首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Denosumab is a fully human monoclonal antibody that neutralizes the activity of RANKL, leading to the inhibition of osteoclast maturation, bone‐resorbing activity, and survival. Evaluation of trans–iliac crest bone biopsy specimens in the phase 3 pivotal fracture study with denosumab in postmenopausal women with osteoporosis showed evidence of reduced bone turnover at the tissue level in subjects receiving denosumab, and up to one‐third of subjects did not have evidence of tetracycline labeling in trabecular or cortical bone. Discontinuation of denosumab therapy has demonstrated that the effects of denosumab are reversible, as assessed by biochemical markers of bone turnover (BTM) and BMD. The precise nature of changes that occur at the tissue level with denosumab discontinuation have not been explored. Fifteen subjects were enrolled in a cohort study to evaluate the effects of denosumab discontinuation at the tissue level. Subjects had discontinued osteoporosis treatment for a mean time of 25.1 months (range 21 to 29 months). Bone histomorphometry results were compared with results from placebo‐treated women with osteoporosis in the denosumab phase 3 pivotal fracture bone biopsy substudy, and BTMs were compared with subjects' pretreatment values. The results of this study showed normal histology and bone remodeling similar to those observed in untreated postmenopausal women with osteoporosis. With treatment cessation, 100% of biopsy specimens had evidence of tetracycline labels. Biochemical markers were comparable to and highly correlated with pretreatment levels. These data confirm that the effects of denosumab on bone turnover at the tissue level are fully reversible. © 2011 American Society for Bone and Mineral Research  相似文献   

2.
Denosumab, a human monoclonal antibody against RANKL, reversibly inhibits osteoclast‐mediated bone resorption and has been developed for use in osteoporosis. Its effects on bone histomorphometry have not been described previously. Iliac crest bone biopsies were collected at 24 and/or 36 months from osteoporotic postmenopausal women in the FREEDOM study (45 women receiving placebo and 47 denosumab) and at 12 months from postmenopausal women previously treated with alendronate in the STAND study (21 continuing alendronate and 15 changed to denosumab at trial entry). Qualitative histologic evaluation of biopsies was unremarkable. In the FREEDOM study, median eroded surface was reduced by more than 80% and osteoclasts were absent from more than 50% of biopsies in the denosumab group. Double labeling in trabecular bone was observed in 94% of placebo bones and in 19% of those treated with denosumab. Median bone‐formation rate was reduced by 97%. Among denosumab‐treated subjects, those with double labels and those with absent labels had similar levels of biochemical markers of bone turnover. In the STAND trial, indices of bone turnover tended to be lower in the denosumab group than in the alendronate group. Double labeling in trabecular bone was seen in 20% of the denosumab biopsies and in 90% of the alendronate samples. Denosumab markedly reduces bone turnover and also reduces fracture numbers. Longer follow‐up is necessary to determine how long such low turnover is safe. © 2010 American Society for Bone and Mineral Research.  相似文献   

3.
Denosumab is a fully human monoclonal antibody against receptor activator of NF‐κB ligand (RANKL) that decreases osteoclast formation, function and survival, and is approved for the treatment of postmenopausal women with osteoporosis at increased or high risk for fracture, among other indications. During the pivotal 3‐year fracture trial FREEDOM, denosumab 60 mg subcutaneously every 6 months significantly reduced new vertebral (68%), hip (40%), and nonvertebral (20%) fractures; increased bone mineral density (BMD); and reduced bone turnover markers compared with placebo in postmenopausal women with osteoporosis. Questions have arisen regarding imbalances of certain low‐frequency adverse events (AEs) observed in FREEDOM, as well as the top 5 most frequent adverse reactions listed in the United States prescribing information (USPI; back pain, pain in extremity, musculoskeletal pain, hypercholesterolemia, and cystitis). We examined the incidences of these AEs in women who originally received placebo during FREEDOM and then received denosumab for up to 3 years during the FREEDOM Extension (Crossover Group). This provided a unique opportunity for comparison with the original 3‐year denosumab FREEDOM observations. We also examined the incidences of these AEs over 6 years of denosumab treatment (Long‐term Group; ie, comparing a second 3 years of treatment with findings in the first 3 years). There was no indication of increasing trends regarding the imbalances of either low‐frequency AEs or common AEs observed in FREEDOM. © 2017 American Society for Bone and Mineral Research.  相似文献   

4.
The bone mass benefits of antiresorbers in postmenopausal osteoporosis are limited by the rapid coupling of decreasing bone resorption with bone formation. Wnt signaling is involved in this coupling process during treatment with bisphosphonates, whereas its role during treatment with the anti‐receptor activator of NF‐κB ligand (RANKL) antibody denosumab is unknown. The study population includes patients participating in a placebo‐controlled trial lasting 36 months: 19 women were on placebo and 24 on subcutaneous 60 mg denosumab every 6 months. All measured parameters (serum C‐terminal telopeptide of type I collagen [sCTX], serum bone alkaline phosphatase [bAP], Dickkopf‐1 [DKK1], and sclerostin) remained unchanged during the observation period in the placebo group. sCTX and bAP were significantly suppressed by denosumab treatment over the entire follow‐up. Denosumab treatment was associated with significant (p < 0.05) increases (28% to 32%) in serum sclerostin over the entire study follow‐up. Serum DKK1 significantly decreased within the first 6 months with a trend for further continuous decreases, which reached statistical significance (p < 0.05) versus placebo group from the 18th month onward. The changes in DKK1 were significantly and positively related with the changes in sCTX and bAP and negatively with hip bone mineral density (BMD) changes. The changes in sclerostin were significantly and negatively related only with those of bAP. The changes in bone turnover markers associated with denosumab treatment of postmenopausal osteoporosis is associated with significant increase in sclerostin similar to those seen after long‐term treatment with bisphosphonates and significant decrease in DKK1. This latter observation might explain the continuous increase over 5 years in BMD observed during treatment of postmenopausal osteoporosis with denosumab. © 2012 American Society for Bone and Mineral Research.  相似文献   

5.
Patients treated with bisphosphonates for osteoporosis may discontinue or require a switch to other therapies. Denosumab binds to RANKL and is a potent inhibitor of bone resorption that has been shown to increase bone mineral density (BMD) and decrease fracture risk in postmenopausal women with osteoporosis. This was a multicenter, international, randomized, double‐blind, double‐dummy study in 504 postmenopausal women ≥ 55 years of age with a BMD T‐score of ?2.0 or less and ?4.0 or more who had been receiving alendronate therapy for at least 6 months. Subjects received open‐label branded alendronate 70 mg once weekly for 1 month and then were randomly assigned to either continued weekly alendronate therapy or subcutaneous denosumab 60 mg every 6 months and were followed for 12 months. Changes in BMD and biochemical markers of bone turnover were evaluated. In subjects transitioning to denosumab, total hip BMD increased by 1.90% at month 12 compared with a 1.05% increase in subjects continuing on alendronate (p < .0001). Significantly greater BMD gains with denosumab compared with alendronate also were achieved at 12 months at the lumbar spine, femoral neck, and 1/3 radius (all p < .0125). Median serum CTX levels remained near baseline in the alendronate group and were significantly decreased versus alendronate (p < .0001) at all time points with denosumab. Adverse events and serious adverse events were balanced between groups. No clinical hypocalcemic adverse events were reported. Transition to denosumab produced greater increases in BMD at all measured skeletal sites and a greater reduction in bone turnover than did continued alendronate with a similar safety profile in both groups. Copyright © 2010 American Society for Bone and Mineral Research  相似文献   

6.
Denosumab reduced bone resorption, increased bone mineral density (BMD), and decreased new vertebral, hip, and nonvertebral fracture risk in postmenopausal women with osteoporosis in the FREEDOM trial. Consistent with its mechanism of action, transiliac crest bone biopsies from subjects treated with denosumab for 1 to 3 years demonstrated reduced bone turnover that was reversible upon treatment cessation. Long‐term denosumab treatment for up to 6 years in the FREEDOM extension provides sustained bone turnover reduction and continued low fracture incidence. Here, we evaluate 5 years of denosumab treatment on bone remodeling at the tissue level. Transiliac crest bone biopsies were obtained from 41 subjects (13 cross‐over and 28 long‐term from the FREEDOM placebo and denosumab groups, respectively) at year 2 of the FREEDOM extension, representing up to 5 years of denosumab treatment. Demographics for this subset were comparable to the overall extension cohort. The mean (SD) duration from the last denosumab dose to the first dose of tetracycline was 5.7 (0.5) months. Qualitative bone histology assessed in all biopsy samples was unremarkable, showing normally mineralized lamellar bone. Structural indices, including trabecular bone volume, number, and surface, were similar between cross‐over and long‐term groups. Bone resorption was decreased as reflected by eroded surface in cross‐over and long‐term subjects. A total of 11 of 13 (85%) cross‐over subjects and 20 of 28 (71%) long‐term subjects had specimens with double or single tetracycline label in trabecular and/or cortical compartments; specimens from 5 cross‐over subjects and 10 long‐term subjects were evaluable for dynamic trabecular bone parameters. Dynamic remodeling indices were low for both groups and consistent with reduced bone turnover with denosumab. In conclusion, denosumab treatment through 5 years resulted in normal bone quality with reduced bone turnover. These observations are consistent with its mechanism of action and associated with continued BMD increases and low fracture incidence. © 2014 American Society for Bone and Mineral Research.  相似文献   

7.
Women with osteoporosis treated for 36 months with twice‐yearly injections of denosumab sustained fewer hip fractures compared with placebo. Treatment might improve femoral bone at locations where fractures typically occur. To test this hypothesis, we used 3D cortical bone mapping of postmenopausal women with osteoporosis to investigate the timing and precise location of denosumab versus placebo effects in the hips. We analyzed clinical computed tomography scans from 80 female participants in FREEDOM, a randomized trial, wherein half of the study participants received subcutaneous denosumab 60 mg twice yearly and the others received placebo. Cortical 3D bone thickness maps of both hips were created from scans at baseline, 12, 24, and 36 months. Cortical mass surface density maps were also created for each visit. After registration of each bone to an average femur shape model followed by statistical parametric mapping, we visualized and quantified statistically significant treatment effects. The technique allowed us to pinpoint systematic differences between denosumab and control and to display the results on a 3D average femur model. Denosumab treatment led to an increase in femoral cortical mass surface density and thickness, already evident by the third injection (12 months). Overall, treatment with denosumab increased femoral cortical mass surface density by 5.4% over 3 years. One‐third of the increase came from increasing cortical density, and two‐thirds from increasing cortical thickness, relative to placebo. After 36 months, cortical mass surface density and thickness had increased by up to 12% at key locations such as the lateral femoral trochanter versus placebo. Most of the femoral cortex displayed a statistically significant relative difference by 36 months. Osteoporotic cortical bone responds rapidly to denosumab therapy, particularly in the hip trochanteric region. This mechanism may be involved in the robust decrease in hip fractures observed in denosumab‐treated women at increased risk of fracture. © 2014 American Society for Bone and Mineral Research.  相似文献   

8.
In the randomized, placebo‐controlled FREEDOM study of women aged 60 to 90 years with postmenopausal osteoporosis, treatment with denosumab once every 6 months for 36 months significantly reduced hip and new vertebral fracture risk by 40% and 68%, respectively. To gain further insight into this efficacy, we performed a nonlinear finite element analysis (FEA) of hip and spine quantitative computed tomography (QCT) scans to estimate hip and spine strength in a subset of FREEDOM subjects (n = 48 placebo; n = 51 denosumab) at baseline, 12, 24, and 36 months. We found that, compared with baseline, the finite element estimates of hip strength increased from 12 months (5.3%; p < 0.0001) and through 36 months (8.6%; p < 0.0001) in the denosumab group. For the placebo group, hip strength did not change at 12 months and decreased at 36 months (–5.6%; p < 0.0001). Similar changes were observed at the spine: strength increased by 18.2% at 36 months for the denosumab group (p < 0.0001) and decreased by –4.2% for the placebo group (p = 0.002). At 36 months, hip and spine strength increased for the denosumab group compared with the placebo group by 14.3% (p < 0.0001) and 22.4% (p < 0.0001), respectively. Further analysis of the finite element models indicated that strength associated with the trabecular bone was lost at the hip and spine in the placebo group, whereas strength associated with both the trabecular and cortical bone improved in the denosumab group. In conclusion, treatment with denosumab increased hip and spine strength as estimated by FEA of QCT scans compared with both baseline and placebo owing to positive treatment effects in both the trabecular and cortical bone compartments. These findings provide insight into the mechanism by which denosumab reduces fracture risk for postmenopausal women with osteoporosis. © 2014 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research. This is an open access article under the terms of the Creative Commons Attribution–NonCommercial–NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.  相似文献   

9.
Receptor activator of NF‐κB ligand (RANKL) plays a key role in osteoclast‐induced bone resorption across a range of degenerative bone diseases, and its specific inhibition has been recently approved as a treatment for women with postmenopausal osteoporosis at high or increased risk of fracture in the United States and globally. In the present study, we generated transgenic mice (TghuRANKL) carrying the human RANKL (huRANKL) genomic region and achieved a physiologically relevant pattern of RANKL overexpression in order to establish novel genetic models for assessing skeletal and extraskeletal pathologies associated with excessive RANKL and for testing clinical therapeutic candidates that inhibit human RANKL. TghuRANKL mice of both sexes developed early‐onset bone loss, and the levels of huRANKL expression were correlated with bone resorption and disease severity. Low copy Tg5516 mice expressing huRANKL at low levels displayed a mild osteoporotic phenotype as shown by trabecular bone loss and reduced biomechanical properties. Notably, overexpression of huRANKL, in the medium copy Tg5519 line, resulted in severe early‐onset osteoporosis characterized by lack of trabecular bone, destruction of the growth plate, increased osteoclastogenesis, bone marrow adiposity, increased bone remodeling, and severe cortical bone porosity accompanied by decreased bone strength. An even more severe skeletal phenotype developed in the high copy Tg5520 founder with extensive soft tissue calcification. Model validation was further established by evidence that denosumab, an antibody that inhibits human but not murine RANKL, fully corrected the hyper‐resorptive and osteoporotic phenotypes of Tg5519 mice. Furthermore, overexpression of huRANKL rescued osteopetrotic phenotypes of RANKL‐defective mice. These novel huRANKL transgenic models of osteoporosis represent an important advance for understanding the pathogenesis and treatment of high‐turnover bone diseases and other disease states caused by excessive RANKL. © 2014 American Society for Bone and Mineral Research.  相似文献   

10.
Resveratrol, a naturally occurring polyphenol in red grapes and berries, can act as a phytoestrogen. It has been shown to improve both systemic and cerebral circulatory functions, possibly through activation of endothelial estrogen receptors. in vitro and in vivo studies in rodent models also indicate a bone-protective role for resveratrol, particularly in ovariectomized rat models that mimic postmenopausal osteoporosis caused by estrogen deficiency. Hypothesizing a circulatory benefit of resveratrol in bone tissue, we investigated whether resveratrol supplementation could improve bone health in postmenopausal women. The Resveratrol for Healthy Aging in Women (RESHAW) trial was a 24-month randomized, double-blind, placebo-controlled, two-period crossover intervention conducted to evaluate the effects of resveratrol (75 mg twice daily) on cognition, cerebrovascular function, bone health, cardiometabolic markers, and well-being in postmenopausal women. After 12 months of supplementation with resveratrol versus placebo, there were positive effects on bone density in the lumbar spine (+0.016 ± 0.003 g/cm2) and neck of femur (+0.005 ± 0.002 g/cm2), which were accompanied by a 7.24% reduction in C-terminal telopeptide type-1 collagen levels, a bone resorption marker, compared with placebo. The increase in bone mineral density in the femoral neck resulted in an improvement in T-score (+0.070 ± 0.018) and a reduction in the 10-year probability of major and hip fracture risk. The magnitude of improvement was higher in women with poor bone health biomarker status. Importantly, the improvement in femoral neck T-score with resveratrol correlated with improvement in perfusion. Our subanalysis also revealed that the bone-protective benefit of resveratrol was greater in participants who supplemented with vitamin D plus calcium. Regular supplementation with 75 mg of resveratrol twice daily has the potential to slow bone loss in the lumbar spine and femoral neck, common fracture sites in postmenopausal women without overt osteoporosis. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.  相似文献   

11.
Although treat-to-target strategies are being discussed in osteoporosis, there is little evidence of what the target should be to reduce fracture risk maximally. We investigated the relationship between total hip BMD T-score and the incidence of nonvertebral fracture in women who received up to 10 years of continued denosumab therapy in the FREEDOM (3 years) study and its long-term Extension (up to 7 years) study. We report the percentages of women who achieved a range of T-scores at the total hip or femoral neck over 10 years of denosumab treatment (1343 women completed 10 years of treatment). The incidence of nonvertebral fractures was lower with higher total hip T-score. This relationship plateaued at a T-score between -2.0 and -1.5 and was independent of age and prevalent vertebral fractures, similar to observations in treatment-naïve subjects. Reaching a specific T-score during denosumab treatment was dependent on the baseline T-score, with higher T-scores at baseline more likely to result in higher T-scores at each time point during the study. Our findings highlight the importance of follow-up BMD measurements in patients receiving denosumab therapy because BMD remains a robust indicator of fracture risk. These data support the notion of a specific T-score threshold as a practical target for therapy in osteoporosis. © 2019 The Authors Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR)  相似文献   

12.
Denosumab reduces the risk of new vertebral and nonvertebral fractures. Previous trials suggest that the efficacy of antiresorptives on fractures might differ by patients' characteristics, such as age, bone mineral density (BMD), and fracture history. In the FREEDOM study, 7808 women aged 60 to 90 years with osteoporosis were randomly assigned to receive subcutaneous injections of denosumab (60 mg) or placebo every 6 months for 3 years. New vertebral and nonvertebral fractures were radiologically confirmed. Subgroup analyses described in this article were prospectively planned before study unblinding to evaluate the effect of denosumab on new vertebral and nonvertebral fractures across various subgroups. Compared with placebo, denosumab decreased the risk of new vertebral fractures in the overall study population over 3 years. This effect did not significantly differ for any of the nine subgroups analyzed (p > 0.09 for all potential interactions). Denosumab also reduced all nonvertebral fractures by 20% in the full study cohort over 3 years. This risk reduction was statistically significant in women with a baseline femoral neck BMD T‐score ≤ ?2.5 but not in those with a T‐score > ?2.5; in those with a body mass index (BMI) < 25 kg/m2 but not ≥ 25 kg/m2; and in those without but not with a prevalent vertebral fracture. These differential treatment effects were not explained by differences in BMD responses to denosumab. Denosumab 60 mg administered every 6 months for 3 years in women with osteoporosis reduced the risk of new vertebral fractures to a similar degree in all subgroups. The effect of denosumab on nonvertebral fracture risk differed by femoral neck BMD, BMI, and prevalent vertebral fracture at baseline. © 2012 American Society for Bone and Mineral Research  相似文献   

13.
Denosumab is a monoclonal antibody to RANKL. In this randomized, placebo-controlled study of 412 postmenopausal women with low BMD, subcutaneous denosumab given every 3 or 6 mo was well tolerated, increased BMD, and decreased bone resorption markers for up to 24 mo. Continued study of denosumab is warranted in the treatment of low BMD in postmenopausal women. INTRODUCTION: Denosumab is a fully human monoclonal antibody that inhibits RANKL, a key mediator of osteoclastogenesis and bone remodeling. This prespecified exploratory analysis evaluated the efficacy and safety of denosumab through 24 mo in the treatment of postmenopausal women with low BMD. MATERIALS AND METHODS: Four hundred twelve postmenopausal women with lumbar spine BMD T-scores of -1.8 to -4.0 or femoral neck/total hip T-scores of -1.8 to -3.5 were randomly assigned to receive double-blind, subcutaneous injections of placebo; denosumab 6, 14, or 30 mg every 3 mo; denosumab 14, 60, 100, or 210 mg every 6 mo; or open-label oral alendronate 70 mg once weekly. Outcome measures included BMD at the lumbar spine, total hip, distal one-third radius, and total body; bone turnover markers; and safety. RESULTS: Denosumab increased BMD at all measured skeletal sites and decreased concentrations of bone turnover markers compared with placebo at 24 mo. At the lumbar spine, BMD increases with denosumab ranged from 4.13% to 8.89%. BMD changes with denosumab 30 mg every 3 mo and > or =60 mg every 6 mo were similar to, or in some cases greater than, with alendronate. The incidence of adverse events was similar in the placebo, denosumab, and alendronate treatment groups. Exposure-adjusted adverse events over 2 yr of treatment were similar to those reported during the first year of treatment. CONCLUSIONS: In these postmenopausal women with low BMD, treatment with denosumab for 2 yr was associated with sustained increases in BMD and reductions in bone resorption markers compared with placebo.  相似文献   

14.
Romosozumab is a bone‐forming agent with a dual effect of increasing bone formation and decreasing bone resorption. In FRActure study in postmenopausal woMen with ostEoporosis (FRAME), postmenopausal women with osteoporosis received romosozumab 210 mg s.c. or placebo once monthly for 12 months, followed by denosumab 60 mg s.c. once every 6 months in both groups for 12 months. One year of romosozumab increased spine and hip BMD by 13% and 7%, respectively, and reduced vertebral and clinical fractures with persistent fracture risk reduction upon transition to denosumab over 24 months. Here, we further characterize the BMD gains with romosozumab by quantifying the percentages of patients who responded at varying magnitudes; report the mean T‐score changes from baseline over the 2‐year study and contrast these results with the long‐term BMD gains seen with denosumab during Fracture REduction Evaluation of Denosumab in Osteoporosis every 6 Months (FREEDOM) and its Extension studies; and assess fracture incidence rates in year 2, when all patients received denosumab. Among 7180 patients (n = 3591 placebo, n = 3589 romosozumab), most romosozumab‐treated patients experienced ≥3% gains in BMD from baseline at month 12 (spine, 96%; hip, 78%) compared with placebo (spine, 22%; hip, 16%). For romosozumab patients, mean absolute T‐score increases at the spine and hip were 0.88 and 0.32, respectively, at 12 months (placebo: 0.03 and 0.01) and 1.11 and 0.45 at 24 months (placebo‐to‐denosumab: 0.38 and 0.17), with the 2‐year gains approximating the effect of 7 years of continuous denosumab administration. Patients receiving romosozumab versus placebo in year 1 had significantly fewer vertebral fractures in year 2 (81% relative reduction; p < 0.001), with fewer fractures consistently observed across other fracture categories. The data support the clinical benefit of rebuilding the skeletal foundation with romosozumab before transitioning to antiresorptive therapy. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.  相似文献   

15.
Hip fractures account for over one‐half the morbidity, mortality, and cost associated with osteoporosis. Fragility of the proximal femur is the result of rapid and unbalanced bone remodeling events that excavate more bone than they deposit, producing a porous, thinned, and fragile cortex. We hypothesized that the slowing of remodeling during treatment with denosumab allows refilling of the many cavities excavated before treatment now opposed by excavation of fewer new resorption cavities. The resulting net effect is a reduction in cortical porosity and an increase in proximal femur strength. Images were acquired at baseline and 36 months using multidetector CT in 28 women receiving denosumab and 22 women receiving placebo in a substudy of FREEDOM, a randomized, double‐blind, placebo‐controlled trial involving women with postmenopausal osteoporosis. Porosity was quantified using StrAx1.0 software. Strength was estimated using finite element analysis. At baseline, the higher the serum resorption marker, CTx, the greater the porosity of the total cortex (r = 0.34, p = 0.02), and the higher the porosity, the lower the hip strength (r = –0.31, p = 0.03). By 36 months, denosumab treatment reduced porosity of the total cortex by 3.6% relative to baseline. Reductions in porosity relative to placebo at 36 months were 5.3% in total cortex, 7.9% in compact‐appearing cortex, 5.6% in outer transitional zone, and 1.8% in inner transitional zone (all p < 0.01). The improvement in estimated hip integral strength of 7.9% from baseline (p < 0.0001) was associated with the reduction in total porosity (r = –0.41, p = 0.03). In summary, denosumab reduced cortical porosity of the proximal femoral shaft, resulting in increased mineralized matrix volume and improved strength, changes that may contribute to the reduction in hip and nonvertebral fractures reported with denosumab therapy. © 2016 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

16.
MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. However, no study has investigated the role of miRNA in postmenopausal osteoporosis. Here, we report that miR‐503 was markedly reduced in circulating progenitors of osteoclasts–CD14+ peripheral blood mononuclear cells (PBMCs) from postmenopausal osteoporosis patients compared with those from postmenopausal healthy women. Overexpression of miR‐503 in CD14+ PBMCs inhibited receptor activator of nuclear factor‐κB ligand (RANKL)‐induced osteoclastogenesis. Conversely, silencing of miR‐503 in CD14+ PBMCs promoted osteoclastogenesis. RANK, which is activated by the binding of RANKL and inducing osteoclast differentiation, was confirmed to be a target of miR‐503. In vivo, silencing of miR‐503 using a specific antagomir in ovariectomy (OVX) mice increased RANK protein expression, promoted bone resorption, and decreased bone mass, whereas overexpression of miR‐503 with agomir inhibited bone resorption and prevented bone loss in OVX mice. Thus, our study revealed that miR‐503 plays an important role in the pathogenesis of postmenopausal osteoporosis and contributes to a new therapeutic way for osteoporosis. © 2014 American Society for Bone and Mineral Research.  相似文献   

17.
18.
The 3-year FREEDOM trial assessed the efficacy and safety of 60 mg denosumab every 6 months for the treatment of postmenopausal women with osteoporosis. Participants who completed the FREEDOM trial were eligible to enter an extension to continue the evaluation of denosumab efficacy and safety for up to 10 years. For the extension results presented here, women from the FREEDOM denosumab group had 2 more years of denosumab treatment (long-term group) and those from the FREEDOM placebo group had 2 years of denosumab exposure (cross-over group). We report results for bone turnover markers (BTMs), bone mineral density (BMD), fracture rates, and safety. A total of 4550 women enrolled in the extension (2343 long-term; 2207 cross-over). Reductions in BTMs were maintained (long-term group) or occurred rapidly (cross-over group) following denosumab administration. In the long-term group, lumbar spine and total hip BMD increased further, resulting in 5-year gains of 13.7% and 7.0%, respectively. In the cross-over group, BMD increased at the lumbar spine (7.7%) and total hip (4.0%) during the 2-year denosumab treatment. Yearly fracture incidences for both groups were below rates observed in the FREEDOM placebo group and below rates projected for a "virtual untreated twin" cohort. Adverse events did not increase with long-term denosumab administration. Two adverse events in the cross-over group were adjudicated as consistent with osteonecrosis of the jaw. Five-year denosumab treatment of women with postmenopausal osteoporosis maintained BTM reduction and increased BMD, and was associated with low fracture rates and a favorable risk/benefit profile.  相似文献   

19.
Denosumab: Anti-RANKL antibody   总被引:2,自引:0,他引:2  
Denosumab (anti-receptor activator of nuclear factorκB ligand [RANKL] antibody) is a novel agent, a fully human monoclonal antibody that inhibits osteoclastic-medicated bone resorption by binding to osteoblast-produced RANKL. By reducing RANKL binding to the osteoclast receptor RANK, bone resorption and turnover decrease. In phase 2 dose-ranging studies, denosumab had a rapid onset and offset effect. Also, in patients who had received 2 years of denosumab and were discontinued for the third year, rechallenge with denosumab during the fourth year demonstrated a return of responsiveness to denosumab that mimicked the initial treatment. Phase 3 pivotal fracture data were recently presented with positive outcome data; denosumab (60 mg subcutaneously every 6 months) significantly reduced vertebral, nonvertebral, and hip fracture risk compared with placebo, and had an excellent safety profile through 3 years of use. Denosumab will offer a novel approach to managing postmenopausal osteoporosis, one that should be associated with a high adherence rate and global fracture risk reduction.  相似文献   

20.
Osteoporosis affects millions of people worldwide, causing decreases in bone strength and a marked increase in fracture risk. Current therapies increase bone mineral density and reduce the risk of fractures, but dosing requirements are often considered inconvenient, and patient compliance with therapy is poor. This review will discuss recent discoveries in bone biology, which have demonstrated that the interaction of osteoprotegerin (OPG), receptor activator of nuclear factor—kappa B (RANK), and RANK ligand (RANKL) is critical for the regulation of bone remodeling. Collectively, these preclinical studies have shown that endogenous RANKL inhibition by OPG underlies the normal mechanism for maintaining the correct balance between bone resorption and bone formation. Multiple clinical trials are in progress to investigate the therapeutic potential of RANKL inhibition by denosumab, a fully human monoclonal anti-RANKL antibody, in the treatment of postmenopausal osteoporosis and other bone loss diseases. The results of these human trials will also be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号