首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome-wide association studies (GWAS) have been successful in their search for common genetic variants associated with complex traits and diseases. With new advances in array technologies together with available genetic reference sets, the next generation of GWAS will extend the search for associations with uncommon SNPs (1% ≤ MAF ≤ 10%). Two possible approaches are genotyping all participants, a prohibitively expensive option for large GWAS, or using a combination of genotyping and imputation. Here, we consider a two platform method that genotypes all participants on a standard genotyping array, designed to identify common variants, and then supplements that data by genotyping only a small proportion of the participants on a platform that has higher coverage for uncommon SNPs. This subset of the study population is then included as part of the imputation reference set. To demonstrate the use of this two-platform design, we evaluate its potential efficiency using a newly available dataset containing 756 individuals genotyped on both the Illumina Human OmniExpress and Omni2.5 Quad. Although genotyping all individuals on the denser array would be ideal, we find that genotyping only 100 individuals on this array, in combination with imputation, leads to only a modest loss of power for detecting associations. However, the loss of power due to imputation can be more substantial if the relative risks for rare variants are significantly larger than those previously observed for common variants.  相似文献   

2.
Genome-wide association studies (GWAS) can identify common alleles that contribute to complex disease susceptibility. Despite the large number of SNPs assessed in each study, the effects of most common SNPs must be evaluated indirectly using either genotyped markers or haplotypes thereof as proxies. We have previously implemented a computationally efficient Markov Chain framework for genotype imputation and haplotyping in the freely available MaCH software package. The approach describes sampled chromosomes as mosaics of each other and uses available genotype and shotgun sequence data to estimate unobserved genotypes and haplotypes, together with useful measures of the quality of these estimates. Our approach is already widely used to facilitate comparison of results across studies as well as meta-analyses of GWAS. Here, we use simulations and experimental genotypes to evaluate its accuracy and utility, considering choices of genotyping panels, reference panel configurations, and designs where genotyping is replaced with shotgun sequencing. Importantly, we show that genotype imputation not only facilitates cross study analyses but also increases power of genetic association studies. We show that genotype imputation of common variants using HapMap haplotypes as a reference is very accurate using either genome-wide SNP data or smaller amounts of data typical in fine-mapping studies. Furthermore, we show the approach is applicable in a variety of populations. Finally, we illustrate how association analyses of unobserved variants will benefit from ongoing advances such as larger HapMap reference panels and whole genome shotgun sequencing technologies.  相似文献   

3.
While it is well established that genetics can be a major contributor to population variation of complex traits, the relative contributions of rare and common variants to phenotypic variation remains a matter of considerable debate. Here, we simulate genetic and phenotypic data across different case/control panel sampling strategies, sequencing methods, and genetic architecture models based on evolutionary forces to determine the statistical performance of rare variant association tests (RVATs) widely in use. We find that the highest statistical power of RVATs is achieved by sampling case/control individuals from the extremes of an underlying quantitative trait distribution. We also demonstrate that the use of genotyping arrays, in conjunction with imputation from a whole-genome sequenced (WGS) reference panel, recovers the vast majority (90%) of the power that could be achieved by sequencing the case/control panel using current tools. Finally, we show that for dichotomous traits, the statistical performance of RVATs decreases as rare variants become more important in the trait architecture. Our results extend previous work to show that RVATs are insufficiently powered to make generalizable conclusions about the role of rare variants in dichotomous complex traits.  相似文献   

4.
Genetic imputation has become standard practice in modern genetic studies. However, several important issues have not been adequately addressed including the utility of study-specific reference, performance in admixed populations, and quality for less common (minor allele frequency [MAF] 0.005-0.05) and rare (MAF < 0.005) variants. These issues only recently became addressable with genome-wide association studies (GWAS) follow-up studies using dense genotyping or sequencing in large samples of non-European individuals. In this work, we constructed a study-specific reference panel of 3,924 haplotypes using African Americans in the Women's Health Initiative (WHI) genotyped on both the Metabochip and the Affymetrix 6.0 GWAS platform. We used this reference panel to impute into 6,459 WHI SNP Health Association Resource (SHARe) study subjects with only GWAS genotypes. Our analysis confirmed the imputation quality metric Rsq (estimated r(2) , specific to each SNP) as an effective post-imputation filter. We recommend different Rsq thresholds for different MAF categories such that the average (across SNPs) Rsq is above the desired dosage r(2) (squared Pearson correlation between imputed and experimental genotypes). With a desired dosage r(2) of 80%, 99.9% (97.5%, 83.6%, 52.0%, 20.5%) of SNPs with MAF > 0.05 (0.03-0.05, 0.01-0.03, 0.005-0.01, and 0.001-0.005) passed the post-imputation filter. The average dosage r(2) for these SNPs is 94.7%, 92.1%, 89.0%, 83.1%, and 79.7%, respectively. These results suggest that for African Americans imputation of Metabochip SNPs from GWAS data, including low frequency SNPs with MAF 0.005-0.05, is feasible and worthwhile for power increase in downstream association analysis provided a sizable reference panel is available.  相似文献   

5.
The accuracy of genotype imputation depends upon two factors: the sample size of the reference panel and the genetic similarity between the reference panel and the target samples. When multiple reference panels are not consented to combine together, it is unclear how to combine the imputation results to optimize the power of genetic association studies. We compared the accuracy of 9,265 Norwegian genomes imputed from three reference panels—1000 Genomes phase 3 (1000G), Haplotype Reference Consortium (HRC), and a reference panel containing 2,201 Norwegian participants from the population‐based Nord Trøndelag Health Study (HUNT) from low‐pass genome sequencing. We observed that the population‐matched reference panel allowed for imputation of more population‐specific variants with lower frequency (minor allele frequency (MAF) between 0.05% and 0.5%). The overall imputation accuracy from the population‐specific panel was substantially higher than 1000G and was comparable with HRC, despite HRC being 15‐fold larger. These results recapitulate the value of population‐specific reference panels for genotype imputation. We also evaluated different strategies to utilize multiple sets of imputed genotypes to increase the power of association studies. We observed that testing association for all variants imputed from any panel results in higher power to detect association than the alternative strategy of including only one version of each genetic variant, selected for having the highest imputation quality metric. This was particularly true for lower frequency variants (MAF < 1%), even after adjusting for the additional multiple testing burden.  相似文献   

6.
In the search for genetic associations with complex traits, population isolates offer the advantage of reduced genetic and environmental heterogeneity. In addition, cost‐efficient next‐generation association approaches have been proposed in these populations where only a subsample of representative individuals is sequenced and then genotypes are imputed into the rest of the population. Gene mapping in such populations thus requires high‐quality genetic imputation and preliminary phasing. To identify an effective study design, we compare by simulation a range of phasing and imputation software and strategies. We simulated 1,115,604 variants on chromosome 10 for 477 members of the large complex pedigree of Campora, a village within the established isolate of Cilento in southern Italy. We assessed the phasing performance of identical by descent based software ALPHAPHASE and SLRP, LD‐based software SHAPEIT2, SHAPEIT3, and BEAGLE, and new software EAGLE that combines both methodologies. For imputation we compared IMPUTE2, IMPUTE4, MINIMAC3, BEAGLE, and new software PBWT. Genotyping errors and missing genotypes were simulated to observe their effects on the performance of each software. Highly accurate phased data were achieved by all software with SHAPEIT2, SHAPEIT3, and EAGLE2 providing the most accurate results. MINIMAC3, IMPUTE4, and IMPUTE2 all performed strongly as imputation software and our study highlights the considerable gain in imputation accuracy provided by a genome sequenced reference panel specific to the population isolate.  相似文献   

7.
Recently, the “Common Disease‐Multiple Rare Variants” hypothesis has received much attention, especially with current availability of next‐generation sequencing. Family‐based designs are well suited for discovery of rare variants, with large and carefully selected pedigrees enriching for multiple copies of such variants. However, sequencing a large number of samples is still prohibitive. Here, we evaluate a cost‐effective strategy (pseudosequencing) to detect association with rare variants in large pedigrees. This strategy consists of sequencing a small subset of subjects, genotyping the remaining sampled subjects on a set of sparse markers, and imputing the untyped markers in the remaining subjects conditional on the sequenced subjects and pedigree information. We used a recent pedigree imputation method (GIGI), which is able to efficiently handle large pedigrees and accurately impute rare variants. We used burden and kernel association tests, famWS and famSKAT, which both account for family relationships and heterogeneity of allelic effect for famSKAT only. We simulated pedigree sequence data and compared the power of association tests for pseudosequence data, a subset of sequence data used for imputation, and all subjects sequenced. We also compared, within the pseudosequence data, the power of association test using best‐guess genotypes and allelic dosages. Our results show that the pseudosequencing strategy considerably improves the power to detect association with rare variants. They also show that the use of allelic dosages results in much higher power than use of best‐guess genotypes in these family‐based data. Moreover, famSKAT shows greater power than famWS in most of scenarios we considered.  相似文献   

8.
The large-scale open access whole-exome sequencing (WES) data of the UK Biobank ~200,000 participants is accelerating a new wave of genetic association studies aiming to identify rare and functional loss-of-function (LoF) variants associated with complex traits and diseases. We proposed to merge the WES genotypes and the genome-wide genotyping (GWAS) genotypes of 167,000 UKB homogeneous European participants into a combined reference panel, and then to impute 241,911 UKB homogeneous European participants who had the GWAS genotypes only. We then used the imputed data to replicate association identified in the discovery WES sample. The average imputation accuracy measure r2 is modest to high for LoF variants at all minor allele frequency intervals: 0.942 at MAF interval (0.01, 0.5), 0.807 at (1.0 × 10−3, 0.01), 0.805 at (1.0 × 10−4, 1.0 × 10−3), 0.664 at (1.0 × 10−5, 1.0 × 10−4) and 0.410 at (0, 1.0 × 10−5). As applications, we studied associations of LoF variants with estimated heel BMD and four lipid traits. In addition to replicating dozens of previously reported genes, we also identified three novel associations, two genes PLIN1 and ANGPTL3 for high-density-lipoprotein cholesterol and one gene PDE3B for triglycerides. Our results highlighted the strength of WES based genotype imputation as well as provided useful imputed data within the UKB cohort.  相似文献   

9.
Genome‐wide association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) associated with complex traits. However, the genetic heritability of most of these traits remains unexplained. To help guide future studies, we address the crucial question of whether future GWAS can detect new SNP associations and explain additional heritability given the new availability of larger GWAS SNP arrays, imputation, and reduced genotyping costs. We first describe the pairwise and imputation coverage of all SNPs in the human genome by commercially available GWAS SNP arrays, using the 1000 Genomes Project as a reference. Next, we describe the findings from 6 years of GWAS of 172 chronic diseases, calculating the power to detect each of them while taking array coverage and sample size into account. We then calculate the power to detect these SNP associations under different conditions using improved coverage and/or sample sizes. Finally, we estimate the percentages of SNP associations and heritability previously detected and detectable by future GWAS under each condition. Overall, we estimated that previous GWAS have detected less than one‐fifth of all GWAS‐detectable SNPs underlying chronic disease. Furthermore, increasing sample size has a much larger impact than increasing coverage on the potential of future GWAS to detect additional SNP‐disease associations and heritability.  相似文献   

10.
Genetic variants associated with fasting glucose in European ancestry populations are increasingly well understood. However, the nature of the associations between these single nucleotide polymorphisms (SNPs) and fasting glucose in other racial and ethnic groups is unclear. We sought to examine regions previously identified to be associated with fasting glucose in Caucasian genome-wide association studies (GWAS) across multiple ethnicities in the Multiethnic Study of Atherosclerosis (MESA). Nondiabetic MESA participants with fasting glucose measured at the baseline exam and with GWAS genotyping were included; 2,349 Caucasians, 664 individuals of Chinese descent, 1,366 African Americans, and 1,171 Hispanics. Genotype data were generated from the Affymetrix 6.0 array and imputation in IMPUTE. Fasting glucose was regressed on SNP dosage data in each ethnic group adjusting for age, gender, MESA study center, and ethnic-specific principal components. SNPs from the three gene regions with the strongest associations to fasting glucose in previous Caucasian GWAS (MTNR1B / GCK / G6PC2) were examined in depth. There was limited power to replicate associations in other ethnic groups due to smaller allele frequencies and limited sample size; SNP associations may also have differed across ethnic groups due to differing linkage disequilibrium patterns with causal variants. rs10830963 in MTNR1B and rs4607517 in GCK demonstrated consistent magnitude and direction of association with fasting glucose across ethnic groups, although the associations were often not nominally significant. In conclusion, certain SNPs in MTNR1B and GCK demonstrate consistent effects across four racial and ethnic groups, narrowing the putative region for these causal variants.  相似文献   

11.
12.
Imputation is widely used for obtaining information about rare variants. However, one issue concerning imputation is the low accuracy of imputed rare variants as the inaccurate imputed rare variants may distort the results of region‐based association tests. Therefore, we developed a pre‐collapsing imputation method (PreCimp) to improve the accuracy of imputation by using collapsed variables. Briefly, collapsed variables are generated using rare variants in the reference panel, and a new reference panel is constructed by inserting pre‐collapsed variables into the original reference panel. Following imputation analysis provides the imputed genotypes of the collapsed variables. We demonstrated the performance of PreCimp on 5,349 genotyped samples using a Korean population specific reference panel including 848 samples of exome sequencing, Affymetrix 5.0, and exome chip. PreCimp outperformed a traditional post‐collapsing method that collapses imputed variants after single rare variant imputation analysis. Compared with the results of post‐collapsing method, PreCimp approach was shown to relatively increase imputation accuracy about 3.4–6.3% when dosage r2 is between 0.6 and 0.8, 10.9–16.1% when dosage r2 is between 0.4 and 0.6, and 21.4 ~ 129.4% when dosage r2 is below 0.4.  相似文献   

13.
Imputation in admixed populations is an important problem but challenging due to the complex linkage disequilibrium (LD) pattern. The emergence of large reference panels such as that from the 1,000 Genomes Project enables more accurate imputation in general, and in particular for admixed populations and for uncommon variants. To efficiently benefit from these large reference panels, one key issue to consider in modern genotype imputation framework is the selection of effective reference panels. In this work, we consider a number of methods for effective reference panel construction inside a hidden Markov model and specific to each target individual. These methods fall into two categories: identity‐by‐state (IBS) based and ancestry‐weighted approach. We evaluated the performance on individuals from recently admixed populations. Our target samples include 8,421 African Americans and 3,587 Hispanic Americans from the Women' Health Initiative, which allow assessment of imputation quality for uncommon variants. Our experiments include both large and small reference panels; large, medium, and small target samples; and in genome regions of varying levels of LD. We also include BEAGLE and IMPUTE2 for comparison. Experiment results with large reference panel suggest that our novel piecewise IBS method yields consistently higher imputation quality than other methods/software. The advantage is particularly noteworthy among uncommon variants where we observe up to 5.1% information gain with the difference being highly significant (Wilcoxon signed rank test P‐value < 0.0001). Our work is the first that considers various sensible approaches for imputation in admixed populations and presents a comprehensive comparison.  相似文献   

14.
Genome‐wide association studies have been successful in identifying loci contributing effects to a range of complex human traits. The majority of reproducible associations within these loci are with common variants, each of modest effect, which together explain only a small proportion of heritability. It has been suggested that much of the unexplained genetic component of complex traits can thus be attributed to rare variation. However, genome‐wide association study genotyping chips have been designed primarily to capture common variation, and thus are underpowered to detect the effects of rare variants. Nevertheless, we demonstrate here, by simulation, that imputation from an existing scaffold of genome‐wide genotype data up to high‐density reference panels has the potential to identify rare variant associations with complex traits, without the need for costly re‐sequencing experiments. By application of this approach to genome‐wide association studies of seven common complex diseases, imputed up to publicly available reference panels, we identify genome‐wide significant evidence of rare variant association in PRDM10 with coronary artery disease and multiple genes in the major histocompatibility complex (MHC) with type 1 diabetes. The results of our analyses highlight that genome‐wide association studies have the potential to offer an exciting opportunity for gene discovery through association with rare variants, conceivably leading to substantial advancements in our understanding of the genetic architecture underlying complex human traits.  相似文献   

15.
Sub-Saharan Africa has been identified as the part of the world with the greatest human genetic diversity. This high level of diversity causes difficulties for genome-wide association (GWA) studies in African populations-for example, by reducing the accuracy of genotype imputation in African populations compared to non-African populations. Here, we investigate haplotype variation and imputation in Africa, using 253 unrelated individuals from 15 Sub-Saharan African populations. We identify the populations that provide the greatest potential for serving as reference panels for imputing genotypes in the remaining groups. Considering reference panels comprising samples of recent African descent in Phase 3 of the HapMap Project, we identify mixtures of reference groups that produce the maximal imputation accuracy in each of the sampled populations. We find that optimal HapMap mixtures and maximal imputation accuracies identified in detailed tests of imputation procedures can instead be predicted by using simple summary statistics that measure relationships between the pattern of genetic variation in a target population and the patterns in potential reference panels. Our results provide an empirical basis for facilitating the selection of reference panels in GWA studies of diverse human populations, especially those of African ancestry.  相似文献   

16.
Hu YJ  Lin DY 《Genetic epidemiology》2010,34(8):803-815
Analysis of untyped single nucleotide polymorphisms (SNPs) can facilitate the localization of disease-causing variants and permit meta-analysis of association studies with different genotyping platforms. We present two approaches for using the linkage disequilibrium structure of an external reference panel to infer the unknown value of an untyped SNP from the observed genotypes of typed SNPs. The maximum-likelihood approach integrates the prediction of untyped genotypes and estimation of association parameters into a single framework and yields consistent and efficient estimators of genetic effects and gene-environment interactions with proper variance estimators. The imputation approach is a two-stage strategy, which first imputes the untyped genotypes by either the most likely genotypes or the expected genotype counts and then uses the imputed values in a downstream association analysis. The latter approach has proper control of type I error in single-SNP tests with possible covariate adjustments even when the reference panel is misspecified; however, type I error may not be properly controlled in testing multiple-SNP effects or gene-environment interactions. In general, imputation yields biased estimators of genetic effects and gene-environment interactions, and the variances are underestimated. We conduct extensive simulation studies to compare the bias, type I error, power, and confidence interval coverage between the maximum likelihood and imputation approaches in the analysis of single-SNP effects, multiple-SNP effects, and gene-environment interactions under cross-sectional and case-control designs. In addition, we provide an illustration with genome-wide data from the Wellcome Trust Case-Control Consortium (WTCCC) [2007].  相似文献   

17.
Next generation sequencing technologies have made it possible to investigate the role of rare variants (RVs) in disease etiology. Because RVs associated with disease susceptibility tend to be enriched in families with affected individuals, study designs based on affected sib pairs (ASP) can be more powerful than case–control studies. We construct tests of RV-set association in ASPs for single genomic regions as well as for multiple regions. Single-region tests can efficiently detect a gene region harboring susceptibility variants, while multiple-region extensions are meant to capture signals dispersed across a biological pathway, potentially as a result of locus heterogeneity. Within ascertained ASPs, the test statistics contrast the frequencies of duplicate rare alleles (usually appearing on a shared haplotype) against frequencies of a single rare allele copy (appearing on a nonshared haplotype); we call these allelic parity tests. Incorporation of minor allele frequency estimates from reference populations can markedly improve test efficiency. Under various genetic penetrance models, application of the tests in simulated ASP data sets demonstrates good type I error properties as well as power gains over approaches that regress ASP rare allele counts on sharing state, especially in small samples. We discuss robustness of the allelic parity methods to the presence of genetic linkage, misspecification of reference population allele frequencies, sequencing error and de novo mutations, and population stratification. As proof of principle, we apply single- and multiple-region tests in a motivating study data set consisting of whole exome sequencing of sisters ascertained with early onset breast cancer.  相似文献   

18.
In focused studies designed to follow up associations detected in a genome‐wide association study (GWAS), investigators can proceed to fine‐map a genomic region by targeted sequencing or dense genotyping of all variants in the region, aiming to identify a functional sequence variant. For the analysis of a quantitative trait, we consider a Bayesian approach to fine‐mapping study design that incorporates stratification according to a promising GWAS tag SNP in the same region. Improved cost‐efficiency can be achieved when the fine‐mapping phase incorporates a two‐stage design, with identification of a smaller set of more promising variants in a subsample taken in stage 1, followed by their evaluation in an independent stage 2 subsample. To avoid the potential negative impact of genetic model misspecification on inference we incorporate genetic model selection based on posterior probabilities for each competing model. Our simulation study shows that, compared to simple random sampling that ignores genetic information from GWAS, tag‐SNP‐based stratified sample allocation methods reduce the number of variants continuing to stage 2 and are more likely to promote the functional sequence variant into confirmation studies.  相似文献   

19.
Genotype imputation provides imputation of untyped single nucleotide polymorphisms (SNPs) that are present on a reference panel such as those from the HapMap Project. It is popular for increasing statistical power and comparing results across studies using different platforms. Imputation for African American populations is challenging because their linkage disequilibrium blocks are shorter and also because no ideal reference panel is available due to admixture. In this paper, we evaluated three imputation strategies for African Americans. The intersection strategy used a combined panel consisting of SNPs polymorphic in both CEU and YRI. The union strategy used a panel consisting of SNPs polymorphic in either CEU or YRI. The merge strategy merged results from two separate imputations, one using CEU and the other using YRI. Because recent investigators are increasingly using the data from the 1000 Genomes (1KG) Project for genotype imputation, we evaluated both 1KG-based imputations and HapMap-based imputations. We used 23,707 SNPs from chromosomes 21 and 22 on Affymetrix SNP Array 6.0 genotyped for 1,075 HyperGEN African Americans. We found that 1KG-based imputations provided a substantially larger number of variants than HapMap-based imputations, about three times as many common variants and eight times as many rare and low-frequency variants. This higher yield is expected because the 1KG panel includes more SNPs. Accuracy rates using 1KG data were slightly lower than those using HapMap data before filtering, but slightly higher after filtering. The union strategy provided the highest imputation yield with next highest accuracy. The intersection strategy provided the lowest imputation yield but the highest accuracy. The merge strategy provided the lowest imputation accuracy. We observed that SNPs polymorphic only in CEU had much lower accuracy, reducing the accuracy of the union strategy. Our findings suggest that 1KG-based imputations can facilitate discovery of significant associations for SNPs across the whole MAF spectrum. Because the 1KG Project is still under way, we expect that later versions will provide better imputation performance.  相似文献   

20.
Advances in DNA sequencing technologies have greatly facilitated the discovery of rare genetic variants in the human genome, many of which may contribute to common disease risk. However, evaluating their individual or even collective effects on disease risk requires very large sample sizes, which involves study designs that are often prohibitively expensive. We present an alternative approach for determining genotypes in large numbers of individuals for all variants discovered in the sequence of relatively few individuals. Specifically, we developed a new imputation algorithm that utilizes whole-exome sequencing data from 25 members of the South Dakota Hutterite population, and genome-wide single nucleotide polymorphism (SNP) genotypes from >1,400 individuals from the same founder population. The algorithm relies on identity-by-descent sharing of phased haplotypes, a different strategy than the linkage disequilibrium methods found in most imputation algorithms. We imputed genotypes discovered in the sequence data to on average ~77% of chromosomes among the 1,400 individuals. Median R(2) between imputed and directly genotyped data was >0.99. As expected, many variants that are vanishingly rare in European populations have risen to larger frequencies in the founder population and would be amenable to single-SNP analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号