osteonectin also increases tyrosine phosphorylation of ZA proteins and opens the endothelial paracellular pathway in a PTK-dependent manner. The expression of the counteradhesive proteins is increased in response to a wide range of injurious stimuli. It is likely that these same molecules participate in the host response to acute lung injury and are operative during the barrier response within the pulmonary microvasculature.  相似文献   

12.
Cbl is one of the major tyrosine-phosphorylated proteins in Bcr-Abl-expressing cells. A direct association between the SH2 domain of Bcr-Abl and tyrosine-phosphorylated Cbl has been demonstrated. The purpose of this study was to determine if and how unphosphorylated Cbl and Bcr-Abl may associate.Interactions between Cbl and Bcr-Abl were investigated in yeast two- and three-hybrid systems, gel overlay assays, and immunoprecipitates from mammalian cells expressing wild-type and the Y177F mutant of Bcr-Abl.No direct interaction between Bcr-Abl and unphosphorylated Cbl was observed. Bcr-Abl did, however, associate with Grb2, an adaptor protein that binds tyrosine 177 of Bcr-Abl. Additionally, Grb2 interacted with Cbl. In a yeast three-hybrid assay, Grb2 mediated an interaction between Cbl and Bcr-Abl that was dependent on a functional Grb2 binding site. This interaction was confirmed in vitro using purified proteins. In cells expressing Bcr-Abl with a mutation in the Grb2 binding site, binding of Cbl to Bcr-Abl was significantly reduced, but Cbl tyrosine phosphorylation was maintained. Imatinib treatment of these cells further reduced but did not abrogate Cbl binding, reflecting residual kinase activity.Multiple phosphotyrosine-dependent and -independent interactions stabilize the interaction between Cbl and Abl. Grb2 or another, yet unidentified, protein may mediate an initial interaction between Cbl and Bcr-Abl that is independent of Cbl tyrosine phosphorylation. Following this initial interaction, Cbl can then become tyrosine phosphorylated and interact with the SH2 domain of Bcr-Abl, further stabilizing the complex.  相似文献   

13.
The Cbl-family ubiquitin ligases function as negative regulators of activated receptor tyrosine kinases by facilitating their ubiquitination and subsequent targeting to lysosomes. Cbl associates with the lymphoid-restricted nonreceptor tyrosine kinase Lck, but the functional relevance of this interaction remains unknown. Here, we demonstrate that T cell receptor and CD4 coligation on human T cells results in enhanced association between Cbl and Lck, together with Lck ubiquitination and degradation. A Cbl(-/-) T cell line showed a marked deficiency in Lck ubiquitination and increased levels of kinase-active Lck. Coexpression in 293T cells demonstrated that Lck kinase activity and Cbl ubiquitin ligase activity were essential for Lck ubiquitination and negative regulation of Lck-dependent serum response element-luciferase reporter activity. The Lck SH3 domain was pivotal for Cbl-Lck association and Cbl-mediated Lck degradation, with a smaller role for interactions mediated by the Cbl tyrosine kinase-binding domain. Finally, analysis of a ZAP-70-deficient T cell line revealed that Cbl inhibited Lck-dependent mitogen-activated protein kinase activation, and an intact Cbl RING finger domain was required for this functional effect. Our results demonstrate a direct, ubiquitination-dependent, negative regulatory role of Cbl for Lck in T cells, independent of Cbl-mediated regulation of ZAP-70.  相似文献   

14.
Trk-signaling endosomes are generated by Rac-dependent macroendocytosis   总被引:2,自引:0,他引:2  
Why neurotrophins and their Trk receptors promote neuronal differentiation and survival whereas receptor tyrosine kinases for other growth factors, such as EGF, do not, has been a long-standing question in neurobiology. We provide evidence that one difference lies in the selective ability of Trk to generate long-lived signaling endosomes. We show that Trk endocytosis is distinguished from the classical clathrin-based endocytosis of EGF receptor (EGFR). Although Trk and EGFR each stimulate membrane ruffling, only Trk undergoes both selective and specific macroendocytosis at ruffles, which uniquely requires the Rho-GTPase, Rac, and the trafficking protein, Pincher. This process leads to Trk-signaling endosomes, which are immature multivesicular bodies that retain Rab5. In contrast, EGFR endosomes rapidly exchange Rab5 for Rab7, thereby transiting into late-endosomes/lysosomes for degradation. Sustained endosomal signaling by Trk does not reflect intrinsic differences between Trk and EGFR, because each elicits long-term Erk-kinase activation from the cell surface. Thus, a population of stable Trk endosomes, formed by specialized macroendocytosis in neurons, provides a privileged endosome-based system for propagation of signals to the nucleus.  相似文献   

15.
The rat neu oncogene encodes a cell surface glycoprotein, p185, that possesses tyrosine kinase activity. The p185 polypeptide exhibits structural similarity to the epidermal growth factor receptor (EGFR) at both the deduced amino acid and nucleic acid level. However, the neu oncogene and the gene encoding the EGFR have been shown to reside on distinct chromosomes. Comparative analysis of the sequences of the normal neu cDNA and of the neu cDNA from neuroblastomas has revealed a single point mutation leading to a valine-to-glutamic acid substitution in the transmembrane anchoring domain. This mutation converts the neu gene to a transforming gene in rodents. In humans, the gene is called ERBB2 (also NGL and HER2), and amplification and over-expression of its products have been detected in certain tumors. The rat embryonal fibroblast cell line (Rat-1) appears to express both EGFR and cellular p185 polypeptides. We have found that EGF stimulates the phosphorylation of p185 in these cells at tyrosine as well as serine and threonine residues in a specific and dose-dependent manner. This activity occurs even though radiolabeled EGF cannot bind to immunopurified p185. The EGF effect is apparently unique since platelet-derived growth factor, insulin, and transforming growth factor beta all fail to phosphorylate p185 at tyrosine. The EGF-induced effect requires interaction of the EGFR and its cognate ligand because cell lines that lack EGFR cannot be shown to phosphorylate p185, even when exposed to large amounts of EGF. Oncogenic rodent p185 and the human p185 homologue ERBB2 that is overexpressed in human breast tumor cells also can be shown to become phosphorylated on tyrosine residues by the action of EGF. Collectively, these data demonstrate that EGF mediates phosphorylation of p185 at tyrosine as well as serine/threonine through cellular kinases by a receptor-specific mechanism.  相似文献   

16.
The protein product of the neu protooncogene, p185c-neu, is structurally similar to the epidermal growth factor receptor (EGFR). Overexpression of these two receptor tyrosine kinases, but not either separately, leads to transformation and tumorigenicity. Heterodimerization of p185c-neu and EGFR occurs in M1 cells, which express both receptors. We have individually identified the two components of the heterodimer as EGFR and p185c-neu. Analysis of this association with relatively nondenaturing detergents and in the absence of cross-linkers indicates that noncovalent interactions are primarily responsible for heterodimer formation. The rapid reversible heterodimerization was promoted by EGF binding to its receptor. Functionally, the heterodimer is a highly active protein kinase for receptor autophosphorylation and exogenous substrate phosphorylation in vitro. The isolated heterodimer was highly phosphorylated on tyrosine residues in vivo. These results indicate that the physical association between EGFR and p185c-neu is of functional significance and define enzymatic features of complex receptor formation.  相似文献   

17.
The aberrant regulation of B-cell receptor (BCR) signaling allows unwanted B cells to persist, thereby potentially leading to autoimmunity and B-cell malignancies. Casitas B-lineage lymphoma (Cbl) proteins suppress BCR signaling; however, the molecular mechanisms that control Cbl function in human B cells remain unclear. Here, we demonstrate that CIN85 (c-Cbl interacting protein of 85 kDa) is constitutively associated with c-Cbl, Cbl-b, and B-cell linker in B cells. Experiments using CIN85-overexpressing and CIN85-knockdown B-cell lines revealed that CIN85 increased c-Cbl phosphorylation and inhibited BCR-induced calcium flux and phosphorylation of Syk and PLCγ2, whereas it did not affect BCR internalization. The Syk phosphorylation in CIN85-overexpressing and CIN85-knockdown cells was inversely correlated with the ubiquitination and degradation of Syk. Moreover, CIN85 knockdown in primary B cells enhanced BCR-induced survival and growth, and increased the expression of BcLxL, A1, cyclin D2, and myc. Following the stimulation of BCR and Toll-like receptor 9, B-cell differentiation- associated molecules were up-regulated in CIN85-knockdown cells. Together, these results suggest that CIN85 is required for Cbl-mediated regulation of BCR signaling and for downstream events such as survival, growth, and differentiation of human B cells.  相似文献   

18.
CD150 signaling lymphocytic activation molecule (SLAM), a T/B/dendritic cell surface glycoprotein, is a costimulatory receptor involved in T-cell activation and is also a receptor for measles virus. CD150-induced signal transduction is controlled by SAP/SH2D1A, the gene that is aberrant in X-linked lymphoproliferative disease and familial hemophagocytic lymphohistiocytosis. This report shows that CD150 colocalizes with the T-cell receptor (TCR) following CD3 triggering in human peripheral blood T cells and is rapidly and reversibly tyrosine phosphorylated on TCR cross-linking. The Src-like kinases Lck and Fyn phosphorylate tyrosine residues in the cytoplasmic tail of CD150. The results demonstrate that the SAP protein has 2 modes of binding to CD150. Binding to the motif Thr-Ile-Tyr281Ala-Gln-Val occurs in a phosphotyrosine-independent fashion and to the motif Thr-Val-Tyr327Ala-Ser-Val in a phosphotyrosine-dependent manner. Within both SAP binding motifs the threonine residue at position -2 to tyrosine is essential to stabilize the interaction irrespective of tyrosine phosphorylation, a feature unique to the SAP SH2 domain. A leucine residue, Leu278, further stabilizes nonphospho binding of SAP to Tyr281 of CD150. SAP blocking of the tyrosine phosphatase SHP-2 occurs primarily on Tyr281 of CD150 because SHP-2 requires both Tyr281 and Tyr327 for binding to CD150, and SAP binds to nonphosphorylated Tyr281. CD150 exhibits lateral mobility, segregating into intercellular contacts. The lateral mobility and homophilic clustering of CD150 between neighboring cells is not dependent on SAP/CD150 interaction.  相似文献   

19.
ArgBP2, and its brain-specific splice variant, nArgBP2, are interactors and substrates of Abl/Arg tyrosine kinases and of the ubiquitin ligase Cbl. They are members of a family of adaptor proteins that colocalize with actin on stress fibers and at cell-adhesion sites, including neuronal synapses. We show here that their NH2-terminal region, which contains a sorbin homology domain domain, interacts with spectrin, and we identify binding proteins for their COOH-terminal SH3 domains. All these binding partners participate in the regulation of the actin cytoskeleton. These include dynamin, synaptojanin, and WAVE isoforms, as well as WAVE regulatory proteins. At least two of the ArgBP2/nArgBP2 binding partners, synaptojanin 2B and WAVE2, undergo ubiquitination and Abl-dependent tyrosine phosphorylation. ArgBP2/nArgBP2 knockdown in astrocytes produces a redistribution of focal adhesion proteins and an increase in peripheral actin ruffles, whereas nArgBP2 overexpression produces a collapse of the actin cytoskeleton. Thus, ArgBP2/nArgBP2 is a scaffold protein that control the balance between adhesion and motility by coordinating the function of multiple signaling pathways converging on the actin cytoskeleton.  相似文献   

20.
We have described previously that in extracts of A431 cells epidermal growth factor (EGF) stimulates the phosphorylation of tyrosine as well as of threonine residues in the EGF receptor and in lipocortin 1. We now report that heparin at low concentrations also stimulates the autophosphorylation of the EGF receptor and of the recombinant 56-kDa domain of the EGF receptor that lacks the EGF binding site. To study the stimulations of phosphorylation of threonine residues, a fusion protein was prepared with glutathione S-transferase (GST) and an EGF receptor fragment, TK8 (residues 647-688), that contains the threonine phosphorylation site but no tyrosine. We show that the phosphorylation of threonine residues in GST-TK8 by extracts of A431 cells is stimulated by heparin but not by EGF. These and other results suggest that heparin acts as a chaperone, a substrate modulator, that enhances the susceptibility of the substrate to phosphorylation by protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号