首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone regeneration involves skeletal stem/progenitor cells (SSPCs) recruited from bone marrow, periosteum, and adjacent skeletal muscle. To achieve bone reconstitution after injury, a coordinated cellular and molecular response is required from these cell populations. Here, we show that SSPCs from periosteum and skeletal muscle are enriched in osteochondral progenitors, and more efficiently contribute to endochondral ossification during fracture repair as compared to bone-marrow stromal cells. Single-cell RNA sequencing (RNAseq) analyses of periosteal cells reveal the cellular heterogeneity of periosteum at steady state and in response to bone fracture. Upon fracture, both periosteal and skeletal muscle SSPCs transition from a stem/progenitor to a fibrogenic state prior to chondrogenesis. This common activation pattern in periosteum and skeletal muscle SSPCs is mediated by bone morphogenetic protein (BMP) signaling. Functionally, Bmpr1a gene inactivation in platelet-derived growth factor receptor alpha (Pdgfra)-derived SSPCs impairs bone healing and decreases SSPC proliferation, migration, and osteochondral differentiation. These results uncover a coordinated molecular program driving SSPC activation in periosteum and skeletal muscle toward endochondral ossification during bone regeneration. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

2.
Multiple myeloma is caused by abnormal plasma cells that accumulate in the bone marrow and interact with resident cells of the bone microenvironment to drive disease progression and development of an osteolytic bone disease. Bone marrow adipocytes (BMAds) are emerging as having important endocrine functions that can support myeloma cell growth and survival. However, how BMAds respond to infiltrating tumor cells remains poorly understood. Using the C57BL/KaLwRij murine model of myeloma, bone marrow adiposity was found to be increased in early stage myeloma with BMAds localizing along the tumor-bone interface at later stages of disease. Myeloma cells were found to uptake BMAd-derived lipids in vitro and in vivo, although lipid uptake was not associated with the ability of BMAds to promote myeloma cell growth and survival. However, BMAd-derived factors were found to increase myeloma cell migration, viability, and the evasion of apoptosis. BMAds are a major source of adiponectin, which is known to be myeloma-suppressive. Myeloma cells were found to downregulate adiponectin specifically in a model of BMAds but not in white adipocytes. The ability of myeloma cells to downregulate adiponectin was dependent at least in part on TNF-α. Collectively our data support the link between increased bone marrow adiposity and myeloma progression. By demonstrating how TNF-α downregulates BMAd-derived adiponectin, we reveal a new mechanism by which myeloma cells alter the bone microenvironment to support disease progression. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.  相似文献   

3.
Bone marrow adipose tissue (BMAT) resides within the bone marrow microenvironment where its function remains poorly understood. BMAT is elevated in anorexia nervosa, a disease model of chronic starvation, despite depletion of other fat depots. In addition to BMAT, the marrow microenvironment also consists of osteoblast and hematopoietic progenitors. BMAT is inversely associated with bone mineral density (BMD) in multiple populations including women with anorexia nervosa, and regulates hematopoiesis in animal models. We hypothesized that BMAT would be associated with circulating populations of hematopoietic cells (red and white blood cells) in humans and performed a post hoc analysis of two studies—a cross-sectional study and a longitudinal study—to investigate this hypothesis. We studied 89 premenopausal women cross-sectionally (median age [interquartile range], 27 [24.5, 31.7] years), including 35 with anorexia nervosa. We investigated associations between red blood cell (RBC) and white blood cell (WBC) counts and BMAT assessed by 1H-magnetic resonance spectroscopy, BMD assessed by DXA, and bone microarchitecture assessed by HR-pQCT. In addition, we analyzed longitudinal data in six premenopausal women with anorexia nervosa treated with transdermal estrogen for 6 months and measured changes in BMAT and blood cell counts during treatment. Cross-sectionally, BMAT was inversely associated with WBC and RBC counts. In contrast, BMD and parameters of bone microarchitecture were positively associated with WBC and RBC. In women with anorexia nervosa treated with transdermal estrogen for 6 months, decreases in BMAT were significantly associated with increases in both RBC and hematocrit (rho = −0.83, p = 0.04 for both). In conclusion, we show that BMAT is inversely associated with WBC and RBC in premenopausal women, and there is a potential association between longitudinal changes in BMAT and changes in RBC. These associations warrant further study and may provide further insight into the role and function of this understudied adipose depot. © 2020 American Society for Bone and Mineral Research.  相似文献   

4.
A full understanding of the microenvironmental factors that control the activities of skeletal stem cells (also known as mesenchymal stem cells [MSCs]) in the adult bone marrow holds great promise for developing new therapeutic strategies to mitigate age‐related diseases of bone and cartilage degeneration. Bone loss is an understudied manifestation of Marfan syndrome, a multisystem disease associated with mutations in the extracellular matrix protein and TGFβ modulator fibrillin‐1. Here we demonstrate that progressive loss of cancellous bone in mice with limbs deficient for fibrillin‐1 (Fbn1Prx1–/– mice) is accounted for by premature depletion of MSCs and osteoprogenitor cells combined with constitutively enhanced bone resorption. Longitudinal analyses of Fbn1Prx1–/– mice showed incremental bone loss and trabecular microarchitecture degeneration accompanied by a progressive decrease in the number and clonogenic potential of MSCs. Significant paucity of marrow fat cells in the long bones of Fbn1Prx1–/– mice, together with reduced adipogenic potential of marrow stromal cell cultures, indicated an additional defect in MSC differentiation. This postulate was corroborated by showing that an Fbn1‐silenced osteoprogenitor cell line cultured in the presence of insulin yielded fewer than normal adipocytes and exhibited relatively lower PPARγ levels. Consonant with fibrillin‐1 modulation of TGFβ bioavailability, cultures of marrow stromal cells from Fbn1Prx1–/– limb bones showed improper overactivation of latent TGFβ. In line with this finding, systemic TGFβ neutralization improved bone mass and trabecular microarchitecture along with normalizing the number of MSCs, osteoprogenitor cells, and marrow adipocytes. Collectively, our findings show that fibrillin‐1 regulates MSC activity by modulating TGFβ bioavailability within the microenvironment of marrow niches. © 2015 American Society for Bone and Mineral Research.  相似文献   

5.
Gaucher disease (GD) is a rare, genetic lysosomal disorder leading to lipid accumulation and dysfunction in multiple organs. Involvement of the skeleton is one of the most prevalent aspects of GD and a major cause of pain, disability, and reduced quality of life. Uniform recommendations for contemporary evaluation and management are needed. To develop practical clinical recommendations, an international group of experienced physicians conducted a comprehensive review of 20 years’ of the literature, defining terms according to pathophysiological understanding and pointing out best practice and unmet needs related to the skeletal features of this disorder. Abnormalities of bone modeling, reduced bone density, bone infarction, and plasma cell dyscrasias accompany the displacement of healthy adipocytes in adult marrow. Exposure to excess bioactive glycosphingolipids appears to affect hematopoiesis and the balance of osteoblast and osteoclast numbers and activity. Imbalance between bone formation and breakdown induces disordered trabecular and cortical bone modeling, cortical bone thinning, fragility fractures, and osteolytic lesions. Regular assessment of bone mineral density, marrow infiltration, the axial skeleton and searching for potential malignancy are recommended. MRI is valuable for monitoring skeletal involvement: It provides semiquantitative assessment of marrow infiltration and the degree of bone infarction. When MRI is not available, monitoring of painful acute bone crises and osteonecrosis by plain X-ray has limited value. In adult patients, we recommend DXA of the lumbar spine and left and right hips, with careful protocols designed to exclude focal disease; serial follow-up should be done using the same standardized instrument. Skeletal health may be improved by common measures, including adequate calcium and vitamin D and management of pain and orthopedic complications. Prompt initiation of specific therapy for GD is crucial to optimizing outcomes and preventing irreversible skeletal complications. Investing in safe, clinically useful, and better predictive methods for determining bone integrity and fracture risk remains a need. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.  相似文献   

6.
We identified the neuroprotein collapsing response mediator protein‐4 (CRMP4) as a noncanonical osteogenic factor that regulates the differentiation of mouse bone marrow skeletal stem cells (bone marrow stromal stem cells [mBMSCs]) into osteoblastic cells. CRMP4 is the only member of the CRMP1–CRMP5 family to be expressed by mBMSCs and in osteoprogenitors of both adult mouse and human bones. In vitro gain‐of‐function and loss‐of‐function of CRMP4 in murine stromal cells revealed its inhibitory effect on osteoblast differentiation. In addition, Crmp4‐deficient mice (Crmp4–/–) displayed a 40% increase in bone mass, increased mineral apposition rate, and bone formation rate, compared to wild‐type controls. Increased bone mass in Crmp4–/– mice was associated with enhanced BMP2 signaling and BMP2‐induced osteoblast differentiation in Crmp4–/– osteoblasts (OBs). Furthermore, Crmp4–/– OBs exhibited enhanced activation of RhoA/focal adhesion kinase (FAK) signaling that led to cytoskeletal changes with increased cell spreading. In addition, Crmp4–/– OBs exhibited increased cell proliferation that was mediated via inhibiting cyclin‐dependent kinase inhibitor 1B, p27Kip1 and upregulating cyclin D1 expression which are targets of RhoA signaling pathway. Our findings identify CRMP4 as a novel negative regulator of osteoblast differentiation. © 2016 American Society for Bone and Mineral Research.  相似文献   

7.
Bone engineering of localized craniofacial osseous defects or deficiencies by stem cell therapy offers strong prospects to improve treatment predictability for patient care. The aim of this phase 1/2 randomized, controlled clinical trial was to evaluate reconstruction of bone deficiencies of the maxillary sinus with transplantation of autologous cells enriched with CD90+ stem cells and CD14+ monocytes. Thirty human participants requiring bone augmentation of the maxillary sinus were enrolled. Patients presenting with 50% to 80% bone deficiencies of the maxillary sinus were randomized to receive either stem cells delivered onto a β‐tricalcium phosphate scaffold or scaffold alone. Four months after treatment, clinical, radiographic, and histologic analyses were performed to evaluate de novo engineered bone. At the time of alveolar bone core harvest, oral implants were installed in the engineered bone and later functionally restored with dental tooth prostheses. Radiographic analyses showed no difference in the total bone volume gained between treatment groups; however, density of the engineered bone was higher in patients receiving stem cells. Bone core biopsies showed that stem cell therapy provided the greatest benefit in the most severe deficiencies, yielding better bone quality than control patients, as evidenced by higher bone volume fraction (BVF; 0.5 versus 0.4; p = 0.04). Assessment of the relation between degree of CD90+ stem cell enrichment and BVF showed that the higher the CD90 composition of transplanted cells, the greater the BVF of regenerated bone (r = 0.56; p = 0.05). Oral implants were placed and restored with functionally loaded dental restorations in all patients and no treatment‐related adverse events were reported at the 1‐year follow‐up. These results provide evidence that cell‐based therapy using enriched CD90+ stem cell populations is safe for maxillary sinus floor reconstruction and offers potential to accelerate and enhance tissue engineered bone quality in other craniofacial bone defects and deficiencies ( Clinicaltrials.gov NCT00980278). © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research  相似文献   

8.
Blood cell production and bone homeostasis are physically interlinked systems that exhibit active cross‐talk. We examined how bone health is affected in patients with hematopoietic disorders due to abnormal proliferation of bone marrow cells. The electronic databases Medline, Embase, PubMed, BIOSIS Previews, Web of Science, and Cochrane were searched for studies presenting numerical values for trabecular bone volume or bone mineral density in control and patients with hematopoietic disorders. We identified 5 studies for beta‐thalassemia, 6 for sickle cell anemia, 2 for polycythemia vera and essential thrombocythemia, 3 for chronic myelogenous leukemia, 6 for myelofibrosis, 5 for multiple myeloma, and 4 studies each for systemic mastocytosis, lymphocytic leukemia, and hemochromatosis. The effect of the disease state on bone density was significant and negative for beta‐thalassemia (r = –2.00; 95% confidence interval [CI] –3.41, –0.58; p < 0.005), sickle cell anemia (–0.91; –1.36, –0.47; p < 0.00005), chronic myelogenous leukemia (–0.55; –0.88, –0.22; p < 0005), mastocytosis (–0.99; –1.16, –0.82; p < 0.00001), lymphoblastic leukemia (–0.69; –0.98, –0.40; p < 0.00001), multiple myeloma (–0.67; –0.99, –0.35; p < 0.00005), and hemochromatosis (–1.15; –1.64, –0.66; p < 0.00001). The changes were negative but not significant for polycythemia vera (–0.16; –0.38, 0.05; p = 0.069) and essential thrombocythemia (–0.33; –0.92, 0.26; p = 0.14). In myelofibrosis, disease state was associated with increased bone density (0.74; 0.12, 1.36; p < 0.05). Bone density change significantly and negatively correlated with the level of ferritin and bone marrow cellularity but not with hemoglobin or erythropoietin. Thus, independent of hematopoietic lineage, abnormal proliferation of bone marrow cells appears to be associated with bone loss. Iron metabolism may independently contribute to bone homeostasis. © 2016 American Society for Bone and Mineral Research.  相似文献   

9.
Stem cell depletion and compromised bone marrow resulting from radiation exposure fosters long‐term deterioration of numerous physiologic systems, with the degradation of the skeletal system ultimately increasing the risk of fractures. To study the interrelationship of damaged bone marrow cell populations with trabecular microarchitecture, 8‐ and 16‐week‐old C57BL/6 male mice were sublethally irradiated with 5 Gy of 137Cs γ‐rays, and adult stem cells residing in the bone marrow, as well as bone quantity and quality, were evaluated in the proximal tibia after 2 days, 10 days, and 8 weeks compared with age‐matched controls. Total extracted bone marrow cells in the irradiated 8‐week, young adult mice, including the hematopoietic cell niches, collapsed by 65% ± 11% after 2 days, remaining at those levels through 10 days, only recovering to age‐matched control levels by 8 weeks. As early as 10 days, double‐labeled surface was undetectable in the irradiated group, paralleled by a 41% ± 12% and 33% ± 4% decline in bone volume fraction (BV/TV) and trabecular number (Tb.N), respectively, and a 50% ± 10% increase in trabecular separation (Tb.Sp) compared with the age‐matched controls, a compromised structure that persisted to 8 weeks postirradiation. Although the overall collapse of the bone marrow population and devastation of bone quality was similar between the “young adult” and “mature” mice, the impact of irradiation—and the speed of recovery—on specific hematopoietic subpopulations was dependent on age, with the older animals slower to restore key progenitor populations. These data indicate that, independent of animal age, complications arising from irradiation extend beyond the collapse of the stem cell population and extend toward damage to key organ systems. It is reasonable to presume that accelerating the recovery of these stem cell pools will enable the prompt repair of the skeletal system and ultimately reduce the susceptibility to fractures. © 2012 American Society for Bone and Mineral Research.  相似文献   

10.
Primary tumors are widely associated with an excess in body fat. The role of adipose tissue on tumor cell homing to bone is yet poorly defined. In this study, we aimed to assess whether bone colonization by tumor cells is favored by an adipocyte-rich bone marrow. We delineated the accompanying alterations of the bone microenvironment and established a treatment approach that interferes with high fat diet (HFD)-induced bone metastasis formation. We were able to show that adipocytes affect skeletal tumor growth in a metastatic model of breast cancer in male rats and melanoma in male mice as well as in human breast cancer bone biopsies. Indeed, HFD-induced bone marrow adiposity was accompanied by accelerated tumor progression and increased osteolytic lesions. In human bone metastases, bone marrow adiposity correlated with tumor cell proliferation. By antagonization of the adipocyte differentiation and storage pathway linked to the peroxisome proliferator-activated receptor gamma (PPARγ) with bisphenol-A-diglycidylether (BADGE), we were able to decelerate tumor progression and subsequent osteolytic damage in the bones of two distinct metastatic animal models exposed to HFD. Overall these data show that adipose tissue is a critical factor in bone metastases and cancer-induced bone loss. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

11.
CXCL12 is abundantly expressed in reticular cells associated with the perivascular niches of the bone marrow (BM) and is indispensable for B lymphopoiesis. Cxcl12 promotes osteoclastogenesis and has been implicated in pathologic bone resorption. We had shown earlier that estrogen receptor α deletion in osteoprogenitors and estrogen deficiency in mice increase Cxcl12 mRNA and protein levels in the BM plasma, respectively. We have now generated female and male mice with conditional deletion of a Cxcl12 allele in Prrx1 targeted cells (Cxcl12∆Prrx1) and show herein that they have a 90% decrease in B lymphocytes but increased erythrocytes and adipocytes in the marrow. Ovariectomy increased the expression of Cxcl12 and B-cell number in the Cxcl12f/f control mice, but these effects were abrogated in the Cxcl12∆Prrx1 mice. Cortical bone mass was not affected in Cxcl12∆Prrx1 mice. Albeit, the cortical bone loss caused by ovariectomy was greatly attenuated. Most unexpectedly, the rate of bone turnover in sex steroid–sufficient female or male Cxcl12∆Prrx1 mice was dramatically increased, as evidenced by a more than twofold increase in several osteoblast- and osteoclast-specific mRNAs, as well as increased mineral apposition and bone formation rate and increased osteoclast number in the endosteal surface. The magnitude of the Cxcl12∆Prrx1-induced changes were much greater than those caused by ovariectomy or orchidectomy in the Cxcl12f/f mice. These results strengthen the evidence that CXCL12 contributes to the loss of cortical bone mass caused by estrogen deficiency. Moreover, they reveal for the first time that in addition to its effects on hematopoiesis, CXCL12 restrains bone turnover—without changing the balance between resorption and formation—by suppressing osteoblastogenesis and the osteoclastogenesis support provided by cells of the osteoblast lineage. © 2020 American Society for Bone and Mineral Research.  相似文献   

12.
The importance of the vascular supply for bone is well-known to orthopaedists but is still rather overlooked within the wider field of skeletal research. Blood supplies oxygen, nutrients and regulatory factors to tissues, as well as removing metabolic waste products such as carbon dioxide and acid. Bone receives up to about 10% of cardiac output, and this blood supply permits a much higher degree of cellularity, remodelling and repair than is possible in cartilage, which is avascular. The blood supply to bone is delivered to the endosteal cavity by nutrient arteries, then flows through marrow sinusoids before exiting via numerous small vessels that ramify through the cortex. The marrow cavity affords a range of vascular niches that are thought to regulate the growth and differentiation of hematopoietic and stromal cells, in part via gradients of oxygen tension. The quality of vascular supply to bone tends to decline with age and may be compromised in common pathological settings, including diabetes, anaemias, chronic airway diseases and immobility, as well as by tumours. Reductions in vascular supply are associated with bone loss. This may be due in part to the direct effects of hypoxia, which blocks osteoblast function and bone formation but causes reciprocal increases in osteoclastogenesis and bone resorption. Common regulatory factors such as parathyroid hormone or nitrates, both of which are potent vasodilators, might exert their osteogenic effects on bone via the vasculature. These observations suggest that the bone vasculature will be a fruitful area for future research.  相似文献   

13.
The innervation of bone has been described for centuries, and our understanding of its function has rapidly evolved over the past several decades to encompass roles of subtype-specific neurons in skeletal homeostasis. Current research has been largely focused on the distribution and function of specific neuronal populations within bone, as well as their cellular and molecular relationships with target cells in the bone microenvironment. This review provides a historical perspective of the field of skeletal neurobiology that highlights the diverse yet interconnected nature of nerves and skeletal health, particularly in the context of bone anabolism and pain. We explore what is known regarding the neuronal subtypes found in the skeleton, their distribution within bone compartments, and their central projection pathways. This neuroskeletal map then serves as a foundation for a comprehensive discussion of the neural control of skeletal development, homeostasis, repair, and bone pain. Active synthesis of this research recently led to the first biotherapeutic success story in the field. Specifically, the ongoing clinical trials of anti-nerve growth factor therapeutics have been optimized to titrated doses that effectively alleviate pain while maintaining bone and joint health. Continued collaborations between neuroscientists and bone biologists are needed to build on this progress, leading to a more complete understanding of neural regulation of the skeleton and development of novel therapeutics. © 2019 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.  相似文献   

14.
Bone vessel functions during bone remodeling are poorly understood. They depend on both vessel network structure and vasomotor regulation. Parathyroid hormone (PTH) is a systemic vasodilator that may modulate microvascularization. Moreover, although intermittent PTH is anti‐osteoporotic, continuous PTH administration can be catabolic for bone. Finally, ovariectomy (OVX) reduces bone perfusion and vessel density in mice. We reasoned that the effects of PTH on bone vascularization might depend on its administration regimen and be impacted by ovariectomy. A 100‐µg/kg PTH 1‐84 daily dose was administered for 15 days to 4‐month‐old female C57BL/6 mice, either as daily sc injection (iPTH) or continuously (cPTH; ALZET minipump). Blood pressure (BP) and tibia bone perfusion were measured in vivo with a laser Doppler device. Histomorphometry of bone and barium‐contrasted vascular network were performed on the same tibia. Compared with untreated controls, both iPTH and cPTH increased bone formation but had opposite effects on resorption. Both iPTH and cPTH were slightly angiogenic. Intermittent PTH increased microvessel size (+48%, p < 0.001), whereas cPTH decreased it (–29%, p = 0.009). iPTH increased bone perfusion (27%, p < 0.001) with no change in BP, whereas cPTH did not. The vascular effects of a 15‐day iPTH treatment were analyzed in OVX mice and compared with sham‐operated and OVX untreated controls. Two other anti‐osteoporotic drugs, zoledronate (one injection, 70 µg/kg) and propranolol, (5 mg/kg/d) were tested in OVX mice. Although no change in bone mass was observed, iPTH stimulated bone formation and prevented the OVX‐induced reduction in bone perfusion and vessel density. Both zoledronate and propranolol strongly lowered bone turnover, but surprisingly, zoledronate prevented OVX‐induced reduction in bone perfusion but propranolol did not. Our integrative approach thus demonstrates that the effects of PTH on bone vessel structure and function depend on its mode of administration as well as on the HPG‐axis hormonal status, and that OVX‐induced vascular changes are prevented by iPTH. © 2014 American Society for Bone and Mineral Research.  相似文献   

15.
Type 1 diabetes (T1DM) is associated with an increased fracture risk, specifically at nonvertebral sites. The influence of glycemic control and microvascular disease on skeletal health in long-standing T1DM remains largely unknown. We aimed to assess areal (aBMD) and volumetric bone mineral density (vBMD), bone microarchitecture, bone turnover, and estimated bone strength in patients with long-standing T1DM, defined as disease duration ≥25 years. We recruited 59 patients with T1DM (disease duration 37.7 ± 9.0 years; age 59.9 ± 9.9 years.; body mass index [BMI] 25.5 ± 3.7 kg/m2; 5-year median glycated hemoglobin [HbA1c] 7.1% [IQR 6.82–7.40]) and 77 nondiabetic controls. Dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HRpQCT) at the ultradistal radius and tibia, and biochemical markers of bone turnover were assessed. Group comparisons were performed after adjustment for age, gender, and BMI. Patients with T1DM had lower aBMD at the hip (p < 0.001), distal radius (p = 0.01), lumbar spine (p = 0.04), and femoral neck (p = 0.05) as compared to controls. Cross-linked C-telopeptide (CTX), a marker of bone resorption, was significantly lower in T1DM (p = 0.005). At the distal radius there were no significant differences in vBMD and bone microarchitecture between both groups. In contrast, patients with T1DM had lower cortical thickness (estimate [95% confidence interval]: −0.14 [−0.24, −0.05], p < 0.01) and lower cortical vBMD (−28.66 [−54.38, −2.93], p = 0.03) at the ultradistal tibia. Bone strength and bone stiffness at the tibia, determined by homogenized finite element modeling, were significantly reduced in T1DM compared to controls. Both the altered cortical microarchitecture and decreased bone strength and stiffness were dependent on the presence of diabetic peripheral neuropathy. In addition to a reduced aBMD and decreased bone resorption, long-standing, well-controlled T1DM is associated with a cortical bone deficit at the ultradistal tibia with reduced bone strength and stiffness. Diabetic neuropathy was found to be a determinant of cortical bone structure and bone strength at the tibia, potentially contributing to the increased nonvertebral fracture risk. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

16.
Bortezomib (Btz) is a proteasome inhibitor approved by the FDA to treat multiple myeloma. It also increases bone volume by promoting osteoblast differentiation and inhibiting osteoclastogenesis in mice. However, Btz has severe systemic adverse effects, which would limit its use as a bone anabolic agent. Here, we designed and synthesized a bone-targeted form of Btz by conjugating it to a bisphosphonate (BP) with no antiresorptive activity. We report that BP-Btz inhibited osteoclast formation and bone resorption and stimulated osteoblast differentiation in vitro similar to Btz. In vivo, BP-Btz increased bone volume more effectively than Btz in three mouse models: untreated wild-type mice, mice with ovariectomy, and aged mice with tibial factures. Importantly, BP-Btz had significantly less systemic side effects than Btz, including less thymic cell death, sympathetic nerve damage, and thrombocytopenia, and it improved survival rates in aged mice. Thus, BP-Btz represents a novel anabolic agent to treat conditions, such as postmenopausal and age-related bone loss. Bone targeting is an attractive approach to repurpose approved drugs to treat skeletal diseases. © 2019 American Society for Bone and Mineral Research. © 2019 American Society for Bone and Mineral Research.  相似文献   

17.
Bone marrow fat, an unique component of the bone marrow cavity increases with aging and menopause and is inversely related to bone mass. Sex steroids may be involved in the regulation of bone marrow fat, because men have higher bone marrow fat than women and clinical observations have suggested that the variation in bone marrow fat fraction is greater in premenopausal compared to postmenopausal women and men. We hypothesized that the menstrual cycle and/or estrogen affects the bone marrow fat fraction. First, we measured vertebral bone marrow fat fraction with Dixon Quantitative Chemical Shift MRI (QCSI) twice a week during 1 month in 10 regularly ovulating women. The vertebral bone marrow fat fraction increased 0.02 (95% CI, 0.00 to 0.03) during the follicular phase (p = 0.033), and showed a nonsignificant decrease of 0.02 (95% CI, –0.01 to 0.04) during the luteal phase (p = 0.091). To determine the effect of estrogen on bone marrow fat, we measured vertebral bone marrow fat fraction every week for 6 consecutive weeks in 6 postmenopausal women before, during, and after 2 weeks of oral 17‐β estradiol treatment (2 mg/day). Bone marrow fat fraction decreased by 0.05 (95% CI, 0.01 to 0.09) from 0.48 (95% CI, 0.42 to 0.53) to 0.43 (95% CI, 0.34 to 0.51) during 17‐β estradiol administration (p < 0.001) and increased again after cessation. During 17‐β estradiol administration the bone formation marker procollagen type I N propeptide (P1NP) increased (p = 0.034) and the bone resorption marker C‐terminal crosslinking telopeptides of collagen type I (CTx) decreased (p < 0.001). In conclusion, we described the variation in vertebral bone marrow fat fraction among ovulating premenopausal women. And among postmenopausal women, we demonstrated that 17‐β estradiol rapidly reduces the marrow fat fraction, suggesting that 17‐β estradiol regulates bone marrow fat independent of bone mass. © 2015 American Society for Bone and Mineral Research.  相似文献   

18.
Osteopetrosis is a rare skeletal dysplasia resulting from an osteoclast defect leading to increased bone mass and density. Hematopoietic stem cell transplantation can rescue the disease phenotype and prevent complications. However, little is known about the skeletal changes hematopoietic stem cell transplantation induces in patients with this disease. The purpose of this study was to describe the skeletal changes after hematopoietic stem cell transplantation in a retrospective cohort of patients diagnosed with osteopetrosis in one medical center over 13 years. For this purpose, all available epidemiological, hematological, biochemical, and radiographic data were collected and quantitatively analyzed. We found a significant early change in bone metabolism markers coinciding with hematopoietic recovery after stem cell transplantation. Hematopoietic stem cell transplantation induced a later significant improvement in both skeletal mineral distribution and morphology but did not lead to complete radiological normalization. Presumably, changes in bone metabolism, skeletal mineral distribution, and morphology were the result of renewed osteoclast function enabling bone remodeling. We propose that biochemical bone metabolism markers and radiological indices be routinely used to evaluate response to hematopoietic stem cell transplantation in patients with osteopetrosis. © 2020 American Society for Bone and Mineral Research.  相似文献   

19.
Skull bone development is a dynamic and well-coordinated process playing a key role in maturation and maintenance of the bone marrow (BM), fracture healing, and progression of diseases such as osteoarthritis or osteoporosis. At present, dynamic transformation of the growing bone (osteogenesis) as well as its vascularization (angiogenesis) remain largely unexplored due to the lack of suitable in vivo imaging techniques capable of noninvasive visualization of the whole developing calvaria at capillary-level resolution. We present a longitudinal study on skull bone development using ultrasound-aided large-scale optoacoustic microscopy (U-LSOM). Skull bone morphogenesis and microvascular growth patterns were monitored in three common mouse strains (C57BL/6J, CD-1, and Athymic Nude-Foxn1nu) at the whole-calvaria scale over a 3-month period. Strain-specific differences in skull development were revealed by quantitative analysis of bone and vessel parameters, indicating the coupling between angiogenesis and osteogenesis during skull bone growth in a minimally invasive and label-free manner. The method further enabled identifying BM-specific sinusoidal vessels, and superficial skull vessels penetrating into BM compartments. Our approach furnishes a new high-throughput longitudinal in vivo imaging platform to study morphological and vascular skull alterations in health and disease, shedding light on the critical links between blood vessel formation, skull growth, and regeneration. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

20.
The bone marrow cavity is essential for the proper development of the hematopoietic system. In the last few decades, it has become clear that mesenchymal stem/progenitor cells as well as cells of the osteoblast lineage, besides maintaining bone homeostasis, are also fundamental regulators of bone marrow hematopoiesis. Several studies have demonstrated the direct involvement of mesenchymal and osteoblast lineage cells in the maintenance and regulation of supportive microenvironments necessary for quiescence, self-renewal and differentiation of hematopoietic stem cells. In addition, specific niches have also been identified within the bone marrow for maturing hematopoietic cells. Here we will review recent findings that have highlighted the roles of mesenchymal progenitors and cells of the osteoblast lineage in regulating distinct stages of hematopoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号