首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Next generation sequencing technologies make direct testing rare variant associations possible. However, the development of powerful statistical methods for rare variant association studies is still underway. Most of existing methods are burden and quadratic tests. Recent studies show that the performance of each of burden and quadratic tests depends strongly upon the underlying assumption and no test demonstrates consistently acceptable power. Thus, combined tests by combining information from the burden and quadratic tests have been proposed recently. However, results from recent studies (including this study) show that there exist tests that can outperform both burden and quadratic tests. In this article, we propose three classes of tests that include tests outperforming both burden and quadratic tests. Then, we propose the optimal combination of single‐variant tests (OCST) by combining information from tests of the three classes. We use extensive simulation studies to compare the performance of OCST with that of burden, quadratic and optimal single‐variant tests. Our results show that OCST either is the most powerful test or has similar power with the most powerful test. We also compare the performance of OCST with that of the two existing combined tests. Our results show that OCST has better power than the two combined tests.  相似文献   

2.
Advancement in sequencing technology enables the study of association between complex disorder phenotypes and single‐nucleotide polymorphisms with rare mutations. However, the rare genetic variant has extremely small variance and impairs testing power of traditional statistical methods. We introduce a W‐test collapsing method to evaluate rare‐variant association by measuring the distributional differences between cases and controls through combined log of odds ratio within a genomic region. The method is model‐free and inherits chi‐squared distribution with degrees of freedom estimated from bootstrapped samples of the data, and allows for fast and accurate P‐value calculation without the need of permutations. The proposed method is compared with the Weighted‐Sum Statistic and Sequence Kernel Association Test on simulation datasets, and showed good performances and significantly faster computing speed. In the application of real next‐generation sequencing dataset of hypertensive disorder, it identified genes of interesting biological functions associated to metabolism disorder and inflammation, including the MACROD1, NLRP7, AGK, PAK6, and APBB1. The proposed method offers an efficient and effective way for testing rare genetic variants in whole exome sequencing datasets.  相似文献   

3.
There is an emerging interest in sequencing‐based association studies of multiple rare variants. Most association tests suggested in the literature involve collapsing rare variants with or without weighting. Recently, a variance‐component score test [sequence kernel association test (SKAT)] was proposed to address the limitations of collapsing method. Although SKAT was shown to outperform most of the alternative tests, its applications and power might be restricted and influenced by missing genotypes. In this paper, we suggest a new method based on testing whether the fraction of causal variants in a region is zero. The new association test, T REM, is derived from a random‐effects model and allows for missing genotypes, and the choice of weighting function is not required when common and rare variants are analyzed simultaneously. We performed simulations to study the type I error rates and power of four competing tests under various conditions on the sample size, genotype missing rate, variant frequency, effect directionality, and the number of non‐causal rare variant and/or causal common variant. The simulation results showed that T REM was a valid test and less sensitive to the inclusion of non‐causal rare variants and/or low effect common variants or to the presence of missing genotypes. When the effects were more consistent in the same direction, T REM also had better power performance. Finally, an application to the Shanghai Breast Cancer Study showed that rare causal variants at the FGFR2 gene were detected by T REM and SKAT, but T REM produced more consistent results for different sets of rare and common variants. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Genome‐wide association (GWA) studies have proved to be extremely successful in identifying novel common polymorphisms contributing effects to the genetic component underlying complex traits. Nevertheless, one source of, as yet, undiscovered genetic determinants of complex traits are those mediated through the effects of rare variants. With the increasing availability of large‐scale re‐sequencing data for rare variant discovery, we have developed a novel statistical method for the detection of complex trait associations with these loci, based on searching for accumulations of minor alleles within the same functional unit. We have undertaken simulations to evaluate strategies for the identification of rare variant associations in population‐based genetic studies when data are available from re‐sequencing discovery efforts or from commercially available GWA chips. Our results demonstrate that methods based on accumulations of rare variants discovered through re‐sequencing offer substantially greater power than conventional analysis of GWA data, and thus provide an exciting opportunity for future discovery of genetic determinants of complex traits. Genet. Epidemiol. 34: 188–193, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
A combination of common and rare variants is thought to contribute to genetic susceptibility to complex diseases. Recently, next‐generation sequencers have greatly lowered sequencing costs, providing an opportunity to identify rare disease variants in large genetic epidemiology studies. At present, it is still expensive and time consuming to resequence large number of individual genomes. However, given that next‐generation sequencing technology can provide accurate estimates of allele frequencies from pooled DNA samples, it is possible to detect associations of rare variants using pooled DNA sequencing. Current statistical approaches to the analysis of associations with rare variants are not designed for use with pooled next‐generation sequencing data. Hence, they may not be optimal in terms of both validity and power. Therefore, we propose here a new statistical procedure to analyze the output of pooled sequencing data. The test statistic can be computed rapidly, making it feasible to test the association of a large number of variants with disease. By simulation, we compare this approach to Fisher's exact test based either on pooled or individual genotypic data. Our results demonstrate that the proposed method provides good control of the Type I error rate, while yielding substantially higher power than Fisher's exact test using pooled genotypic data for testing rare variants, and has similar or higher power than that of Fisher's exact test using individual genotypic data. Our results also provide guidelines on how various parameters of the pooled sequencing design affect the efficiency of detecting associations. Genet. Epidemiol. 34: 492–501, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Whole-exome sequencing (WES) and whole-genome sequencing (WGS) studies are underway to investigate the impact of genetic variants on complex diseases and traits. It is customary to perform single-variant association tests for common variants and region-based association tests for rare variants. The latter may target variants with similar or opposite effects, interrogate variants with different frequencies or different functional annotations, and examine a variety of regions. The large number of tests that are performed necessitates adjustment for multiple testing. The conventional Bonferroni correction is overly conservative as the test statistics are correlated. To address this challenge, we propose a simple and accurate method based on parametric bootstrap to assess genomewide significance. We show that the correlations of the test statistics are determined primarily by the genotypes, such that the same significance threshold can be used in different studies that share a common sequencing platform. We demonstrate the usefulness of the proposed method with WES data from the National Heart, Lung, and Blood Institute Exome Sequencing Project and WGS data from the 1000 Genomes Project. We recommend the p value of as the genomewide significance threshold for testing all common and low-frequency variants (MAFs 0.1%) in the human genome.  相似文献   

7.
二代测序技术的发展促进了复杂疾病致病性罕见遗传变异的研究。罕见变异的低频性使得单位点关联分析功效不足,因此负荷检验、方差成分检验等整合多个位点信息的关联分析方法得到了广泛应用。但这些方法大多基于人群研究设计,针对家系数据的分析方法较为少见。本文综述了基于家系数据的常用罕见变异关联分析方法,介绍基本原理和特点、适用条件等,并讨论了当前分析方法存在的不足和未来发展的方向。  相似文献   

8.
9.
For studies of genetically complex diseases, many association methods have been developed to analyze rare variants. When variant calls are missing, naïve implementation of rare variant association (RVA) methods may lead to inflated type I error rates as well as a reduction in power. To overcome these problems, we developed extensions for four commonly used RVA tests. Data from the National Heart Lung and Blood Institute‐Exome Sequencing Project were used to demonstrate that missing variant calls can lead to increased false‐positive rates and that the extended RVA methods control type I error without reducing power. We suggest a combined strategy of data filtering based on variant and sample level missing genotypes along with implementation of these extended RVA tests.  相似文献   

10.
We propose a novel variant set test for rare-variant association studies, which leverages multiple single-nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a different annotation and combination weights are optimized through a multiple kernel learning algorithm. The combination test statistic is evaluated empirically through data splitting. In simulations, we find our method preserves type I error at and has greater power than SKAT(-O) when SNV weights are not misspecified and sample sizes are large (). We utilize our method in the Framingham Heart Study (FHS) to identify SNV sets associated with fasting glucose. While we are unable to detect any genome-wide significant associations between fasting glucose and 4-kb windows of rare variants () in 6,419 FHS participants, our method identifies suggestive associations between fasting glucose and rare variants near ROCK2 () and within CPLX1 (). These two genes were previously reported to be involved in obesity-mediated insulin resistance and glucose-induced insulin secretion by pancreatic beta-cells, respectively. These findings will need to be replicated in other cohorts and validated by functional genomic studies.  相似文献   

11.
When testing genotype–phenotype associations using linear regression, departure of the trait distribution from normality can impact both Type I error rate control and statistical power, with worse consequences for rarer variants. Because genotypes are expected to have small effects (if any) investigators now routinely use a two-stage method, in which they first regress the trait on covariates, obtain residuals, rank-normalize them, and then use the rank-normalized residuals in association analysis with the genotypes. Potential confounding signals are assumed to be removed at the first stage, so in practice, no further adjustment is done in the second stage. Here, we show that this widely used approach can lead to tests with undesirable statistical properties, due to both combination of a mis-specified mean–variance relationship and remaining covariate associations between the rank-normalized residuals and genotypes. We demonstrate these properties theoretically, and also in applications to genome-wide and whole-genome sequencing association studies. We further propose and evaluate an alternative fully adjusted two-stage approach that adjusts for covariates both when residuals are obtained and in the subsequent association test. This method can reduce excess Type I errors and improve statistical power.  相似文献   

12.
Single genome-wide studies may be underpowered to detect trait-associated rare variants with moderate or weak effect sizes. As a viable alternative, meta-analysis is widely used to increase power by combining different studies. The power of meta-analysis critically depends on the underlying association patterns and heterogeneity levels, which are unknown and vary from locus to locus. However, existing methods mainly focus on one or only a few combinations of the association pattern and heterogeneity level, thus may lose power in many situations. To address this issue, we propose a general and unified framework by combining a class of tests including and beyond some existing ones, leading to high power across a wide range of scenarios. We demonstrate that the proposed test is more powerful than some existing methods in simulation studies, then show their performance with the NHLBI Exome-Sequencing Project (ESP) data. One gene (B4GALNT2) was found by our proposed test, but not by others, to be statistically significantly associated with plasma triglyceride. The signal was driven by African-ancestry subjects but it was previously reported to be associated with coronary artery disease among European-ancestry subjects. We implemented our method in an R package aSPUmeta , publicly available at https://github.com/ytzhong/metaRV and will be on CRAN soon.  相似文献   

13.
14.
Cover Image     
Genome-wide associations studies have repeatedly identified the major histocompatibility complex genomic region (6p21.3) as key in immune pathologies. Researchers have also aimed to extend the biological interpretation of associations by focusing directly on human leukocyte antigen (HLA) polymorphisms and their combination as haplotypes. To circumvent the effort and high costs of HLA typing, statistical solutions have been developed to infer HLA alleles from single-nucleotide polymorphism (SNP) genotyping data. Though HLA imputation methods have been developed, no unified effort has yet been undertaken to share large and diverse imputation models, or to improve methods. By training the HIBAG software on SNP + HLA data generated by the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) to create reference panels, we highlighted the importance of (a) the number of individuals in reference panels, with a twofold increase in accuracy (from 10 to 100 individuals) and (b) the number of SNPs, with a 1.5-fold increase in accuracy (from 500 to 24,504 SNPs). Results showed improved accuracy with CAAPA compared to the African American models available in HIBAG, highlighting the need for precise population-matching. The SNP-HLA Reference Consortium is an international endeavor to gather data, enhance HLA imputation and broaden access to highly accurate imputation models for the immunogenomics community.  相似文献   

15.
16.
17.
18.
19.
20.
It is challenging to estimate the phenotypic impact of the structural genome changes known as copy-number variations (CNVs), since there are many unique CNVs which are nonrecurrent, and most are too rare to be studied individually. In recent work, we found that CNV-aggregated genomic annotations, that is, specifically the intolerance to mutation as measured by the pLI score (probability of being loss-of-function intolerant), can be strong predictors of intellectual quotient (IQ) loss. However, this aggregation method only estimates the individual CNV effects indirectly. Here, we propose the use of hierarchical Bayesian models to directly estimate individual effects of rare CNVs on measures of intelligence. Annotation information on the impact of major mutations in genomic regions is extracted from genomic databases and used to define prior information for the approach we call HBIQ. We applied HBIQ to the analysis of CNV deletions and duplications from three datasets and identified several genomic regions containing CNVs demonstrating significant deleterious effects on IQ, some of which validate previously known associations. We also show that several CNVs were identified as deleterious by HBIQ even if they have a zero pLI score, and the converse is also true. Furthermore, we show that our new model yields higher out-of-sample concordance (78%) for predicting the consequences of carrying known recurrent CNVs compared with our previous approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号