首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shi G  Rao DC 《Genetic epidemiology》2011,35(6):572-579
Recent advances in next-generation sequencing technologies make it affordable to search for rare and functional variants for common complex diseases systematically. We investigated strategies for enriching rare variants in the samples selected for sequencing so as to optimize the power for their discovery. In particular, we investigated the roles of alternative sources of enrichment in families through computer simulations. We showed that linkage information, extreme phenotype, and nonrandom ascertainment, such as multiply affected families, constitute different sources for enriching rare and functional variants in a sequencing study design. Linkage is well known to have limited power for detecting small genetic effects, and hence not considered to be a powerful tool for discovering variants for common complex diseases. However, those families with some degree of family-specific linkage evidence provide an effective sampling strategy to sub-select the most linkage-informative families for sequencing. Compared with selecting subjects with extreme phenotypes, linkage evidence performs better with larger families, while extreme-phenotype method is more efficient with smaller families. Families with multiple affected siblings were found to provide the largest enrichment of rare variants. Finally, we showed that combined strategies, such as selecting linkage-informative families from multiply affected families, provide much higher enrichment of rare functional variants than either strategy alone.  相似文献   

2.
Although a standard genome‐wide significance level has been accepted for the testing of association between common genetic variants and disease, the era of whole‐genome sequencing (WGS) requires a new threshold. The allele frequency spectrum of sequence‐identified variants is very different from common variants, and the identified rare genetic variation is usually jointly analyzed in a series of genomic windows or regions. In nearby or overlapping windows, these test statistics will be correlated, and the degree of correlation is likely to depend on the choice of window size, overlap, and the test statistic. Furthermore, multiple analyses may be performed using different windows or test statistics. Here we propose an empirical approach for estimating genome‐wide significance thresholds for data arising from WGS studies, and we demonstrate that the empirical threshold can be efficiently estimated by extrapolating from calculations performed on a small genomic region. Because analysis of WGS may need to be repeated with different choices of test statistics or windows, this prediction approach makes it computationally feasible to estimate genome‐wide significance thresholds for different analysis choices. Based on UK10K whole‐genome sequence data, we derive genome‐wide significance thresholds ranging between 2.5 × 10?8 and 8 × 10?8 for our analytic choices in window‐based testing, and thresholds of 0.6 × 10?8–1.5 × 10?8 for a combined analytic strategy of testing common variants using single‐SNP tests together with rare variants analyzed with our sliding‐window test strategy.  相似文献   

3.
By sequencing the exomes of distantly related individuals in multiplex families, rare mutational and structural changes to coding DNA can be characterized and their relationship to disease risk can be assessed. Recently, several rare single nucleotide variants (SNVs) were associated with an increased risk of nonsyndromic oral cleft, highlighting the importance of rare sequence variants in oral clefts and illustrating the strength of family‐based study designs. However, the extent to which rare deletions in coding regions of the genome occur and contribute to risk of nonsyndromic clefts is not well understood. To identify putative structural variants underlying risk, we developed a pipeline for rare hemizygous deletions in families from whole exome sequencing and statistical inference based on rare variant sharing. Among 56 multiplex families with 115 individuals, we identified 53 regions with one or more rare hemizygous deletions. We found 45 of the 53 regions contained rare deletions occurring in only one family member. Members of the same family shared a rare deletion in only eight regions. We also devised a scalable global test for enrichment of shared rare deletions.  相似文献   

4.
Advances in DNA sequencing technologies have greatly facilitated the discovery of rare genetic variants in the human genome, many of which may contribute to common disease risk. However, evaluating their individual or even collective effects on disease risk requires very large sample sizes, which involves study designs that are often prohibitively expensive. We present an alternative approach for determining genotypes in large numbers of individuals for all variants discovered in the sequence of relatively few individuals. Specifically, we developed a new imputation algorithm that utilizes whole-exome sequencing data from 25 members of the South Dakota Hutterite population, and genome-wide single nucleotide polymorphism (SNP) genotypes from >1,400 individuals from the same founder population. The algorithm relies on identity-by-descent sharing of phased haplotypes, a different strategy than the linkage disequilibrium methods found in most imputation algorithms. We imputed genotypes discovered in the sequence data to on average ~77% of chromosomes among the 1,400 individuals. Median R(2) between imputed and directly genotyped data was >0.99. As expected, many variants that are vanishingly rare in European populations have risen to larger frequencies in the founder population and would be amenable to single-SNP analyses.  相似文献   

5.
Recent sequencing efforts have focused on exploring the influence of rare variants on the complex diseases. Gene level based tests by aggregating information across rare variants within a gene have become attractive to enrich the rare variant association signal. Among them, the sequence kernel association test (SKAT) has proved to be a very powerful method for jointly testing multiple rare variants within a gene. In this article, we explore an alternative SKAT. We propose to use the univariate likelihood ratio statistics from the marginal model for individual variants as input into the kernel association test. We show how to compute its significance P‐value efficiently based on the asymptotic chi‐square mixture distribution. We demonstrate through extensive numerical studies that the proposed method has competitive performance. Its usefulness is further illustrated with application to associations between rare exonic variants and type 2 diabetes (T2D) in the Atherosclerosis Risk in Communities (ARIC) study. We identified an exome‐wide significant rare variant set in the gene ZZZ3 worthy of further investigations.  相似文献   

6.
Recently, the “Common Disease‐Multiple Rare Variants” hypothesis has received much attention, especially with current availability of next‐generation sequencing. Family‐based designs are well suited for discovery of rare variants, with large and carefully selected pedigrees enriching for multiple copies of such variants. However, sequencing a large number of samples is still prohibitive. Here, we evaluate a cost‐effective strategy (pseudosequencing) to detect association with rare variants in large pedigrees. This strategy consists of sequencing a small subset of subjects, genotyping the remaining sampled subjects on a set of sparse markers, and imputing the untyped markers in the remaining subjects conditional on the sequenced subjects and pedigree information. We used a recent pedigree imputation method (GIGI), which is able to efficiently handle large pedigrees and accurately impute rare variants. We used burden and kernel association tests, famWS and famSKAT, which both account for family relationships and heterogeneity of allelic effect for famSKAT only. We simulated pedigree sequence data and compared the power of association tests for pseudosequence data, a subset of sequence data used for imputation, and all subjects sequenced. We also compared, within the pseudosequence data, the power of association test using best‐guess genotypes and allelic dosages. Our results show that the pseudosequencing strategy considerably improves the power to detect association with rare variants. They also show that the use of allelic dosages results in much higher power than use of best‐guess genotypes in these family‐based data. Moreover, famSKAT shows greater power than famWS in most of scenarios we considered.  相似文献   

7.
8.
A key step in genomic studies is to assess high throughput measurements across millions of markers for each participant's DNA, either using microarrays or sequencing techniques. Accurate genotype calling is essential for downstream statistical analysis of genotype‐phenotype associations, and next generation sequencing (NGS) has recently become a more common approach in genomic studies. How the accuracy of variant calling in NGS‐based studies affects downstream association analysis has not, however, been studied using empirical data in which both microarrays and NGS were available. In this article, we investigate the impact of variant calling errors on the statistical power to identify associations between single nucleotides and disease, and on associations between multiple rare variants and disease. Both differential and nondifferential genotyping errors are considered. Our results show that the power of burden tests for rare variants is strongly influenced by the specificity in variant calling, but is rather robust with regard to sensitivity. By using the variant calling accuracies estimated from a substudy of a Cooperative Studies Program project conducted by the Department of Veterans Affairs, we show that the power of association tests is mostly retained with commonly adopted variant calling pipelines. An R package, GWAS.PC, is provided to accommodate power analysis that takes account of genotyping errors ( http://zhaocenter.org/software/ ).  相似文献   

9.
Analysis of rare variants is currently a major focus of genetic studies of human disease. Single-nucleotide polymorphism (SNP) genotypes can be assayed using microarray genotyping or by sequencing, but neither technology produces perfect genotype calls, especially at rare SNPs. Studies that collect both types of data are becoming increasingly common, so it may be possible to combine data types to increase accuracy. We present a method, called Chiamante, which calls genotypes on individuals with either array data, sequence data, or both. The model adapts to data quality and can estimate when either the array or the sequence data should be ignored when calling the genotypes at each SNP. As a special case, our method will call genotypes from only array data and outperforms existing methods in this scenario. We have applied our method to array and sequence data from Phase I of the 1000 Genomes Project and show that it provides improved performance, especially at rare SNPs. This method provides a foundation for future efforts to fuse genetic data from different sources, for example, when combining data from exome sequencing and exome microarrays.  相似文献   

10.
Different groups have recently reported events of SARS-CoV-2 reinfection, where patients had a sequence of positive-negative-positive RT-PCR tests. However, such events could be explained by different scenarios such as intermittent viral shedding, bonafide re-infection or multiple infection with alternating predominance of different viruses. Analysis of minor variants is an important tool to distinguish between these scenarios. Using ARTIC network PCR amplification and next-generation sequencing, we obtained SARS-CoV-2 sequences from two timepoints (with a time span of 102 days) of a patient followed at the Brazilian National Cancer Institute. Within-host variant analysis evidenced three single nucleotide variants (SNVs) at the consensus viral sequence in the second timepoint that were already present in the first timepoint as minor variants. Another five SNVs found in the second timepoint were not detected in the first sample sequenced, suggesting an additional infection by a yet another new virus. Our observation shed light into the existence of different viral populations that are present in dynamic frequencies and fluctuate during the course of SARS-CoV-2 infection. The detection of these variants in distinct disease events of an individual highlights a complex interplay between viral reactivation from a pre-existing minority variant and reinfection by a different virus.  相似文献   

11.
Recent advances in next-generation sequencing technologies facilitate the detection of rare variants, making it possible to uncover the roles of rare variants in complex diseases. As any single rare variants contain little variation, association analysis of rare variants requires statistical methods that can effectively combine the information across variants and estimate their overall effect. In this study, we propose a novel Bayesian generalized linear model for analyzing multiple rare variants within a gene or genomic region in genetic association studies. Our model can deal with complicated situations that have not been fully addressed by existing methods, including issues of disparate effects and nonfunctional variants. Our method jointly models the overall effect and the weights of multiple rare variants and estimates them from the data. This approach produces different weights to different variants based on their contributions to the phenotype, yielding an effective summary of the information across variants. We evaluate the proposed method and compare its performance to existing methods on extensive simulated data. The results show that the proposed method performs well under all situations and is more powerful than existing approaches.  相似文献   

12.
Over the past few years, an increasing number of studies have identified rare variants that contribute to trait heritability. Due to the extreme rarity of some individual variants, gene‐based association tests have been proposed to aggregate the genetic variants within a gene, pathway, or specific genomic region as opposed to a one‐at‐a‐time single variant analysis. In addition, in longitudinal studies, statistical power to detect disease susceptibility rare variants can be improved through jointly testing repeatedly measured outcomes, which better describes the temporal development of the trait of interest. However, usual sandwich/model‐based inference for sequencing studies with longitudinal outcomes and rare variants can produce deflated/inflated type I error rate without further corrections. In this paper, we develop a group of tests for rare‐variant association based on outcomes with repeated measures. We propose new perturbation methods such that the type I error rate of the new tests is not only robust to misspecification of within‐subject correlation, but also significantly improved for variants with extreme rarity in a study with small or moderate sample size. Through extensive simulation studies, we illustrate that substantially higher power can be achieved by utilizing longitudinal outcomes and our proposed finite sample adjustment. We illustrate our methods using data from the Multi‐Ethnic Study of Atherosclerosis for exploring association of repeated measures of blood pressure with rare and common variants based on exome sequencing data on 6,361 individuals.  相似文献   

13.
Genome‐wide association studies have identified hundreds of genetic variants associated with complex diseases although most variants identified so far explain only a small proportion of heritability, suggesting that rare variants are responsible for missing heritability. Identification of rare variants through large‐scale resequencing becomes increasing important but still prohibitively expensive despite the rapid decline in the sequencing costs. Nevertheless, group testing based overlapping pool sequencing in which pooled rather than individual samples are sequenced will greatly reduces the efforts of sample preparation as well as the costs to screen for rare variants. Here, we proposed an overlapping pool sequencing to screen rare variants with optimal sequencing depth and a corresponding cost model. We formulated a model to compute the optimal depth for sufficient observations of variants in pooled sequencing. Utilizing shifted transversal design algorithm, appropriate parameters for overlapping pool sequencing could be selected to minimize cost and guarantee accuracy. Due to the mixing constraint and high depth for pooled sequencing, results showed that it was more cost‐effective to divide a large population into smaller blocks which were tested using optimized strategies independently. Finally, we conducted an experiment to screen variant carriers with frequency equaled 1%. With simulated pools and publicly available human exome sequencing data, the experiment achieved 99.93% accuracy. Utilizing overlapping pool sequencing, the cost for screening variant carriers with frequency equaled 1% in 200 diploid individuals dropped to at least 66% at which target sequencing region was set to 30 Mb.  相似文献   

14.
Genetic studies often collect multiple correlated traits, which could be analyzed jointly to increase power by aggregating multiple weak effects and provide additional insights into the etiology of complex human diseases. Existing methods for multiple trait association tests have primarily focused on common variants. There is a surprising dearth of published methods for testing the association of rare variants with multiple correlated traits. In this paper, we extend the commonly used sequence kernel association test (SKAT) for single‐trait analysis to test for the joint association of rare variant sets with multiple traits. We investigate the performance of the proposed method through extensive simulation studies. We further illustrate its usefulness with application to the analysis of diabetes‐related traits in the Atherosclerosis Risk in Communities (ARIC) Study. We identified an exome‐wide significant rare variant set in the gene YAP1 worthy of further investigations.  相似文献   

15.
The joint analysis of multiple disease phenotypes aims to increase statistical power and potentially identify pleiotropic genes involved in the biological development of common chronic diseases. As next-generation sequencing data become more common, it will be important to consider ways to maximize the ability to detect rare variants within the human genome. The two exome sequence data sets provided for analysis at Genetic Analysis Workshop 17 (GAW17) offered three quantitative phenotypes related to disease status in 200 simulated replicates for both families and unrelated individuals. Participants in Group 10 addressed the challenges and potential uses of next-generation sequencing data to identify causal variants through a broad range of statistical methods. These methods included investigating multiple phenotypes either through data reduction or joint methods, using family or unrelated individuals, and reducing the dimensionality inherent in these data. Most of the research teams regarded the use of multiple phenotypes as a means of increasing analytical power and as a way to clarify the biology of complex disease. Three major observations were gleaned from these Group 10 contributions. First, family and unrelated case-control samples are suited to finding different types of variants. In addition, collapsing either phenotypes or genotypes can reduce the dimensionality of the data and alleviate some of the problems of multiple testing. Finally, we were able to demonstrate in certain cases that performing a joint analysis of disease status and a quantitative trait can improve statistical power.  相似文献   

16.
Recent developments in sequencing technology have allowed the investigation of the common disease/rare variant hypothesis. In the Genetic Analysis Workshop 17 data set, we have sequence data on both unrelated individuals and eight large extended pedigrees with simulated quantitative and qualitative phenotypes. Group 11, whose focus was incorporating linkage information, considered several different ways to use the extended pedigrees to identify causal genes and variants. The first issue was the use of standard linkage or identity-by-descent information to identify regions containing causal rare variants. We found that rare variants of large effect segregating through pedigrees were precisely the bailiwick of linkage analysis. For a common disease, we anticipate many risk loci, so a heterogeneity linkage analysis or an analysis of a single pedigree at a time may be useful. The second issue was using pedigree data to identify individuals for sequencing. If one can identify linked regions and even carriers of risk haplotypes, the sequencing will be substantially more efficient. In fact, sequencing only 2.5% of the genome in carefully selected individuals can detect 52% of the risk variants that would be detected through whole-exome sequencing in a large number of unrelated individuals. Finally, we found that linkage information from pedigrees can provide weights for case-control association tests. We also found that pedigree-based association tests have the same issues of binning variants and variant counting as those in tests of unrelated individuals. Clearly, when pedigrees are available, they can provide great assistance in the search for rare variants that influence common disorders.  相似文献   

17.
Rare variants have recently garnered an immense amount of attention in genetic association analysis. However, unlike methods traditionally used for single marker analysis in GWAS, rare variant analysis often requires some method of aggregation, since single marker approaches are poorly powered for typical sequencing study sample sizes. Advancements in sequencing technologies have rendered next‐generation sequencing platforms a realistic alternative to traditional genotyping arrays. Exome sequencing in particular not only provides base‐level resolution of genetic coding regions, but also a natural paradigm for aggregation via genes and exons. Here, we propose the use of penalized regression in combination with variant aggregation measures to identify rare variant enrichment in exome sequencing data. In contrast to marginal gene‐level testing, we simultaneously evaluate the effects of rare variants in multiple genes, focusing on gene‐based least absolute shrinkage and selection operator (LASSO) and exon‐based sparse group LASSO models. By using gene membership as a grouping variable, the sparse group LASSO can be used as a gene‐centric analysis of rare variants while also providing a penalized approach toward identifying specific regions of interest. We apply extensive simulations to evaluate the performance of these approaches with respect to specificity and sensitivity, comparing these results to multiple competing marginal testing methods. Finally, we discuss our findings and outline future research.  相似文献   

18.
Recent advances in sequencing technology have presented both opportunities and challenges, with limited statistical power to detect a single causal rare variant with practical sample sizes. To overcome this, the contributors to Group 1 of Genetic Analysis Workshop 17 sought to develop methods to detect the combined signal of multiple causal rare variants in a biologically meaningful way. The contributors used genes, genome location proximity, or genetic pathways as the basic unit in combining the information from multiple variants. Weaknesses of the exome sequence data and the relative strengths and weaknesses of the five approaches are discussed.  相似文献   

19.
Next-generation sequencing technology allows investigation of both common and rare variants in humans. Exomes are sequenced on the population level or in families to further study the genetics of human diseases. Genetic Analysis Workshop 17 (GAW17) provided exomic data from the 1000 Genomes Project and simulated phenotypes. These data enabled evaluations of existing and newly developed statistical methods for rare variant sequence analysis for which standard statistical methods fail because of the rareness of the alleles. Various alternative approaches have been proposed that overcome the rareness problem by combining multiple rare variants within a gene. These approaches are termed collapsing methods, and our GAW17 group focused on studying the performance of existing and novel collapsing methods using rare variants. All tested methods performed similarly, as measured by type I error and power. Inflated type I error fractions were consistently observed and might be caused by gametic phase disequilibrium between causal and noncausal rare variants in this relatively small sample as well as by population stratification. Incorporating prior knowledge, such as appropriate covariates and information on functionality of SNPs, increased the power of detecting associated genes. Overall, collapsing rare variants can increase the power of identifying disease-associated genes. However, studying genetic associations of rare variants remains a challenging task that requires further development and improvement in data collection, management, analysis, and computation.  相似文献   

20.
We are interested in investigating the involvement of multiple rare variants within a given region by conducting analyses of individual regions with two goals: (1) to determine if regional rare variation in aggregate is associated with risk; and (2) conditional upon the region being associated, to identify specific genetic variants within the region that are driving the association. In particular, we seek a formal integrated analysis that achieves both of our goals. For rare variants with low minor allele frequencies, there is very little power to statistically test the null hypothesis of equal allele or genotype counts for each variant. Thus, genetic association studies are often limited to detecting association within a subset of the common genetic markers. However, it is very likely that associations exist for the rare variants that may not be captured by the set of common markers. Our framework aims at constructing a risk index based on multiple rare variants within a region. Our analytical strategy is novel in that we use a Bayesian approach to incorporate model uncertainty in the selection of variants to include in the index as well as the direction of the associated effects. Additionally, the approach allows for inference at both the group and variant-specific levels. Using a set of simulations, we show that our methodology has added power over other popular rare variant methods to detect global associations. In addition, we apply the approach to sequence data from the WECARE Study of second primary breast cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号