首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSETo determine the importance of obtaining precontrast T1-weighted magnetization transfer (MT) MR images for better interpretation contrast-enhanced T1-weighted MT images.METHODSOne hundred fifty-five patients referred for MR imaging of the brain were examined prospectively with noncontrast T1-weighted imaging, noncontrast T1-weighted imaging with MT, contrast-enhanced T1-weighted imaging, and contrast-enhanced T1-weighted imaging with MT. In the patients who had abnormally increased signal intensity on postcontrast images (with or without MT), the four imaging sequences were evaluated with regard to number of lesions and lesional signal intensity. For each of the sequences, two experienced neuroradiologists subjectively graded the lesions on a scale of 1 to 4 (4 being the most conspicuous) with regard to abnormally increased signal intensity.RESULTSTwenty-two of the 155 patients had increased signal intensity on one or more of the postcontrast sequences. Eight of these 22 patients had increased signal intensity of one or more lesions on images without MT. All these lesions were seen better on images obtained with MT. An additional six of the 22 patients had increased signal intensity of one or more lesions on images obtained with MT that was not detected on images obtained without MT. Eight of the 22 patients had no high signal intensity on noncontrast images with or without MT. One of the eight had increased number and conspicuity of lesions on postcontrast MT images.CONCLUSIONSA significant number of patients had increased signal intensity on noncontrast T1-weighted images with MT that was not seen on noncontrast T1-weighted images without MT. This high signal intensity was also visible on postcontrast MT images, and would have been mistaken for pathologic enhancement if noncontrast MT images had not been available for comparison.  相似文献   

2.
OBJECTIVE: Relative hypointensity on T1-weighted MR imaging has been suggested as a putative disability marker. The purpose of our study was to determine if there are quantifiable diffusion differences among focal multiple sclerosis lesions that appear differently on conventional T1-weighted MR images. We hypothesized that markedly hypointense lesions on unenhanced T1-weighted images would have significantly increased diffusion compared with other lesions, and enhancing portions of lesions would have different diffusion compared with nonenhancing lesions. SUBJECTS AND METHODS: Average apparent diffusion coefficient (ADC) was calculated for 107 lesions identified on T2-weighted images in 16 patients with multiple sclerosis and was compared with the ADC of normal white matter in 16 age- and sex-matched control subjects. Seventy-five nonenhancing lesions (29 isointense, 46 hypointense) and 32 enhancing lesions (6 isointense, 26 hypointense) were categorized on the basis of unenhanced T1-weighted MR imaging. RESULTS: Hypointense and isointense nonenhancing lesions both showed significantly higher ADC than normal white matter (p < 0.0001). Hypointense nonenhancing lesions showed higher ADC values than isointense nonenhancing lesions (p < 0.0001). Diffusion in enhancing portions of enhancing lesions was decreased when compared with nonenhancing portions. CONCLUSION: Quantitative diffusion data from MR imaging differ among multiple sclerosis lesions that appear different from each other on T1-weighted images. These quantitative diffusion differences imply microstructural differences, which may prove useful in documenting irreversible disease.  相似文献   

3.
RATIONALE AND OBJECTIVES: This study was undertaken to clarify the difference in signal pattern on contrast material-enhanced T1-weighted magnetic resonance (MR) magnetization transfer (MT) images between enhancing and nonenhancing lesions in various intracranial diseases and to determine the necessity of nonenhanced MT images for evaluating lesional contrast enhancement. MATERIALS AND METHODS: MR images of 116 patients who underwent nonenhanced T1-weighted imaging, nonenhanced MT imaging, and contrast-enhanced MT imaging were reviewed. The increase in signal intensity of lesions relative to normal brain was compared between nonenhanced T1-weighted images and contrast-enhanced MT images. Signal intensity of lesions was compared with that of the striate nucleus and white matter on contrast-enhanced MT images. True enhancement was determined by comparison with nonenhanced MT images. RESULTS: In all, 143 lesions, including 86 enhancing and 57 nonenhancing lesions, were identified among 63 patients. Almost all (99%) of the enhancing lesions were hyperintense to striate nucleus on contrast-enhanced MT images, and most (>87%) showed moderate to marked signal intensity increase from nonenhanced T1-weighted images to contrast-enhanced MT images. Most (>95%) of the nonenhancing lesions showed mild or no increase in relative signal intensity, and most (75%) were iso- or hypointense to striate nucleus on contrast-enhanced MT images. A few nonenhancing lesions (4%-6%), however, showed increase in signal intensity that was indistinguishable from true enhancement without comparison to non-enhanced MT images. CONCLUSION: Nonenhanced MT images should be obtained to assess pathologic enhancement accurately.  相似文献   

4.
The purpose of this study was to determine the efficacy of gadobenate dimeglumine (Gd-BOPTA)-enhanced magnetic resonance (MR) imaging for evaluation of hepatocellular carcinoma HCC. MR images were obtained in 14 patients with 31 HCC nodules as a part of a phase III clinical trial. T1- and T2-weighted images were obtained before and after iv administration of 0.1 mmol/kg of Gd-BOPTA. Two blinded readers evaluated pre- and delayed postcontrast images separately for detection of tumor nodules. Quantitative measurements of signal-to-noise (SNR) and tumor/liver contrast-to-noise (CNR) ratios were also performed. A signal/intensity ratio was calculated. Tumor enhancement was correlated with histologic findings. Consensus agreement of precontrast T1- and T2-weighted images revealed 23/31 HCC nodules in 14 patients; postcontrast T1-weighted images demonstrated 24/31 HCC nodules in the same number of patients. Combining both pre- and postcontrast images, 27/31 lesions were detected. Four patients had four well-differentiated HCC nodules detected only on postcontrast images, while three well-differentiated lesions in two patients were only seen on precontrast images. Quantitative evaluation showed an SNR ratio increase in both liver parenchyma and HCC nodules, as well as a significant increase in the absolute CNR ratio on postcontrast T1-weighted gradient-recalled images (P < 0.05). Well-differentiated HCC lesions showed a greater enhancement than poorly differentiated HCC lesions.  相似文献   

5.
PURPOSETo compare the efficacy of single-dose gadolinium with magnetization transfer contrast (MTC) with that of triple-dose gadolinium in detecting enhancing multiple sclerosis lesions.METHODSTwenty-one patients with multiple sclerosis were examined with MR imaging first with 0.1 mmol/kg gadolinium (single dose) and then, after 24 to 72 hours, with 0.3 mmol/kg gadolinium (triple dose). T2-weighted fast spin-echo and T1-weighted spin-echo MR images with and without MTC were obtained before contrast administration followed by either T1-weighted spin-echo images with MTC (single dose) or conventional T1-weighted spin-echo images (triple dose), starting 5, 17, and 29 minutes after contrast administration. All images were evaluated in a blinded fashion and scored in random order by two readers. Outcome parameters included number of enhancing lesions, number of active MR examinations (those containing at least one enhancing lesion), contrast ratio (signal intensity of enhancing lesion divided by signal intensity of normal-appearing white matter), and size of enhancing lesions.RESULTSEighty-one percent more enhancing lesions and 49% more active MR examinations were detected when a triple dose of gadolinium was used as compared with a single dose. The level of agreement between readers as to the number of enhancing lesions was significantly higher for triple-dose than for single-dose gadolinium. With triple-dose gadolinium, contrast ratios and areas of enhancement increased by 10% and 33%, respectively. Delayed imaging increased the size of the lesion by 11% on single-dose MTC images and by 18% on triple-dose images.CONCLUSIONTriple-dose gadolinium is more effective (higher sensitivity and interobserver agreement) than single-dose gadolinium in combination with MTC in detecting enhancing multiple sclerosis lesions.  相似文献   

6.
PURPOSETo investigate the relationship between the appearance of multiple sclerosis lesions identified on unenhanced T1-weighted images and their corresponding magnetization transfer ratios.METHODSA total of 119 white matter lesions seen on T2-weighted images in 17 patients with multiple sclerosis were evaluated. Axial T1-weighted images were used to classify the lesions as isointense to white matter (10 lesions), hypointense to white matter but hyperintense to gray matter (44 lesions), hypointense to gray matter (59 lesions), and relatively isointense to cerebrospinal fluid (6 lesions). The magnetization transfer ratio of each lesion was calculated, and an average magnetization transfer ratio for each subcategory was determined.RESULTSThe magnetization transfer ratio values became progressively lower with increasing hypointensity of lesions on T1-weighted images. The average magnetization transfer ratio for lesions isointense to white matter, hypointense to white matter but hyperintense to gray matter, hypointense to gray matter, and relatively isointense to cerebrospinal fluid was 34.90 +/- 2.67 mean +/- SD), 30.93 +/- 3.57, 27.27 +/- 3.56, and 23.62 +/- 2.83, respectively. All groups were significantly different from each other.CONCLUSIONLesions isointense to white matter exhibited higher magnetization transfer ratio values than lesions that were hypointense. These findings are consistent with relative preservation of the myelin structure in the former, perhaps indicating that these lesions are predominantly inflammatory (edematous) in nature. The proportionately lower magnetization transfer ratio values of lesions that appear progressively more hypointense on T1-weighted images may reflect varying degrees of demyelination, with increasing lesion hypointensity corresponding to more breakdown in the macromolecular structure. These results suggest that T1-weighted images may be useful in characterizing the underlying pathologic substrate in multiple sclerosis plaques.  相似文献   

7.
PURPOSETo define the relationship between magnetization transfer and blood-brain-barrier breakdown in multiple sclerosis lesions using gadolinium enhancement as an index of the latter.METHODSTwo hundred twenty lesions (high-signal abnormalities on T2-weighted images) in 35 multiple sclerosis patients were studied with gadolinium-enhanced spin-echo imaging and magnetization transfer. Lesions were divided into groups having nodular or uniform enhancement, ring enhancement, or no enhancement after gadolinium administration. For 133 lesions, T1-weighted images without contrast enhancement were also analyzed. These lesions were categorized as isointense or hypointense based on their appearance on the unenhanced T1-weighted images.RESULTSThere was no difference between the magnetization transfer ratio (MTR) of lesions as a function of enhancement. MTR of hypointense lesions on unenhanced T1-weighted images was, however, lower than the MTR of isointense lesions.CONCLUSIONWe speculate that diminished MTR may reflect diminished myelin content and that hypointensity on T1-weighted images corresponds to demyelination. Central regions of ring-enhancing lesions had a lower MTR than the periphery, suggesting that demyelination in multiple sclerosis lesions occurs centrifugally. In addition, the short-repetition-time pulse sequence seems useful in the evaluation of myelin loss in patients with multiple sclerosis.  相似文献   

8.
Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging   总被引:24,自引:0,他引:24  
PURPOSE: To determine the clinical utility of gadolinium-enhanced fluid-attenuated inversion-recovery (FLAIR) magnetic resonance (MR) imaging of the brain by comparing results with those at gadolinium-enhanced T1-weighted MR imaging with magnetization transfer (MT) saturation. MATERIALS AND METHODS: In 105 consecutive patients referred for gadolinium-enhanced brain imaging, FLAIR and T1-weighted MR imaging with MT saturation were performed before and after administration of gadopentetate dimeglumine (0.1 mmol per kilogram of body weight). Pre- and postcontrast images were evaluated to determine the presence of abnormal contrast enhancement and whether enhancement was more conspicuous with the FLAIR or T1-weighted sequences. RESULTS: Thirty-nine studies showed intracranial contrast enhancement. Postcontrast T1-weighted images with MT saturation showed superior enhancement in 14 studies, whereas postcontrast fast FLAIR images showed superior enhancement in 15 studies. Four cases demonstrated approximately equal contrast enhancement with both sequences. Six cases showed some areas of enhancement better with T1-weighted imaging with MT saturation and other areas better with postcontrast fast FLAIR imaging. Superficial enhancement was typically better seen with postcontrast fast FLAIR imaging. CONCLUSION: Fast FLAIR images have noticeable T1 contrast making gadolinium-induced enhancement visible. Gadolinium enhancement in lesions that are hyperintense on precontrast FLAIR images, such as intraparenchymal tumors, may be better seen on T1-weighted images than on postcontrast fast FLAIR images. However, postcontrast fast FLAIR images may be useful for detecting superficial abnormalities, such as meningeal disease, because they do not demonstrate contrast enhancement of vessels with slow flow as do T1-weighted images.  相似文献   

9.
A pulse sequence with magnetization transfer as the main contrast mechanism (MT-FLASH) was developed for improved imaging of breast lesions that requires neither fat suppression nor postprocessing. After optimization of the sequence in phantom and volunteer studies, a clinical pilot study with 14 patients was performed. In carcinomas the relative signal increase after Gd-DTPA administration was on average 34% in MT-FLASH images compared with 169% in conventional T1 weighted (T1W) three-dimensional FLASH images. In MT-FLASH images, all lesions demonstrated a signal intensity higher than that of fat; in T1W images, all lesions have a lower signal intensity. The average postcontrast carcinoma-to-fat contrast-to-noise ratios were +11.6 and ?14.2, respectively. The conspicutty of 12 of 13 carcinomas was improved in postcontrast MT-FLASH images compared with postcontrast T1w images. Thus, MT-FLASH imaging enables excellent visualization of Gd-DTPA-enhancing breast lesions.  相似文献   

10.
PURPOSEWe evaluated the appearance of enhancing multiple sclerosis (MS) lesions on unenhanced T1-weighted MR images and the natural course of enhancing MS lesions on serial unenhanced T1-weighted and magnetization transfer (MT) MR images.METHODSOne hundred twenty-six enhancing lesions were followed up monthly for 6 to 12 months to determine their signal intensity on unenhanced T1-weighted and MT MR images. At the time of initial enhancement, the size of the lesion and the contrast ratio of enhancement were calculated for each enhancing lesion. During follow-up, the contrast ratio on the corresponding unenhanced T1-weighted image was measured, and an MT ratio (MTR) was calculated.RESULTSTwenty-five enhancing lesions (20%) appeared isointense and 101 lesions (80%) appeared hypointense relative to normal-appearing white matter on unenhanced T1-weighted images. During 6 months of follow-up, four MR patterns of active lesions were detected: initially isointense lesions remained isointense (15%); initially isointense lesions became hypointense (5%, most of which reenhanced); initially hypointense lesions became isointense (44%); and initially hypointense lesions remained hypointense (36%). MTR was significantly lower for hypointense lesions as compared with isointense lesions at the time of initial enhancement. For lesions that changed from hypointense to isointense, MTR increased significantly during 6 months of follow-up. Multiple regression analysis showed that strongly decreased MTR at the time of initial enhancement and enhancement duration of more than one scan were predictive of a hypointense appearance on unenhanced T1-weighted images at 6 months'' follow-up. Ring enhancement was found to be the only (weak) predictor of persistently hypointense signal intensity.CONCLUSIONMost enhancing lesions appear slightly to significantly hypointense on unenhanced T1-weighted images. Although most hypointensities are reversible, only those lesions that fail to recover on unenhanced T1-weighted and MT images may have considerable irreversible structural changes.  相似文献   

11.
PURPOSE: Few reports address the use of fluid-attenuated inversion-recovery (FLAIR) images of the brain in the diagnosis of extraaxial lesions. Our purpose was to assess the value of FLAIR images, including postcontrast ones, in the diagnosis of intracranial meningeal diseases. METHODS: We reviewed precontrast (n=24) and postcontrast (n=20) FLAIR images obtained from 25 patients with infectious meningitis (n=13), carcinomatous meningitis or dissemination of primary brain tumor (n=7), dural metastasis (n=3), and others (n=2) in comparison with fast spin-echo T2-weighted and postcontrast T1-weighted images. RESULTS: In lesion detectability, precontrast FLAIR images were significantly superior to fast spin-echo T2-weighted images but inferior to postcontrast T1-weighted images. There was no significant difference between postcontrast T1-weighted and FLAIR images. CONCLUSION: Precontrast FLAIR images can substitute for conventional fast spin-echo T2-weighted images. Postcontrast FLAIR images have diagnostic potential equivalent to conventional postcontrast T1-weighted images.  相似文献   

12.
PURPOSEWe developed and evaluated clinically T1-weighted three-dimensional gradient-echo magnetization transfer (MT) sequences for contrast-enhanced MR imaging of the brain.METHODSA short-repetition-time, radio frequency-spoiled, 3-D sequence was developed with a 10-millisecond MT pulse at high MT power and narrow MT pulse-frequency offset, and the enhancing lesion-to-normal white matter background (L/B) and the contrast-to-noise (C/N) ratios on these images were compared with those on T1-weighted spin-echo images and on non-MT 3-D gradient-echo images in a prospective study of 45 patients with 62 enhancing lesions. In the 24 patients who had intracranial metastatic disease, the number of lesions was counted and compared on the three types of images.RESULTSThe MT ratio of normal callosal white matter was 55% on the MT 3-D gradient-echo sequences. The L/B and C/N on the MT 3-D gradient-echo images were more than double those on the 3-D gradient-echo images, and were significantly greater than those on the T1-weighted spin-echo images. In patients with metastatic disease, the MT 3-D gradient-echo images showed significantly more lesions than did the T1-weighted spin-echo or 3-D gradient-echo images.CONCLUSIONMT 3-D gradient-echo MR imaging improves the contrast between enhancing lesion and background white matter over that obtained with conventional T1-weighted 3-D gradient-echo and spin-echo imaging. MT 3-D gradient-echo imaging provides practical sampling, image coverage, and spatial resolution, attributes that may be advantageous over MT T1-weighted spin-echo techniques.  相似文献   

13.
Our purpose was to analyze and compare the image quality and contrast-to-noise ratio (CNR) of different fast T1- and T2-weighted sequences with conventional spin-echo sequences in renal MRI. Twenty-three patients with focal renal lesions were examined with a T2-weighted ultrafast turbo spin-echo (UTSE) sequence with and without frequency selective fat suppression (SPIR), a combined gradient-and-spin-echo sequence (GraSE), and a conventional spin-echo sequence (SE). In addition, T1-weighted images were obtained pre-and postcontrast, using a fast spin-echo sequence (TSE) with and without SPIR and the conventional SE sequence. Among the T2-weighted images, the highest CNR and the best image quality were obtained with the UTSE sequence, followed by the fat-suppressed UTSE sequence. GraSE and conventional SE sequences showed a significantly lower CNR and image quality (p < 0.05). The T1-weighted sequences did not show significant differences, in either precontrast or postcontrast measurements. T2-weighted UTSE with and without fat suppression combined excellent image quality and high CNR for imaging and detection of renal lesions. The T1-weighted fast sequences provided no alternative to the gradient-echo or to the conventional SE sequences. The results of this systematic study suggest the use of T2-weighted fast techniques for improved diagnostic accuracy of renal MRI.  相似文献   

14.
To determine whether long TR MR imaging is best performed before or after IV administration of gadopentetate dimeglumine, we obtained spin-density- and T2-weighted images before and after contrast administration in 21 patients with known intracranial enhancing lesions. Of 25 lesions demonstrating enhancement on T1-weighted sequences, 21 showed mild or moderate enhancement on spin-density-weighted sequences and 20 showed mild enhancement on T2-weighted sequences. Importantly, no spin-density or T2 information was obscured by the administration of gadopentetate dimeglumine, and no T2 shortening effects were visible. Two new foci of enhancement were visible on postcontrast spin-density- and T2-weighted images that were missed on postcontrast T1-weighted images and on precontrast spin-density- and T2-weighted studies. Visualization of new areas of enhancement is the main advantage provided by the long TR images obtained after IV injection of gadopentetate dimeglumine. The most likely reason for the appearance of these newly visualized lesions is thought to be delayed enhancement. This imaging protocol also allows the display of adjacent edema or gliosis and enhancing lesions on a single image. Additionally, in three cases, posterior fossa phase-shift artifacts raised the suspicion of an enhancing lesion on postcontrast T1-weighted images, but the cerebellum was shown to be normal on the postcontrast spin-density- and T2-weighted studies. On the basis of our results, we recommend obtaining long TR images after rather than before the administration of gadopentetate dimeglumine in patients with intracranial enhancing lesions.  相似文献   

15.
Our purpose was to identify the histologic types of malignant liver lesions with high signal intensity (SI) on T1-weighted images and to describe the MR imaging features. Thirteen patients with malignant liver lesions high in SI on T1-weighted images were studied with a 1.5-T MR imager using pre- and serial postcontrast spoiled gradient-echo (SGE) sequences (all patients), T2-weighted fat-suppressed spin-echo sequences (all patients), precontrast T1-weighted fat-suppressed spin-echo sequences (five studies in five patients), and precontrast out-of-phase SGE sequences (seven studies in six patients). Images were reviewed retrospectively to determine number of lesions; lesion size; SI of lesions on T1-weighted, T2-weighted, and fat-attenuated T1-weighted images; distribution of high SI in lesions on T1-weighted images; and tumor enhancement pattern. Seven patients had multiple tumors high in SI on T1-weighted images and six patients had solitary tumors. Seventy-two lesions were less than 1.5 cm in diameter and 35 lesions were more than 1.5 cm in diameter. Nine patients had solid malignant lesions and four patients had cystic malignant lesions. All tumors more than 1.5 cm in diameter were heterogeneously high in SI on T1-weighted images, and all tumors less than 1.5 cm were completely homogeneous or homogeneous with a small central hypointense focus. All tumors were more conspicuous on T1-weighted fat-attenuated images, both on excitation spoiled fat-suppressed spin-echo or on out-of-phase SGE images with the exception of one fat-containing hepatocellular carcinoma (HCC). In one patient with melanoma metastases and one patient with multiple myeloma nodules, appreciably more lesions were detected on out-of-phase SGE images. Causes of hyperintensity were considered to be either fat, melanin, central hemorrhage, or high protein content, all of which may be seen in a variety of tumors. Fat-attenuation techniques are helpful in the detection of these lesions.  相似文献   

16.
Five patients with Sturge-Weber syndrome were evaluated by conventional noncontrast spin-echo MR imaging, a gradient-recalled echo (GRE) technique, and T1-weighted spin-echo imaging after administration of gadopentetate dimeglumine. In four of five cases the full extent of intracranial disease was appreciated only on the postcontrast images. In one patient precontrast and GRE images were entirely normal, while only the postcontrast study demonstrated extensive involvement of both brain and retina. Nevertheless, some abnormal vessels with higher flows were seen better on precontrast T2-weighted images than on postcontrast T1-weighted images. GRE techniques demonstrated calcifications to best advantage, in one case even better than on CT. Contrast enhancement with gadopentetate dimeglumine is necessary for the complete MR evaluation of patients with suspected Sturge-Weber syndrome. Traditional noncontrast T2-weighted and GRE images may provide additional complementary information.  相似文献   

17.
PURPOSETo assess the usefulness of fast fluid-attenuated inversion-recovery (FLAIR) MR sequences in the diagnosis of intracranial infectious diseases.METHODSWe compared fast FLAIR images with conventional spin-echo images (T1- and T2-weighted) obtained in 20 patients with infectious diseases (six with encephalitis, five with brain abscesses, three with meningitis, two with meningoencephalitis, two with Creutzfeldt-Jakob disease, one with epidural empyema, and one with cysticercosis). Two neuroradiologists independently reviewed the FLAIR images and compared them with the conventional spin-echo images, obtaining agreement in all patients.RESULTSFLAIR images of diagnostic quality were obtained in 18 patients. In two patients, FLAIR images were degraded by motion. Lesions in the patients with encephalitis and meningoencephalitis were better delineated on FLAIR images than on spin-echo images. FLAIR images clearly depicted lesions in the basal ganglia in both patients with Creutzfeldt-Jakob disease. In patients with brain abscess, meningitis, cysticercosis, and epidural empyema, FLAIR images provided no more information than conventional spin-echo images, and the lesions were seen better on postcontrast T1-weighted spin-echo images.CONCLUSIONFast FLAIR images showed pathologic changes in intracranial infectious diseases better than or as well as conventional T2- and proton density-weighted spin-echo sequences. However, postcontrast T1-weighted spin-echo sequences resulted in better visibility of abscess, meningitis, cysticercosis, and epidural empyema than did FLAIR images.  相似文献   

18.
Our purpose was to evaluate the role of magnetization transfer and image subtraction in detecting more enhancing lesions in brain MR imaging of patients with multiple sclerosis (MS). Thirty-one MS patients underwent MR imaging of the brain with T1-weighted spin echo sequences without and with magnetization transfer (MT) using a 1.5 T imager. Both sequences were acquired before and after intravenous injection of a paramagnetic contrast agent. Subtraction images in T1-weighted sequences were obtained by subtracting the pre-contrast images from the post-contrast ones. A significant difference was found between the numbers of enhanced areas in post-gadolinium T1-weighted images without and with MT (p=0.020). The post-gadolinium T1-weighted images with MT allowed the detection of an increased (13) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. A significant difference was also found between the numbers of enhanced areas in post-gadolinium T1-weighted images without MT and subtraction images without MT (p=0.020). The subtraction images without MT allowed the detection of an increased (10) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. Magnetization transfer contrast and subtraction techniques appear to be the simplest and least time-consuming applications to improve the conspicuity and detection of contrast-enhancing lesions in patients with MS.  相似文献   

19.
PURPOSETo determine whether magnetization transfer contrast can differentiate acute from chronic lesions in multiple sclerosis.METHODSThirteen patients with multiple sclerosis and eight healthy patients were studied with MR using a 0.1-T system. Relatively T2-weighted spin-echo images were obtained without and with magnetization transfer contrast. The magnetization transfer effect of multiple sclerosis lesions was calculated and compared with the ages of the lesions. The magnetization transfer effect of normal-appearing white matter in patients with multiple sclerosis was calculated and compared with the magnetization transfer effect of white matter in healthy volunteers. Statistical analysis was performed.RESULTSWhite matter in the healthy volunteers had values from 0.40 to 0.45. Normal-appearing white matter in the patients with multiple sclerosis had magnetization transfer effect values ranging from 0.41 to 0.45. Multiple sclerosis plaques of less than 1 year''s duration had magnetization transfer effect values ranging from 0.05 to 0.26; older plaques had values from 0.25 to 0.41. The difference in the distributions of these values for acute and chronic multiple sclerosis plaques is statistically significant.CONCLUSIONCurrent imaging modalities do not differentiate acute multiple sclerosis lesions from chronic ones. Our data on magnetization transfer show a statistically significant difference in magnetization transfer effect values between lesions of less than 1 year''s duration and older lesions. The different values may correspond to the histologic changes of multiple sclerosis plaques over time. Magnetization transfer may be a reliable method for determining the age of multiple sclerosis lesions.  相似文献   

20.
Manganese (II) N,N'-dipyridoxylethylenediamine-N,N'-diacetate-5,5'-bis(phosphate) (DPDP) was evaluated as a contrast agent for magnetic resonance (MR) imaging (1.5 T) of focal liver lesions in 40 patients. Doses of 5 and 10 mumol/kg were administered intravenously. Mn-DPDP-enhanced T1-weighted images were compared quantitatively and subjectively with standard T1- and T2-weighted nonenhanced images. Use of Mn-DPDP resulted in a statistically significant increase in signal intensity of liver parenchyma in T1-weighted images at both doses. No enhancement was seen in metastases, cholangiocarcinomas, or lymphomas, while all hepatocellular carcinomas were enhanced. Enhancement was seen in focal nodular hyperplasia and in regenerative nodules. The lesion-to-liver contrast in Mn-DPDP-enhanced gradient-recalled-echo images was superior to that of all precontrast images (P less than .01). The number of nonenhancing malignant liver lesions detected in spin-echo (SE) images was increased (272 in T2-weighted SE images vs 390 in T1-weighted Mn-DPDP-enhanced SE images). Image interpretation (eg, visualization and demarcation of the lesions) was markedly better in Mn-DPDP-enhanced images than in all precontrast images (P less than .001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号