首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
To date, thousands of genetic variants to be associated with numerous human traits and diseases have been identified by genome-wide association studies (GWASs). The GWASs focus on testing the association between single trait and genetic variants. However, the analysis of multiple traits and single nucleotide polymorphisms (SNPs) might reflect physiological process of complex diseases and the corresponding study is called pleiotropy association analysis. Modern day GWASs report only summary statistics instead of individual-level phenotype and genotype data to avoid logistical and privacy issues. Existing methods for combining multiple phenotypes GWAS summary statistics mainly focus on low-dimensional phenotypes while lose power in high-dimensional cases. To overcome this defect, we propose two kinds of truncated tests to combine multiple phenotypes summary statistics. Extensive simulations show that the proposed methods are robust and powerful when the dimension of the phenotypes is high and only part of the phenotypes are associated with the SNPs. We apply the proposed methods to blood cytokines data collected from Finnish population. Results show that the proposed tests can identify additional genetic markers that are missed by single trait analysis.  相似文献   

5.
6.
Genome‐wide association studies (GWASs) for complex diseases often collect data on multiple correlated endo‐phenotypes. Multivariate analysis of these correlated phenotypes can improve the power to detect genetic variants. Multivariate analysis of variance (MANOVA) can perform such association analysis at a GWAS level, but the behavior of MANOVA under different trait models has not been carefully investigated. In this paper, we show that MANOVA is generally very powerful for detecting association but there are situations, such as when a genetic variant is associated with all the traits, where MANOVA may not have any detection power. In these situations, marginal model based methods, however, perform much better than multivariate methods. We investigate the behavior of MANOVA, both theoretically and using simulations, and derive the conditions where MANOVA loses power. Based on our findings, we propose a unified score‐based test statistic USAT that can perform better than MANOVA in such situations and nearly as well as MANOVA elsewhere. Our proposed test reports an approximate asymptotic P‐value for association and is computationally very efficient to implement at a GWAS level. We have studied through extensive simulations the performance of USAT, MANOVA, and other existing approaches and demonstrated the advantage of using the USAT approach to detect association between a genetic variant and multivariate phenotypes. We applied USAT to data from three correlated traits collected on 5, 816 Caucasian individuals from the Atherosclerosis Risk in Communities (ARIC, The ARIC Investigators [ 1989 ]) Study and detected some interesting associations.  相似文献   

7.
Genome‐wide association studies (GWAS) for complex diseases have focused primarily on single‐trait analyses for disease status and disease‐related quantitative traits. For example, GWAS on risk factors for coronary artery disease analyze genetic associations of plasma lipids such as total cholesterol, LDL‐cholesterol, HDL‐cholesterol, and triglycerides (TGs) separately. However, traits are often correlated and a joint analysis may yield increased statistical power for association over multiple univariate analyses. Recently several multivariate methods have been proposed that require individual‐level data. Here, we develop metaUSAT (where USAT is unified score‐based association test), a novel unified association test of a single genetic variant with multiple traits that uses only summary statistics from existing GWAS. Although the existing methods either perform well when most correlated traits are affected by the genetic variant in the same direction or are powerful when only a few of the correlated traits are associated, metaUSAT is designed to be robust to the association structure of correlated traits. metaUSAT does not require individual‐level data and can test genetic associations of categorical and/or continuous traits. One can also use metaUSAT to analyze a single trait over multiple studies, appropriately accounting for overlapping samples, if any. metaUSAT provides an approximate asymptotic P‐value for association and is computationally efficient for implementation at a genome‐wide level. Simulation experiments show that metaUSAT maintains proper type‐I error at low error levels. It has similar and sometimes greater power to detect association across a wide array of scenarios compared to existing methods, which are usually powerful for some specific association scenarios only. When applied to plasma lipids summary data from the METSIM and the T2D‐GENES studies, metaUSAT detected genome‐wide significant loci beyond the ones identified by univariate analyses. Evidence from larger studies suggest that the variants additionally detected by our test are, indeed, associated with lipid levels in humans. In summary, metaUSAT can provide novel insights into the genetic architecture of a common disease or traits.  相似文献   

8.
Genome-wide association studies (GWAS) have thus far achieved substantial success. In the last decade, a large number of common variants underlying complex diseases have been identified through GWAS. In most existing GWAS, the identified common variants are obtained by single marker-based tests, that is, testing one single-nucleotide polymorphism (SNP) at a time. Generally, the basic functional unit of inheritance is a gene, rather than a SNP. Thus, results from gene-level association test can be more readily integrated with downstream functional and pathogenic investigation. In this paper, we propose a general gene-based p-value adaptive combination approach (GPA) which can integrate association evidence of multiple genetic variants using only GWAS summary statistics (either p-value or other test statistics). The proposed method could be used to test genetic association for both continuous and binary traits through not only one study but also multiple studies, which would be helpful to overcome the limitation of existing methods that can only be applied to a specific type of data. We conducted thorough simulation studies to verify that the proposed method controls type I errors well, and performs favorably compared to single-marker analysis and other existing methods. We demonstrated the utility of our proposed method through analysis of GWAS meta-analysis results for fasting glucose and lipids from the international MAGIC consortium and Global Lipids Consortium, respectively. The proposed method identified some novel trait associated genes which can improve our understanding of the mechanisms involved in -cell function, glucose homeostasis, and lipids traits.  相似文献   

9.
In genetic association studies, joint modeling of related traits/phenotypes can utilize the correlation between them and thereby provide more power and uncover additional information about genetic etiology. Moreover, detecting rare genetic variants are of current scientific interest as a key to missing heritability. Logistic Bayesian LASSO (LBL) has been proposed recently to detect rare haplotype variants using case-control data, that is, a single binary phenotype. As there is currently no haplotype association method that can handle multiple binary phenotypes, we extend LBL to fill this gap. We develop a bivariate model by using a latent variable to induce correlation between the two outcomes. We carry out extensive simulations to investigate the bivariate LBL and compare with the univariate LBL. The bivariate LBL performs better or similar to the univariate LBL in most settings. It has the highest gain in power when a haplotype is associated with both traits and it affects at least one trait in a direction opposite to the direction of the correlation between the traits. We analyze two data sets—Genetic Analysis Workshop 19 sequence data on systolic and diastolic blood pressures and a genome-wide association data set on lung cancer and smoking and detect several associated rare haplotypes.  相似文献   

10.
Genome‐wide association studies (GWAS) have confirmed the ubiquitous existence of genetic heterogeneity for common disease: multiple common genetic variants have been identified to be associated, while many more are yet expected to be uncovered. However, the single SNP (single‐nucleotide polymorphism) based trend test (or its variants) that has been dominantly used in GWAS is based on contrasting the allele frequency difference between the case and control groups, completely ignoring possible genetic heterogeneity. In spite of the widely accepted notion of genetic heterogeneity, we are not aware of any previous attempt to apply genetic heterogeneity motivated methods in GWAS. Here, to explicitly account for unknown genetic heterogeneity, we applied a mixture model based single‐SNP test to the Wellcome Trust Case Control Consortium (WTCCC) GWAS data with traits of Crohn's disease, bipolar disease, coronary artery disease, and type 2 diabetes, identifying much larger numbers of significant SNPs and risk loci for each trait than those of the popular trend test, demonstrating potential power gain of the mixture model based test.  相似文献   

11.
Although genome‐wide association studies (GWAS) have now discovered thousands of genetic variants associated with common traits, such variants cannot explain the large degree of “missing heritability,” likely due to rare variants. The advent of next generation sequencing technology has allowed rare variant detection and association with common traits, often by investigating specific genomic regions for rare variant effects on a trait. Although multiple correlated phenotypes are often concurrently observed in GWAS, most studies analyze only single phenotypes, which may lessen statistical power. To increase power, multivariate analyses, which consider correlations between multiple phenotypes, can be used. However, few existing multivariant analyses can identify rare variants for assessing multiple phenotypes. Here, we propose Multivariate Association Analysis using Score Statistics (MAAUSS), to identify rare variants associated with multiple phenotypes, based on the widely used sequence kernel association test (SKAT) for a single phenotype. We applied MAAUSS to whole exome sequencing (WES) data from a Korean population of 1,058 subjects to discover genes associated with multiple traits of liver function. We then assessed validation of those genes by a replication study, using an independent dataset of 3,445 individuals. Notably, we detected the gene ZNF620 among five significant genes. We then performed a simulation study to compare MAAUSS's performance with existing methods. Overall, MAAUSS successfully conserved type 1 error rates and in many cases had a higher power than the existing methods. This study illustrates a feasible and straightforward approach for identifying rare variants correlated with multiple phenotypes, with likely relevance to missing heritability.  相似文献   

12.
Large genome‐wide association studies (GWAS) have been performed to detect common genetic variants involved in common diseases, but most of the variants found this way account for only a small portion of the trait variance. Furthermore, candidate gene‐based resequencing suggests that many rare genetic variants contribute to the trait variance of common diseases. Here we propose two designs, sibpair and unrelated‐case designs, to detect rare genetic variants in either a candidate gene‐based or genome‐wide association analysis. First we show that we can detect and classify together rare risk haplotypes using a relatively small sample with either of these designs, and then have increased power to test association in a larger case‐control sample. This method can also be applied to resequencing data. Next we apply the method to the Wellcome Trust Case Control Consortium (WTCCC) coronary artery disease (CAD) and hypertension (HT) data, the latter being the only trait for which no genome‐wide association evidence was reported in the original WTCCC study, and identify one interesting gene associated with HT and four associated with CAD at a genome‐wide significance level of 5%. These results suggest that searching for rare genetic variants is feasible and can be fruitful in current GWAS, candidate gene studies or resequencing studies. Genet. Epidemiol. 34: 171–187, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Ryan Sun  Miao Xu  Xihao Li  Sheila Gaynor  Hufeng Zhou  Zilin Li  Yohan Boss  Stephen Lam  Ming‐Sound Tsao  Adonina Tardon  Chu Chen  Jennifer Doherty  Gary Goodman  Stig E. Bojesen  Maria T. Landi  Mattias Johansson  John K. Field  Heike Bickebller  H‐Erich Wichmann  Angela Risch  Gadi Rennert  Suzanne Arnold  Xifeng Wu  Olle Melander  Hans Brunnstrm  Loic Le Marchand  Geoffrey Liu  Angeline Andrew  Eric Duell  Lambertus A. Kiemeney  Hongbing Shen  Aage Haugen  Mikael Johansson  Kjell Grankvist  Neil Caporaso  Penella Woll  M. Dawn Teare  Ghislaine Scelo  Yun‐Chul Hong  Jian‐Min Yuan  Philip Lazarus  Matthew B. Schabath  Melinda C. Aldrich  Demetrios Albanes  Raymond Mak  David Barbie  Paul Brennan  Rayjean J. Hung  Christopher I. Amos  David C. Christiani  Xihong Lin 《Genetic epidemiology》2021,45(1):99-114
Clinical trial results have recently demonstrated that inhibiting inflammation by targeting the interleukin‐1β pathway can offer a significant reduction in lung cancer incidence and mortality, highlighting a pressing and unmet need to understand the benefits of inflammation‐focused lung cancer therapies at the genetic level. While numerous genome‐wide association studies (GWAS) have explored the genetic etiology of lung cancer, there remains a large gap between the type of information that may be gleaned from an association study and the depth of understanding necessary to explain and drive translational findings. Thus, in this study we jointly model and integrate extensive multiomics data sources, utilizing a total of 40 genome‐wide functional annotations that augment previously published results from the International Lung Cancer Consortium (ILCCO) GWAS, to prioritize and characterize single nucleotide polymorphisms (SNPs) that increase risk of squamous cell lung cancer through the inflammatory and immune responses. Our work bridges the gap between correlative analysis and translational follow‐up research, refining GWAS association measures in an interpretable and systematic manner. In particular, reanalysis of the ILCCO data highlights the impact of highly associated SNPs from nuclear factor‐κB signaling pathway genes as well as major histocompatibility complex mediated variation in immune responses. One consequence of prioritizing likely functional SNPs is the pruning of variants that might be selected for follow‐up work by over an order of magnitude, from potentially tens of thousands to hundreds. The strategies we introduce provide informative and interpretable approaches for incorporating extensive genome‐wide annotation data in analysis of genetic association studies.  相似文献   

14.
The breakthroughs in next generation sequencing have allowed us to access data consisting of both common and rare variants, and in particular to investigate the impact of rare genetic variation on complex diseases. Although rare genetic variants are thought to be important components in explaining genetic mechanisms of many diseases, discovering these variants remains challenging, and most studies are restricted to population‐based designs. Further, despite the shift in the field of genome‐wide association studies (GWAS) towards studying rare variants due to the “missing heritability” phenomenon, little is known about rare X‐linked variants associated with complex diseases. For instance, there is evidence that X‐linked genes are highly involved in brain development and cognition when compared with autosomal genes; however, like most GWAS for other complex traits, previous GWAS for mental diseases have provided poor resources to deal with identification of rare variant associations on X‐chromosome. In this paper, we address the two issues described above by proposing a method that can be used to test X‐linked variants using sequencing data on families. Our method is much more general than existing methods, as it can be applied to detect both common and rare variants, and is applicable to autosomes as well. Our simulation study shows that the method is efficient, and exhibits good operational characteristics. An application to the University of Miami Study on Genetics of Autism and Related Disorders also yielded encouraging results.  相似文献   

15.
Genome‐wide association studies (GWAS) have become a very effective research tool to identify genetic variants of underlying various complex diseases. In spite of the success of GWAS in identifying thousands of reproducible associations between genetic variants and complex disease, in general, the association between genetic variants and a single phenotype is usually weak. It is increasingly recognized that joint analysis of multiple phenotypes can be potentially more powerful than the univariate analysis, and can shed new light on underlying biological mechanisms of complex diseases. In this paper, we develop a novel variable reduction method using hierarchical clustering method (HCM) for joint analysis of multiple phenotypes in association studies. The proposed method involves two steps. The first step applies a dimension reduction technique by using a representative phenotype for each cluster of phenotypes. Then, existing methods are used in the second step to test the association between genetic variants and the representative phenotypes rather than the individual phenotypes. We perform extensive simulation studies to compare the powers of multivariate analysis of variance (MANOVA), joint model of multiple phenotypes (MultiPhen), and trait‐based association test that uses extended simes procedure (TATES) using HCM with those of without using HCM. Our simulation studies show that using HCM is more powerful than without using HCM in most scenarios. We also illustrate the usefulness of using HCM by analyzing a whole‐genome genotyping data from a lung function study.  相似文献   

16.
在过去的10年间,基于"常见疾病-常见变异"的假设,全基因组关联研究被广泛应用于疾病和复杂性状的遗传学病因研究中。但是,全基因组关联分析发现的疾病相关常见变异,只能解释疾病小部分的遗传风险,造成"遗传度丢失"。"常见疾病-低频变异"的假设被提出。随着新一代测序技术的发展,低频变异关联研究陆续开展。本文主要对低频变异关联研究的研究设计以及关联分析方法进行综述。  相似文献   

17.
In spite of the tremendous success of genome-wide association studies (GWAS) in identifying genetic variants associated with complex traits and common diseases, many more are yet to be discovered. Hence, it is always desirable to improve the statistical power of GWAS. Paralleling with the intensive efforts of integrating GWAS with functional annotations or other omic data, we propose leveraging other published GWAS summary data to boost statistical power for a new/focus GWAS; the traits of the published GWAS may or may not be genetically correlated with the target trait of the new GWAS. Building on weighted hypothesis testing with a solid theoretical foundation, we develop a novel and effective method to construct single-nucleotide polymorphism (SNP)-specific weights based on 22 published GWAS data sets with various traits, detecting sometimes dramatically increased numbers of significant SNPs and independent loci as compared to the standard/unweighted analysis. For example, by integrating a schizophrenia GWAS summary data set with 19 other GWAS summary data sets of nonschizophrenia traits, our new method identified 1,585 genome-wide significant SNPs mapping to 15 linkage disequilibrium-independent loci, largely exceeding 818 significant SNPs in 13 independent loci identified by the standard/unweighted analysis; furthermore, using a later and larger schizophrenia GWAS summary data set as the validation data, 1,423 (out of 1,585) significant SNPs identified by the weighted analysis, compared to 705 (out of 818) by the unweighted analysis, were confirmed, while all 15 and 13 independent loci were also confirmed. Similar conclusions were reached with lipids and Alzheimer's disease (AD) traits. We conclude that the proposed approach is simple and cost-effective to improve GWAS power.  相似文献   

18.
Traditional genome‐wide association studies (GWASs) usually focus on single‐marker analysis, which only accesses marginal effects. Pathway analysis, on the other hand, considers biological pathway gene marker hierarchical structure and therefore provides additional insights into the genetic architecture underlining complex diseases. Recently, a number of methods for pathway analysis have been proposed to assess the significance of a biological pathway from a collection of single‐nucleotide polymorphisms. In this study, we propose a novel approach for pathway analysis that assesses the effects of genes using the sequence kernel association test and the effects of pathways using an extended adaptive rank truncated product statistic. It has been increasingly recognized that complex diseases are caused by both common and rare variants. We propose a new weighting scheme for genetic variants across the whole allelic frequency spectrum to be analyzed together without any form of frequency cutoff for defining rare variants. The proposed approach is flexible. It is applicable to both binary and continuous traits, and incorporating covariates is easy. Furthermore, it can be readily applied to GWAS data, exome‐sequencing data, and deep resequencing data. We evaluate the new approach on data simulated under comprehensive scenarios and show that it has the highest power in most of the scenarios while maintaining the correct type I error rate. We also apply our proposed methodology to data from a study of the association between bipolar disorder and candidate pathways from Wellcome Trust Case Control Consortium (WTCCC) to show its utility.  相似文献   

19.
There is increasing interest in the joint analysis of multiple genetic variants from multiple genes and multiple correlated quantitative traits in association studies. The classical approach involves testing univariate associations between genotypes and phenotypes and correcting for multiple testing that results in loss of power to detect associations. In this paper, we propose modeling complex relationships between genetic variants in candidate genes and measured correlated traits using structural equation models (SEM), taking advantage of prior knowledge on clinical and genetic pathways. We adopt generalized structured component analysis (GSCA) as an approach to SEM and develop a single association test between multiple genetic variants in a gene and a set of correlated traits, taking into account all available data from other genes and other traits. The performance of this test is investigated by simulations. We apply the proposed method to the Quebec Child and Adolescent Health and Social Survey (1999) data to investigate genetic associations with cardiovascular disease‐related traits.  相似文献   

20.
In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are associated with complex traits is increasingly being discussed. Family‐based association studies using relatively large pedigrees are suitable for both rare and common variant identification. Because of the high cost of sequencing technologies, imputation methods are important for increasing the amount of information at low cost. A recent family‐based imputation method, Genotype Imputation Given Inheritance (GIGI), is able to handle large pedigrees and accurately impute rare variants, but does less well for common variants where population‐based methods perform better. Here, we propose a flexible approach to combine imputation data from both family‐ and population‐based methods. We also extend the Sequence Kernel Association Test for Rare and Common variants (SKAT‐RC), originally proposed for data from unrelated subjects, to family data in order to make use of such imputed data. We call this extension “famSKAT‐RC.” We compare the performance of famSKAT‐RC and several other existing burden and kernel association tests. In simulated pedigree sequence data, our results show an increase of imputation accuracy from use of our combining approach. Also, they show an increase of power of the association tests with this approach over the use of either family‐ or population‐based imputation methods alone, in the context of rare and common variants. Moreover, our results show better performance of famSKAT‐RC compared to the other considered tests, in most scenarios investigated here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号