首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis of autoaggressive T cells in the central nervous system (CNS) and subsequent phagocytosis by microglia is probably crucial in the rapid resolution of the inflammatory infiltrate in T cell mediated neuroinflammatory diseases. In addition to mere clearance, phagocytosis of apoptotic leukocytes results in the downregulation of different microglial immune functions. Chemoattractive functions of Lewis rat microglia and secretion of chemokines and matrix-metalloproteinases (MMPs) were investigated after phagocytosis of apoptotic T cells in vitro. In a modified Boyden chamber assay migration of encephalitogenic T cells toward LPS-stimulated microglial supernatants after phagocytosis of apoptotic thymocytes was reduced by 24.9% in comparison to interaction with viable target cells (P < 0.001). Phagocytosis of apoptotic cells downregulated CC-chemokine ligand (CCL)-5-secretion by LPS-stimulated microglia by 66.2% (P < 0.001), whereas there was only a trend toward decreased CCL2-secretion. As determined by gelatinase-zymography, secretion of MMP-9 by microglia was decreased after phagocytosis of apoptotic cells, whereas MMP-2 secretion was not altered. These mechanisms may reduce further recruitment of pathogenic inflammatory cells into the CNS-lesion and thus contribute to the active resolution of the inflammatory infiltrate and termination of the autoimmune attack.  相似文献   

2.
Microglia express Toll‐like receptors (TLRs) that recognize invading pathogens as well as endogenous proteins such as fibronectin under nonphysiological conditions. Here, we demonstrated that fibronectin stimulates murine microglia in culture in a dose‐dependent manner: microglial cells secreted proinflammatory cytokines and chemokines and increased phagocytosis of Escherichia coli DH5α and E. coli K1 strains. Low levels of fibronectin exerted a synergistic effect on the release of proinflammatory compounds by microglia co‐stimulated with agonists for TLR1/2 (Pam3CSK4) or TLR9 (CpG DNA), but not in combination with the TLR4 agonist lipopolysaccharide (LPS). Phagocytosis of bacterial strains was moderately enhanced when microglia was co‐stimulated with high concentrations of fibronectin and one pathogen‐derived TLR agonist. In conclusion, fibronectin increased proinflammatory and phagocytotic functions in microglia and partially synergized with microbial TLR agonists. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Microglial polarization to the anti-inflammatory M2 phenotype is essential in resolving neuroinflammation, making it a promising therapeutic strategy for stroke intervention. The actin cytoskeleton is known to be important for the physiological functions of microglia, including migration and phagocytosis. Profilin 1 (PFN1), an actin-binding protein, is involved in the dynamic transformation and reorganization of actin. However, the role of PFN1 in microglial polarization and ischemia/reperfusion injury is unclear. The role of PFN1 on microglial polarization was examined in vitro in BV2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGDR) and in vivo in male mice after transient middle cerebral artery occlusion (MCAO). Knockdown of PFN1 inhibited M1 microglial polarization and promoted M2 microglia polarization 48 hr after OGDR stimulation in BV2 cells and 7 days after MCAO-induced injury in male mice. RhoA/ROCK pathway was involved in the regulation of PFN1 during microglial polarization. Knockdown of PFN1 also significantly attenuated brain infarcts and edema, improved cerebral blood flow and neurological deficits in MCAO-injured mice. Inhibition of PFN1 effectively protected the brain against ischemia/reperfusion injuries by promoting M2 microglial polarization in vitro and in vivo.  相似文献   

4.
Cytokine secretion and phagocytosis are key functions of activated microglia. However, the molecular mechanisms underlying their regulation in microglia remain largely unknown. Here, we report that synaptotagmin‐11 (Syt11), a non‐Ca2+‐binding Syt implicated in Parkinson disease and schizophrenia, inhibits cytokine secretion and phagocytosis in microglia. We found Syt11 expression in microglia in brain slices and primary microglia. Interestingly, Syt11‐knockdown (KD) increased cytokine secretion and NO release in primary microglia both in the absence and presence of lipopolysaccharide. NF‐κB was activated in untreated KD microglia together with enhanced synthesis of IL‐6, TNF‐α, IL‐1β, and iNOS. When the release capacity was assessed by the ratio of extracellular to intracellular levels, only the IL‐6 and TNF‐α secretion capacity was increased in Syt11‐KD cells, suggesting that Syt11 specifically regulates conventional secretion. Consistently, Syt11 localized to the trans‐Golgi network and recycling endosomes. In addition, Syt11 was recruited to phagosomes and its deficiency enhanced microglial phagocytosis. All the KD phenotypes were rescued by expression of an shRNA‐resistant Syt11, while overexpression of Syt11 suppressed cytokine secretion and phagocytosis. Importantly, Syt11 also inhibited microglial phagocytosis of α‐synuclein fibrils, supporting its association with Parkinson disease. Taken together, we propose that Syt11 suppresses microglial activation under both physiological and pathological conditions through the inhibition of cytokine secretion and phagocytosis.  相似文献   

5.
6.
7.
Microglial NLRP3 inflammasome activation is emerging as a key contributor to neuroinflammation during neurodegeneration. Pathogenic protein aggregates such as β-amyloid and α-synuclein trigger microglial NLRP3 activation, leading to caspase-1 activation and IL-1β secretion. Both caspase-1 and IL-1β contribute to disease progression in the mouse SOD1G93A model of amyotrophic lateral sclerosis (ALS), suggesting a role for microglial NLRP3. Prior studies, however, suggested SOD1G93A mice microglia do not express NLRP3, and SOD1G93A protein generated IL-1β in microglia independent to NLRP3. Here, we demonstrate using Nlrp3-GFP gene knock-in mice that microglia express NLRP3 in SOD1G93A mice. We show that both aggregated and soluble SOD1G93A activates inflammasome in primary mouse microglia leading caspase-1 and IL-1β cleavage, ASC speck formation, and the secretion of IL-1β in a dose- and time-dependent manner. Importantly, SOD1G93A was unable to induce IL-1β secretion from microglia deficient for Nlrp3, or pretreated with the specific NLRP3 inhibitor MCC950, confirming NLRP3 as the key inflammasome complex mediating SOD1-induced microglial IL-1β secretion. Microglial NLRP3 upregulation was also observed in the TDP-43Q331K ALS mouse model, and TDP-43 wild-type and mutant proteins could also activate microglial inflammasomes in a NLRP3-dependent manner. Mechanistically, we identified the generation of reactive oxygen species and ATP as key events required for SOD1G93A-mediated NLRP3 activation. Taken together, our data demonstrate that ALS microglia express NLRP3, and that pathological ALS proteins activate the microglial NLRP3 inflammasome. NLRP3 inhibition may therefore be a potential therapeutic approach to arrest microglial neuroinflammation and ALS disease progression.  相似文献   

8.
l ‐tri‐iodothyronine (3, 3', 5–triiodothyronine; T3) is an active form of the thyroid hormone (TH) essential for the development and function of the CNS. Though nongenomic effect of TH, its plasma membrane–bound receptor, and its signaling has been identified, precise function in each cell type of the CNS remained to be investigated. Clearance of cell debris and apoptotic cells by microglia phagocytosis is a critical step for the restoration of damaged neuron‐glia networks. Here we report nongenomic effects of T3 on microglial functions. Exposure to T3 increased migration, membrane ruffling and phagocytosis of primary cultured mouse microglia. Injection of T3 together with stab wound attracted more microglia to the lesion site in vivo. Blocking TH transporters and receptors (TRs) or TRα‐knock‐out (KO) suppressed T3‐induced microglial migration and morphological change. The T3‐induced microglial migration or membrane ruffling was attenuated by inhibiting Gi/o‐protein as well as NO synthase, and subsequent signaling such as phosphoinositide 3‐kinase (PI3K), mitogen‐activated protein kinase (MAPK)/extracellular signal‐regulated kinase (ERK). Inhibitors for Na+/K+‐ATPase, reverse mode of Na+/Ca2+ exchanger (NCX), and small‐conductance Ca2+‐dependent K+ (SK) channel also attenuated microglial migration or phagocytosis. Interestingly, T3‐induced microglial migration, but not phagocytosis, was dependent on GABAA and GABAB receptors, though GABA itself did not affect migratory aptitude. Our results demonstrate that T3 modulates multiple functional responses of microglia via multiple complex mechanisms, which may contribute to physiological and/or pathophysiological functions of the CNS. GLIA 2015:63:906–920  相似文献   

9.
Lamin A/C is involved in macrophage activation and premature aging, also known as progeria. As the resident macrophage in brain, overactivation of microglia causes brain inflammation, promoting aging and brain disease. In this study, we investigated the role of Lamin A/C in microglial activation and its impact on progeria using Lmna−/− mice, primary microglia, Lmna knockout (Lmna-KO) and Lmna-knockdown (Lmna-KD) BV2 cell lines. We found that the microglial activation signatures, including cell proliferation, morphology changes, and proinflammatory cytokine secretion (IL-1β, IL-6, and TNF-α), were significantly suppressed in all Lamin A/C-deficient models when stimulated with LPS. TMT-based quantitative proteomic and bioinformatic analysis were further applied to explore the mechanism of Lamin A/C-regulated microglia activation from the proteome level. The results revealed that immune response and phagocytosis were impaired in Lmna−/− microglia. Stat1 was identified as the hub protein in the mechanism by which Lamin A/C regulates microglial activation. Additionally, DNA replication, chromatin organization, and mRNA processing were also altered by Lamin A/C, with Ki67 fulfilling the main hub function. Lamin A/C is a mechanosensitive protein and, the immune- and proliferation-related biological processes are also regulated by mechanotransduction. We speculate that Lamin A/C-mediated mechanotransduction is required for microglial activation. Our study proposes a novel mechanism for microglial activation mediated by Lamin A/C.  相似文献   

10.
Microglial cell plays a crucial role in the development and establishment of chronic neuropathic pain after spinal cord injuries. As neuropathic pain is refractory to many treatments and some drugs only present partial efficacy, it is essential to study new targets and mechanisms to ameliorate pain signs. For this reason we have used glibenclamide (GB), a blocker of KATP channels that are over expressed in microglia under activation conditions. GB has already been used to trigger the early scavenger activity of microglia, so we administer it to promote a better removal of dead cells and myelin debris and support the microglia neuroprotective phenotype. Our results indicate that a single dose of GB (1 μg) injected after spinal cord injury is sufficient to promote long‐lasting functional improvements in locomotion and coordination. Nevertheless, the Randall–Selitto test measurements indicate that these improvements are accompanied by enhanced mechanical hyperalgesia. In vitro results indicate that GB may influence microglial phagocytosis and therefore this action may be at the basis of the results obtained in vivo.  相似文献   

11.
Histamine is a physiological amine which initiates a multitude of physiological responses by binding to four known G‐protein coupled histamine receptor subtypes as follows: histamine H1 receptor (H1R), H2R, H3R, and H4R. Brain histamine elicits neuronal excitation and regulates a variety of physiological processes such as learning and memory, sleep–awake cycle and appetite regulation. Microglia, the resident macrophages in the brain, express histamine receptors; however, the effects of histamine on critical microglial functions such as chemotaxis, phagocytosis, and cytokine secretion have not been examined in primary cells. We demonstrated that mouse primary microglia express H2R, H3R, histidine decarboxylase, a histamine synthase, and histamine N‐methyltransferase, a histamine metabolizing enzyme. Both forskolin‐induced cAMP accumulation and ATP‐induced intracellular Ca2+ transients were reduced by the H3R agonist imetit but not the H2R agonist amthamine. H3R activation on two ubiquitous second messenger signalling pathways suggests that H3R can regulate various microglial functions. In fact, histamine and imetit dose‐dependently inhibited microglial chemotaxis, phagocytosis, and lipopolysaccharide (LPS)‐induced cytokine production. Furthermore, we confirmed that microglia produced histamine in the presence of LPS, suggesting that H3R activation regulate microglial function by autocrine and/or paracrine signalling. In conclusion, we demonstrate the involvement of histamine in primary microglial functions, providing the novel insight into physiological roles of brain histamine. GLIA 2015;63:1213–1225  相似文献   

12.
13.
Activation of microglia is the first and main immune response to brain injury. Release of the nucleotides ATP, ADP, and UDP from damaged cells regulate microglial migration and phagocytosis via purinergic P2Y receptors. We hypothesized that store‐operated Ca2+ entry (SOCE), the prevalent Ca2+ influx mechanism in non‐excitable cells, is a potent mediator of microglial responses to extracellular nucleotides. Expression analyses of STIM Ca2+ sensors and Orai Ca2+ channel subunits, that comprise the molecular machinery of SOCE, showed relevant levels of STIM1, STIM2, and Orai1 in cultured mouse microglia. STIM1 expression and SOCE were down‐regulated by treatment of microglia with lipopolysaccharide, suggesting that inflammation limits SOCE by lower STIM1 abundance. Ca2+ entry induced by cyclopiazonic acid, ATP, the P2Y6 receptor agonist UDP, or the P2Y12 receptor agonist 2‐methylthio‐ADP (2‐MeSADP) was clearly affected in microglia from Stim1–/–, Stim2–/–, and Orai1–/– mice. SOCE blockers or ablation of STIM1, STIM2, or Orai1 severely impaired nucleotide‐induced migration and phagocytosis in microglia. Thus, this study assigns SOCE, regulated by STIM1, STIM2, and Orai1 an essential role in purinergic signaling and activation of microglia. GLIA 2015;63:652–663  相似文献   

14.
Retinitis pigmentosa (RP), a disease characterized by the progressive degeneration of mutation‐bearing photoreceptors, is a significant cause of incurable blindness in the young worldwide. Recent studies have found that activated retinal microglia contribute to photoreceptor demise via phagocytosis and proinflammatory factor production, however mechanisms regulating these contributions are not well‐defined. In this study, we investigate the role of CX3CR1, a microglia‐specific receptor, in regulating microglia‐mediated degeneration using the well‐established rd10 mouse model of RP. We found that in CX3CR1‐deficient (CX3CR1GFP/GFP) rd10 mice microglial infiltration into the photoreceptor layer was significantly augmented and associated with accelerated photoreceptor apoptosis and atrophy compared with CX3CR1‐sufficient (CX3CR1GFP/+) rd10 littermates. CX3CR1‐deficient microglia demonstrated increased phagocytosis as evidenced by (1) having increased numbers of phagosomes in vivo, (2) an increased rate of phagocytosis of fluorescent beads and photoreceptor cellular debris in vitro, and (3) increased photoreceptor phagocytosis dynamics on live cell imaging in retinal explants, indicating that CX3CR1 signaling in microglia regulates the phagocytic clearance of at‐risk photoreceptors. We also found that CX3CR1 deficiency in retinal microglia was associated with increased expression of inflammatory cytokines and microglial activation markers. Significantly, increasing CX3CL1‐CX3CR1 signaling in the rd10 retina via exogenous intravitreal delivery of recombinant CX3CL1 was effective in (1) decreasing microglial infiltration, phagocytosis and activation, and (2) improving structural and functional features of photoreceptor degeneration. These results indicate that CX3CL1‐CX3CR1 signaling is a molecular mechanism capable of modulating microglial‐mediated degeneration and represents a potential molecular target in therapeutic approaches to RP. GLIA 2016;64:1479–1491  相似文献   

15.
C. Billingham, M. R. Powell, K. A. Jenner, D. A. Johnston, M. Gatherer, J. A. R. Nicoll and D. Boche (2013) Neuropathology and Applied Neurobiology 39, 243–255 Rat astrocytic tumour cells are associated with an anti‐inflammatory microglial phenotype in an organotypic model Aim: Microglia form a high proportion of cells in glial tumours but their role in supporting or inhibiting tumour growth is unclear. Here we describe the establishment of an in vitro model to investigate their role in astrocytomas. Methods: Rat hippocampal slices were prepared and, after 7 days to allow microglia to become quiescent, rat C6 astrocytic tumour cells were added. Over the following 7 days, infiltration and cell death were studied using fluorescent C6 tumour cells and confocal microscopy; immunophenotyping of microglia was performed using CD68 (phagocytosis), MHCII (antigen‐presentation) and Iba1 (microglial marker regardless of functional state). Cell proliferation was assessed using Ki67 and qPCR to detect cytokine expression. Sham and control groups were included. Results: Microscopy showed proliferation of C6 tumour cells with both infiltration of tumour cells into the hippocampal tissue and of microglia among the tumour cells. Confocal experiments confirmed increasing tumour cell infiltration into the hippocampal slice with time (P < 0.001), associated with cell death (σ = 0.313, P = 0.022). Ki67 showed increased proliferation (P < 0.001), of both tumour cells and Iba1+ microglia and increased microglial phagocytosis (CD68: P < 0.001). Expression of pro‐inflammatory cytokines IL1, IL6 and TNFα were downregulated with expression of the anti‐inflammatory cytokine TGFβ1 maintained. Conclusion: This model allows study of the proliferation and infiltration of astrocytic tumour cells in central nervous system tissue and their interaction with microglia. Our data suggest that microglial function is altered in the presence of tumour cells, putatively facilitating tumour progression. Manipulation of the microglial functional state may have therapeutic value for astrocytic tumours.  相似文献   

16.
Park JY  Paik SR  Jou I  Park SM 《Glia》2008,56(11):1215-1223
Gathering evidence has associated activation of microglia with the pathogenesis of numerous neurodegenerative diseases of the central nervous system (CNS) such as Alzheimer's disease and Parkinson's disease. Microglia are the resident macrophages of the CNS whose functions include chemotaxis, phagocytosis, and secretion of a variety of cytokines and proteases. In this study, we examined the possibility that alpha-synuclein (alpha-syn), which is associated with the pathogenesis of Parkinson's disease, may affect the phagocytic function of microglia. We found that extracellular monomeric alpha-syn enhanced microglial phagocytosis in both a dose- and time-dependent manner, but beta- and gamma- syn did not. We also found that the N-terminal and NAC region of alpha-syn, especially the NAC region, might be responsible for the effect of alpha-syn on microglial phagocytosis. In contrast to monomeric alpha-syn, aggregated alpha-syn actually inhibited microglial phagocytosis. The different effects of monomeric and aggregated alpha-syn on phagocytosis might be related to their localization in cells. This study indicates that alpha-syn can modulate the function of microglia and influence inflammatory changes such as those seen in neurodegenerative disorders.  相似文献   

17.
Previous studies in this laboratory have documented that the microglial environment of the immature spinal cord is altered by exposure to ionizing radiation. As a result, the lumbosacral spinal cord is markedly depleted of both oligodendrocytes and astrocytes, while leaving axons and the overall cytoarchitecture intact. The status of the microglia in the irradiated region is unknown and is of interest given the interactions between microglia and astrocytes recently elucidated by others. This study uses both in vivo and in vitro approaches to examine the microglial population in normal and irradiated immature spinal cord. The lectin, Griffonia (Bandeiraea) simplicifolia, was selected since it marks microglia both in paraffin embedded sections and in cell cultures. Light microscopic examination of spinal cord sections revealed a reduced microglial population in the irradiated region when compared to littermate controls, and a change in morphology of the remaining microglia to that described by others as ‘‘activated’’. Cultures prepared from lumbosacral spinal cords harvested from 3-day-old rats within 2–4 hr following irradiation were compared with cultures derived from their non-irradiated littermates after 8 days in vitro. Cultures from the irradiated spinal cords revealed trends similar to those observed in vivo, i.e. a reduced microglial population and altered morphology. Although all glial cell types were reduced in cultures from irradiated spinal cords, the few microglia present were usually positioned atop astrocytes. The consistency of reduction in all glial populations in this model shows the microglia to be a novel microenvironment for further studies of roles of microglia within the spinal cord.  相似文献   

18.
Microglia are resident immune cells in the brain and exert important functions in the regulation of inflammatory processes during infection or cellular damage. Upon activation, microglia undergo complex morphological and functional transitions, including increased motility, phagocytosis and cytokine secretion. Recent findings indicate that exosomes, small vesicles that derive from fusion of multivesicular bodies with the plasma membrane, are involved in secretion of certain cytokines. The presence of specific receptors on the surface of microglia suggests communication with neurons by neurotransmitters. Here, we demonstrate expression of serotonin receptors, including 5‐HT2a,b and 5‐HT4 in microglial cells and their functional involvement in the modulation of exosome release by serotonin. Our data demonstrate the involvement of cAMP and Ca2+ dependent signaling pathways in the regulation of exosome secretion. Co‐culture of microglia with embryonic stem cell‐derived serotonergic neurons further demonstrated functional signaling between neurons and microglia. Together, these data provide evidence for neurotransmitter‐dependent signaling pathways in microglial cells that regulate exosome release. GLIA 2015;63:626–634  相似文献   

19.
Microglia are rapidly activated in the central nervous system (CNS) in response to a variety of injuries, including inflammation, trauma, and stroke. In addition to modulation of the innate immune response, a key function of microglia is the phagocytosis of dying cells and cellular debris, which can facilitate recovery. Despite emerging evidence that axonal debris can pose a barrier to regeneration of new axons in the CNS, little is known of the cellular and molecular mechanisms that underlie clearance of degenerating CNS axons. We utilize a custom micropatterned microfluidic system that enables robust microglial‐axon co‐culture to explore the role of Toll‐like receptors (TLRs) in microglial phagocytosis of degenerating axons. We find that pharmacologic and genetic disruption of TLR4 blocks induction of the Type‐1 interferon response and inhibits phagocytosis of axon debris in vitro. Moreover, TLR4‐dependent microglial clearance of unmyelinated axon debris facilitates axon outgrowth. In vivo, microglial phagocytosis of CNS axons undergoing Wallerian degeneration in a dorsal root axotomy model is impaired in adult mice in which TLR4 has been deleted. Since purinergic receptors can influence TLR4‐mediated signaling, we also explored a role for the microglia P2 receptors and found that the P2X7R contributes to microglial clearance of degenerating axons. Overall, we identify TLR4 as a key player in axonal debris clearance by microglia, thus creating a more permissive environment for axonal outgrowth. Our findings have significant implications for the development of protective and regenerative strategies for the many inflammatory, traumatic, and neurodegenerative conditions characterized by CNS axon degeneration. GLIA 2014;62:1982–1991  相似文献   

20.
Microglia cells are brain macrophages whose proper functioning is essential for maintenance and repair processes of the central nervous system (CNS). Migration and phagocytosis are critical aspects of microglial activity. By using genetically modified cell lines and knockout mice we demonstrate here that the receptor protein‐tyrosine phosphatase (PTP) DEP‐1 (also known as PTPRJ or CD148) acts as a positive regulator of both processes in vitro and in vivo . Notably, reduced microglial migration was detectable in brains of Ptprj ?/? mice using a wounding assay. Mechanistically, density‐enhanced phosphatase‐1 (DEP‐1) may in part function by inhibiting the activity of the Src family kinase Fyn. In the microglial cell line BV2 DEP‐1 depletion by shRNA‐mediated knockdown resulted in enhanced phosphorylation of the Fyn activating tyrosine (Tyr420) and elevated specific Fyn‐kinase activity in immunoprecipitates. Moreover, Fyn mRNA and protein levels were reduced in DEP‐1 deficient microglia cells. Consistent with a negative regulatory role of Fyn for microglial functions, which is inhibited by DEP‐1, microglial cells from Fyn ?/? mice exhibited elevated migration and phagocytosis. Enhanced microglia migration to a site of injury was also observed in Fyn?/? mice in vivo . Taken together our data revealed a previously unrecognized role of DEP‐1 and suggest the existence of a potential DEP‐1—Fyn axis in the regulation of microglial functions. GLIA 2017;65:416–428  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号