首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A new approach to intraoperative radiation therapy led to the development of mobile linear electron accelerators that provide lower electron energy beams than the usual conventional accelerators commonly encountered in radiotherapy. Such mobile electron accelerators produce electron beams that have nominal energies of 4, 6, 9 and 12 MeV. This work compares the absorbed dose output calibrations using both the AAPM TG-51 and TG-21 dose calibration protocols for two types of ion chambers: a plane-parallel (PP) ionization chamber and a cylindrical ionization chamber. Our results indicate that the use of a 'Markus' PP chamber causes 2-3% overestimation in dose-output determination if accredited dosimetry-calibration laboratory based chamber factors (N(60Co)(D,w,) Nx) are used. However, if the ionization chamber factors are derived using a cross-comparison at a high-energy electron beam, then a good agreement is obtained (within 1%) with a calibrated cylindrical chamber over the entire energy range down to 4 MeV. Furthermore, even though the TG-51 does not recommend using cylindrical chambers at the low energies, our results show that the cylindrical chamber has a good agreement with the PP chamber not only at 6 MeV but also down to 4 MeV electron beams.  相似文献   

2.
A comparison of the determination of absorbed dose to water in reference conditions with high-energy electron beams (Enominal of 6, 8, 10, 12, 15, and 18 MeV) following the recommendations given in the AAPM TG-51 and in the original TG-21 dosimetry protocols has been made. Six different ionization chamber types have been used, two Farmer-type cylindrical (PTW 30001, PMMA wall; NE 2571, graphite wall) and four plane parallel (PTW Markus, and Scanditronix-Wellh?fer NACP, PPC-05 and Roos PPC-40). Depending upon the cylindrical chamber type used and the beam energy, the doses at dmax determined with TG-51 were higher than with TG-21 by about 1%-3%. Approximately 1% of this difference is due to the differences in the data given in the two protocols; another 1.1%-1.2% difference is due to the change of standards, from air-kerma to absorbed dose to water. For plane-parallel chambers, absorbed doses were determined by using two chamber calibration methods: (i) direct use of the ADCL calibration factors N(60Co)D,w and Nx for each chamber type in the appropriate equations for dose determination recommended by each protocol, and (ii) cross-calibration techniques in a high-energy electron beam, as recommended by TG-21, TG-39, and TG-51. Depending upon the plane-parallel chamber type used and the beam energy, the doses at dmax determined with TG-51 were higher than with TG-21 by about 0.7%-2.9% for the direct calibration procedures and by 0.8%-3.2% for the cross-calibration techniques. Measured values of photon-electron conversion kecal, for the NACP and Markus chambers were found to be 0.3% higher and 1.7% lower than the corresponding values given in TG-51. For the PPC-05 and PPC-40 (Roos) chamber types, the values of kecal were measured to be 0.889 and 0.893, respectively. The uncertainty for the entire calibration chain, starting from the calibration of the ionization chamber in the standards laboratory to the determination of absorbed dose to water in the user beam, has been analyzed for the two formalisms. For cylindrical chambers, the observed differences between the two protocols are within the estimated combined uncertainty of the ratios of absorbed doses for 6 and 8 MeV; however, at higher energies (10< or =E< or =18 MeV), the differences are larger than the estimated combined uncertainties by about 1%. For plane-parallel chambers, the observed differences are within the estimated combined uncertainties for the direct calibration technique; for the cross-calibration technique the differences are within the uncertainty estimates at low energies whereas they are comparable to the uncertainty estimates at higher energies. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors, and quantities in the two protocols, as well as the influence of the implementation of the different standards for chamber calibration.  相似文献   

3.
Task Group 51 (TG-51) of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM) has recently developed a new protocol for the calibration of high-energy photon and electron beams used in radiation therapy. The formalism and the dosimetry procedures recommended in this protocol are based on the use of an ionization chamber calibrated in terms of absorbed dose-to-water in a standards laboratory's 60Co gamma ray beam. This is different from the recommendations given in the AAPM TG-21 protocol, which are based on an exposure calibration factor of an ionization chamber in a 60Co beam. The purpose of this work is to compare the determination of absorbed dose-to-water in reference conditions in high-energy photon beams following the recommendations given in the two dosimetry protocols. This is realized by performing calibrations of photon beams with nominal accelerating potential of 6, 18 and 25 MV, generated by an Elekta MLCi and SL25 series linear accelerator. Two widely used Farmer-type ionization chambers having different composition, PTW 30001 (PMMA wall) and NE 2571 (graphite wall), were used for this study. Ratios of AAPM TG-51 to AAPM TG-21 doses to water are found to be 1.008, 1.007 and 1.009 at 6, 18 and 25 MV, respectively when the PTW chamber is used. The corresponding results for the NE chamber are 1.009, 1.010 and 1.013. The uncertainties for the ratios of the absorbed dose determined by the two protocols are estimated to be about 1.5%. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors and quantities in the two protocols, as well as the influence of the implementation of the different standards for chamber calibration. The latter has been found to have a considerable influence on the differences in clinical dosimetry, even larger than the adoption of the new data and recommended procedures, as most intrinsic differences cancel out due to the adoption of the new formalism.  相似文献   

4.
A protocol is prescribed for clinical reference dosimetry of external beam radiation therapy using photon beams with nominal energies between 60Co and 50 MV and electron beams with nominal energies between 4 and 50 MeV. The protocol was written by Task Group 51 (TG-51) of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol uses ion chambers with absorbed-dose-to-water calibration factors, N(60Co)D,w which are traceable to national primary standards, and the equation D(Q)w = MkQN(60Co)D,w where Q is the beam quality of the clinical beam, D(Q)w is the absorbed dose to water at the point of measurement of the ion chamber placed under reference conditions, M is the fully corrected ion chamber reading, and kQ is the quality conversion factor which converts the calibration factor for a 60Co beam to that for a beam of quality Q. Values of kQ are presented as a function of Q for many ion chambers. The value of M is given by M = PionP(TP)PelecPpolMraw, where Mraw is the raw, uncorrected ion chamber reading and Pion corrects for ion recombination, P(TP) for temperature and pressure variations, Pelec for inaccuracy of the electrometer if calibrated separately, and Ppol for chamber polarity effects. Beam quality, Q, is specified (i) for photon beams, by %dd(10)x, the photon component of the percentage depth dose at 10 cm depth for a field size of 10x10 cm2 on the surface of a phantom at an SSD of 100 cm and (ii) for electron beams, by R50, the depth at which the absorbed-dose falls to 50% of the maximum dose in a beam with field size > or =10x10 cm2 on the surface of the phantom (> or =20x20 cm2 for R50>8.5 cm) at an SSD of 100 cm. R50 is determined directly from the measured value of I50, the depth at which the ionization falls to 50% of its maximum value. All clinical reference dosimetry is performed in a water phantom. The reference depth for calibration purposes is 10 cm for photon beams and 0.6R50-0.1 cm for electron beams. For photon beams clinical reference dosimetry is performed in either an SSD or SAD setup with a 10x10 cm2 field size defined on the phantom surface for an SSD setup or at the depth of the detector for an SAD setup. For electron beams clinical reference dosimetry is performed with a field size of > or =10x10 cm2 (> or =20x20 cm2 for R50>8.5 cm) at an SSD between 90 and 110 cm. This protocol represents a major simplification compared to the AAPM's TG-21 protocol in the sense that large tables of stopping-power ratios and mass-energy absorption coefficients are not needed and the user does not need to calculate any theoretical dosimetry factors. Worksheets for various situations are presented along with a list of equipment required.  相似文献   

5.
Araki F  Kubo HD 《Medical physics》2002,29(5):857-868
The American Association of Physicists in Medicine Task Group 51 (TG-51) and the International Atomic Energy Agency (IAEA) published a new high-energy photon and electron dosimetry protocol, in 1999 and 2000, respectively. These protocols are based on the use of an ion chamber having an absorbed-dose to water calibration factor with a 60Co beam. These are different from the predecessors, the TG-21 and IAEA TRS-277 protocols, which require a 60Co exposure or air-kerma calibration factor. The purpose of this work is to present the dose comparison between various dosimetry protocols and the AAPM TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. The absorbed-dose to water calculated according to the Japanese Association of Radiological Physics (JARP), International Atomic Energy Agency Technical Report Series No. 277 (IAEA TRS-277) and No. 398 (IAEA TRS-398) protocols is compared to that calculated using the TG-51 protocol. For various Farmer-type chambers in photon beams, TG-51 is found to predict 0.6-2.1% higher dose than JARP. Similarly, TG-51 is found to be higher by 0.7-1.7% than TRS-277. For electron beams TG-51 is higher than JARP by 1.5-3.8% and TRS-277 by 0.2-1.9%. The reasons for these differences are presented in terms of the cavity-gas calibration factor, Ngas, and a dose conversion factor, Fw, which converts the absorbed-dose to air in the chamber to the absorbed-dose to water. The ratio of cavity-gas calibration factors based on absorbed-dose to water calibration factors, N60Co(D,w), in TG-51 and cavity-gas calibration factors which are equivalent to absorbed-dose to air chamber factors, N(D,air), based on the IAEA TRS-381 protocol is 1.008 on average. However, the estimated uncertainty of the ratio between the two cavity-gas calibration factors is 0.9% (1 s.d.) and consequently, the observed difference of 0.8% is not significant. The absorbed-dose to water and exposure or air-kerma calibration factors are based on standards traceable to the National Institute of Standards and Technology (NIST). In contrast, the absorbed-dose to water determined with TRS-398 is in good agreement with TG-51 within about 0.5% for photon and electron beams.  相似文献   

6.
Tailor RC  Hanson WF 《Medical physics》2002,29(7):1464-1472
Task Group 51 (TG51), of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM), has developed a calibration protocol for high-energy photon and electron therapy beams based on absorbed dose standards. This protocol is intended to replace the air-kerma based protocol developed by an earlier AAPM task group (TG21). Conversion to the newer protocol introduces a change in the determined absorbed dose. In this work, the change in dose is expressed as the ratio of the doses (TG51/TG21) based on the two protocols. Dose is compared at the TG-51 reference depths of 10 cm for photons and d(ref) for electrons. Dose ratios are presented for a variety of ion chambers over a range of photon and electron energies. The TG51/TG21 dose ratios presented here are based on the dosimetry factors provided by the two protocols and the chamber-specific absorbed dose and exposure calibration factors (N60Co(D,w) and Nx) provided by the Accredited Dosimetry Calibration Laboratory (ADCL) at The University of Texas, M. D. Anderson Cancer Center (MDACC). As such, the values presented here represent the expected discrepancies between the two protocols due only to changes in the dosimetry parameters and the differences in chamber-specific dose and air-kerma standards. These values are independent of factors such as measurement uncertainties, setup errors, and inconsistencies arising from the mix of different phantoms and ion chambers for the two protocols. Therefore, these ratios may serve as a guide for institutions performing measurements for the switch from TG21-to-TG51 based calibration. Any significant deviation in the ratio obtained from measurements versus those presented here should prompt a review to identify possible errors and inconsistencies. For all cylindrical chambers included here, the TG51/TG21 dose ratios are the same within +/-0.6%, irrespective of the make and model of the chamber, for each photon and electron beam included. Photon beams show the TG51/TG21 dose ratios decreasing with energy, whereas electrons exhibit the opposite trend. The dose ratio for photons is near 1.00 at 18 mV increasing to near 1.01 at 4 mV while the dose ratio for electrons is near 1.02 at 20 MeV decreasing only 0.5% to near 1.015 at 6 MeV. For parallel-plate chambers, the situation is complicated by the two possible methods of obtaining calibration factors: through an ADCL or through a cross-comparison with a cylindrical chamber in a high-energy electron beam. For some chambers, the two methods lead to significantly different calibration factors, which in turn lead to significantly different TG51/TG21 results for the same chamber. Data show that if both N60Co(D,w) and Nx are obtained from the same source, namely an ADCL or a cross comparison, the TG51/TG21 results for parallel-plate chambers are similar to those for cylindrical chambers. However, an inconsistent set of calibration factors, i.e., using N60Co(D,w) x k(ecal) from an ADCL but Ngas from a cross comparison or vice versa, can introduce an additional uncertainty up to 2.5% in the TG51/TG21 dose ratios.  相似文献   

7.
The International Atomic Energy Agency (IAEA TRS-398) and the American Association of Physicists in Medicine (AAPM TG-51) have published new protocols for the calibration of radiotherapy beams. These protocols are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. This paper compares the recommendations of the two protocols in two ways: (i) by analysing in detail the differences in the basic data included in the two protocols for photon and electron beam dosimetry and (ii) by performing measurements in clinical photon and electron beams and determining the absorbed dose to water following the recommendations of the two protocols. Measurements were made with two Farmer-type ionization chambers and three plane-parallel ionization chamber types in 6, 18 and 25 MV photon beams and 6, 8, 10, 12, 15 and 18 MeV electron beams. The Farmer-type chambers used were NE 2571 and PTW 30001, and the plane-parallel chambers were a Scanditronix-Wellh?fer NACP and Roos, and a PTW Markus chamber. For photon beams, the measured ratios TG-51/TRS-398 of absorbed dose to water Dw ranged between 0.997 and 1.001, with a mean value of 0.999. The ratios for the beam quality correction factors kQ were found to agree to within about +/-0.2% despite significant differences in the method of beam quality specification for photon beams and in the basic data entering into kQ. For electron beams, dose measurements were made using direct N(D,w) calibrations of cylindrical and plane-parallel chambers in a 60Co gamma-ray beam, as well as cross-calibrations of plane-parallel chambers in a high-energy electron beam. For the direct N(D,w) calibrations the ratios TG-51/TRS-398 of absorbed dose to water Dw were found to lie between 0.994 and 1.018 depending upon the chamber and electron beam energy used, with mean values of 0.996, 1.006, and 1.017, respectively, for the cylindrical, well-guarded and not well-guarded plane-parallel chambers. The Dw ratios measured for the cross-calibration procedures varied between 0.993 and 0.997. The largest discrepancies for electron beams between the two protocols arise from the use of different data for the perturbation correction factors p(wall) and p(dis) of cylindrical and plane-parallel chambers, all in 60Co. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors and the quantities in the two protocols.  相似文献   

8.
Current dosimetry protocols from AAPM, DIN and IAEA recommend a cross-calibration for plane-parallel chambers against a calibrated thimble chamber for electron dosimetry. The rationale for this is the assumed chamber-to-chamber variation of plane-parallel chambers and the large uncertainty in the wall perturbation factor (p(wall)60Co)pp at 60Co for plane-parallel chambers. We have confirmed the results of other authors that chamber-to-chamber variation of the investigated chambers of types Roos, Markus, Advanced Markus and Farmer is less than 0.3%. Starting with a calibration factor for absorbed dose to water and on the basis of the three dosimetry protocols AAPM TG-51, DIN 6800-2 (slightly modified) and IAEA TRS-398, values for (p(wall)60Co)Roos of 1.024 +/- 0.005, (p(wall)60Co)Markus of 1.016 +/- 0.005 and (p(wall)60Co)Advanced Markus of 1.014 +/- 0.005 have been determined. In future this will permit electron dosimetry with the above-listed plane-parallel chambers having a calibration factor N(D, w)60Co without the necessity for cross-calibration against a thimble chamber.  相似文献   

9.
In recent years, a change has been proposed from air kerma based reference dosimetry to absorbed dose based reference dosimetry for all radiotherapy beams of ionizing radiation. In this paper, a dosimetry study is presented in which absorbed dose based dosimetry using recently developed formalisms was compared with air kerma based dosimetry using older formalisms. Three ionization chambers of each of three different types were calibrated in terms of absorbed dose to water and air kerma and sent to five hospitals. There, reference dosimetry with all the chambers was performed in a total of eight high-energy clinical photon beams. The selected chamber types were the NE2571, the PTW-30004 and the Wellh?fer-FC65G (previously Wellh?fer-IC70). Having a graphite wall, they exhibit a stable volume and the presence of an aluminium electrode ensures the robustness of these chambers. The data were analysed with the most important recommendations for clinical dosimetry: IAEA TRS-398, AAPM TG-51, IAEA TRS-277, NCS report-2 (presently recommended in Belgium) and AAPM TG-21. The necessary conversion factors were taken from those protocols, or calculated using the data in the different protocols if data for a chamber type are lacking. Polarity corrections were within 0.1% for all chambers in all beams. Recombination corrections were consistent with theoretical predictions, did not vary within a chamber type and only slightly between different chamber types. The maximum chamber-to-chamber variations of the dose obtained with the different formalisms within the same chamber type were between 0.2% and 0.6% for the NE2571, between 0.2% and 0.6% for the PTW-30004 and 0.1% and 0.3% for the Wellh?fer-FC65G for the different beams. The absorbed dose results for the NE2571 and Wellh?fer-FC65G chambers were in good agreement for all beams and all formalisms. The PTW-30004 chambers gave a small but systematically higher result compared to the result for the NE2571 chambers (on the average 0.1% for IAEA TRS-277, 0.3% for NCS report-2 and AAPM TG-21 and 0.4% for IAEA TRS-398 and AAPM TG-51). Within the air kerma based protocols, the results obtained with the TG-21 protocol were 0.4-0.8% higher mainly due to the differences in the data used. Both absorbed dose to water based formalisms resulted in consistent values within 0.3%. The change from old to new formalisms is discussed together with the traceability of calibration factors obtained at the primary absorbed dose and air kerma standards in the reference beams (60Co). For the particular situation in Belgium (calibrations at the Laboratory for Standard Dosimetry of Ghent) the change amounts to 0.1-0.6%. This is similar to the magnitude of the change determined in other countries.  相似文献   

10.
New codes of practice for reference dosimetry in clinical high-energy photon and electron beams have been published recently, to replace the air kerma based codes of practice that have determined the dosimetry of these beams for the past twenty years. In the present work, we compared dosimetry based on the two most widespread absorbed dose based recommendations (AAPM TG-51 and IAEA TRS-398) with two air kerma based recommendations (NCS report-5 and IAEA TRS-381). Measurements were performed in three clinical electron beam energies using two NE2571-type cylindrical chambers, two Markus-type plane-parallel chambers and two NACP-02-type plane-parallel chambers. Dosimetry based on direct calibrations of all chambers in 60Co was investigated, as well as dosimetry based on cross-calibrations of plane-parallel chambers against a cylindrical chamber in a high-energy electron beam. Furthermore, 60Co perturbation factors for plane-parallel chambers were derived. It is shown that the use of 60Co calibration factors could result in deviations of more than 2% for plane-parallel chambers between the old and new codes of practice, whereas the use of cross-calibration factors, which is the first recommendation in the new codes, reduces the differences to less than 0.8% for all situations investigated here. The results thus show that neither the chamber-to-chamber variations, nor the obtained absolute dose values are significantly altered by changing from air kerma based dosimetry to absorbed dose based dosimetry when using calibration factors obtained from the Laboratory for Standard Dosimetry, Ghent, Belgium. The values of the 60Co perturbation factor for plane-parallel chambers (k(att) x k(m) for the air kerma based and p(wall) for the absorbed based codes of practice) that are obtained from comparing the results based on 60Co calibrations and cross-calibrations are within the experimental uncertainties in agreement with the results from other investigators.  相似文献   

11.
The dosimetry protocols DIN 6800-2 and AAPM TG-51, both based on the absorbed dose to water concept, are compared in their theoretical background and in their application to electron dosimetry. The agreement and disagreement in correction factors and energy parameters used in both protocols will be shown and discussed. Measurements with three different types of ionization chambers were performed and evaluated according to both protocols. As a result the perturbation correction factor P(60Co)wall for the Roos chamber was determined to 1.024 +/- 0.5%.  相似文献   

12.
L Zeitz  K Ulin  R Caley 《Medical physics》1986,13(3):399-402
A "nonisolated-sensor" solid polystyrene calorimeter is described which permits absorbed dose measurements with precision of less than 0.3% (standard error of the mean). The accuracy for obtaining absolute absorbed dose was estimated by comparisons with cavity ionization measurements. The calculation of absorbed dose with ionization chambers was carried out based upon the TG-21 AAPM dosimetry protocol. Measurements in a 60Co gamma-ray field with three different polystyrene parallel-plate ion chambers in a polystyrene phantom did not differ by more than 1.5% from that obtained with the polystyrene calorimeter. Measurements taken over a period of 247 days are compared with the expected values on the basis of the decay 60Co. The calorimeter system, with its capability of acquiring, printing, storing, plotting, and analyzing the data by computer, is described.  相似文献   

13.
Recent absorbed-dose-based protocols allow for two methods of calibrating electron beams using plane-parallel chambers, one using the N(Co)D,w for a plane-parallel chamber, and the other relying on cross-calibration of the plane-parallel chamber in a high-energy electron beam against a cylindrical chamber which has an N(Co)D,w factor. The second method is recommended as it avoids problems associated with the Pwall correction factors at 60Co for plane-parallel chambers which are used in the determination of the beam quality conversion factors. In this article we investigate the consistency of these two methods for the PTW Roos, Scanditronics NACP02, and PTW Markus chambers. We processed our data using both the AAPM TG-51 and the IAEA TRS-398 protocols. Wall correction factors in 60Co beams and absorbed-dose beam quality conversion factors for 20 MeV electrons were derived for these chambers by cross-calibration against a cylindrical ionization chamber. Systematic differences of up to 1.6% were found between our values of Pwall and those from the Monte Carlo calculations underlying AAPM TG-51, and up to 0.6% when comparing with the IAEA TRS-398 protocol. The differences in Pwall translate directly into differences in the beam quality conversion factors in the respective protocols. The relatively large spread in the experimental data of Pwall, and consequently the absorbed-dose beam quality conversion factor, confirms the importance of the cross-calibration technique when using plane-parallel chambers for calibrating clinical electron beams. We confirmed that for well-guarded plane-parallel chambers, the fluence perturbation correction factor at d(max) is not significantly different from the value at d(ref). For the PTW Markus chamber the variation in the latter factor is consistent with published fits relating it to average energy at depth.  相似文献   

14.
D W Rogers 《Medical physics》1992,19(5):1227-1239
A formalism for clinical external beam dosimetry based on use of ion chamber absorbed-dose calibration factors is outlined in the context and notation of the AAPM TG-21 protocol. It is shown that basing clinical dosimetry on absorbed-dose calibration factors ND leads to considerable simplification and reduced uncertainty in dose measurement. In keeping with a protocol which is used in Germany, a quantity kQ is defined which relates an absorbed-dose calibration factor in a beam of quality Q0 to that in a beam of quality Q. For 38 cylindrical ion chambers, two sets of values are presented for ND/NX and Ngas/ND and for kQ for photon beams with beam quality specified by the TPR20(10) ratio. One set is based on TG-21's protocol to allow the new formalism to be used while maintaining equivalence to the TG-21 protocol. To demonstrate the magnitude of the overall error in the TG-21 protocol, the other set uses corrected versions of the TG-21 equations and the more consistent physical data of the IAEA Code of Practice. Comparisons are made to procedures based on air-kerma or exposure calibration factors and it is shown that accuracy and simplicity are gained by avoiding the determination of Ngas from NX. It is also shown that the kQ approach simplifies the use of plastic phantoms in photon beams since kQ values change by less than 0.6% compared to those in water although an overall correction factor of 0.973 is needed to go from absorbed dose in water calibration factors to those in PMMA or polystyrene. Values of kQ calculated using the IAEA Code of Practice are presented but are shown to be anomalous because of the way the effective point of measurement changes for 60Co beams. In photon beams the major difference between the IAEA Code of Practice and the corrected AAPM TG-21 protocol is shown to be the Prepl correction factor. Calculated kQ curves and three parameter equations for them are presented for each wall material and are shown to represent accurately the kQ curve for all ion chambers in this study with a wall of that specified material and a thickness less than 0.25 g/cm2. Values of kQ can be measured using the primary standards for absorbed dose in photon beams.  相似文献   

15.
For reasons of phantom material reproducibility, the absorbed dose protocols of the American Association of Physicists in Medicine (AAPM) (TG-51) and the International Atomic Energy Agency (IAEA) (TRS-398) have made the use of liquid water as a phantom material for reference dosimetry mandatory. In this work we provide a formal framework for the measurement of absorbed dose to water using ionization chambers calibrated in terms of absorbed dose to water but irradiated in solid phantoms. Such a framework is useful when there is a desire to put dose measurements using solid phantoms on an absolute basis. Putting solid phantom measurements on an absolute basis has distinct advantages in verification measurements and quality assurance. We introduce a phantom dose conversion factor that converts a measurement made in a solid phantom and analyzed using an absorbed dose calibration protocol into absorbed dose to water under reference conditions. We provide techniques to measure and calculate the dose transfer from solid phantom to water. For an Exradin A12 ionization chamber, we measured and calculated the phantom dose conversion factor for six Solid Water phantoms and for a single Lucite phantom for photon energies between 60Co and 18 MV photons. For Solid Water of certified grade, the difference between measured and calculated factors varied between 0.0% and 0.7% with the average dose conversion factor being low by 0.4% compared with the calculation whereas for Lucite, the agreement was within 0.2% for the one phantom examined. The composition of commercial plastic phantoms and their homogeneity may not always be reproducible and consistent with assumed composition. By comparing measured and calculated phantom conversion factors, our work provides methods to verify the consistency of a given plastic for the purpose of clinical reference dosimetry.  相似文献   

16.
The AAPM Task Group 21 protocol for the calibration of high-energy photon and electron beams was produced to accomplish essentially two goals: (1) incorporate the latest physical data available for calculating absorbed dose from ionization measurements and (2) to eliminate inconsistencies in absorbed dose measurements made with various ion chamber and phantom combinations. The ability of the protocol was assessed to consistently determine x-ray absorbed dose from measurements made with four Farmer-type chambers and one parallel-plate chamber in water, polystyrene, and acrylic phantoms. The measurements were performed using seven high-energy x-ray beams from 60Co to 26-MV nominal accelerating potential. The absorbed dose to water calculated from measurements made with the various chamber and phantom combinations were found to be consistent. The doses calculated for the two most common phantom materials, water and polystyrene, were found to be in excellent agreement. This resolved a 1.6% discrepancy in the absorbed dose determined from the two phantoms using the SCRAD protocol. The doses for acrylic phantoms were found to be approximately 1.2%, low for nominal accelerating potentials less than 8.8 MV. For accelerating potentials of 8.8 MV or greater the agreement was considerably better. The mean dose determined for the parallel-plate chamber from measurements in polystyrene was found to be within 0.7% of the mean dose determined using Farmer-type ion chambers in all phantom materials.  相似文献   

17.
At present there are no specific primary standards for 192Ir high dose rate sources used in brachytherapy. Traceability to primary standards is guaranteed through the method recommended by the AAPM that derives the air kerma calibration factor for the 192Ir gamma rays as the average of the air kerma calibration factors for x-rays and 137Cs gamma-rays or the Maréchal et al. method that uses the energy-weighted air kerma calibration factors for 250 kV x rays and 60Co gamma rays as the air kerma calibration factor for the 192Ir gamma rays. In order to use these methods, it is necessary to use the same buildup cap for all energies and the appropriate wall correction factor for each chamber. This work describes experimental work used to derive the A(W) for four different ionization chambers and different buildup cap materials for the three energies involved in the Maréchal et al. method. The A(W) for the two most common ionization chambers used in hospitals, the Farmer NE 2571 and PTW N30001 is 0.995 and 0.997, respectively, for 250 kV x rays, 0.982 and 0.985 for 192Ir gamma rays, and 0.979 and 0.991 for 60Co gamma rays, all for a PMMA build-up cap of 0.550 gm cm(-2). A comparison between the experimental values and Monte Carlo calculations shows an agreement better than 0.9%. Availability of the A(W) correction factors for all commercial chambers allows users of the in-air calibration jig, provided by the manufacturer, to alternatively use the Maréchal et al. method. Calibration laboratories may also used this method for calibration of a well-type ionization chamber with a comparable accuracy to the AAPM method.  相似文献   

18.
Recent working groups of the AAPM [Almond et al., Med. Phys. 26, 1847 (1999)] and the IAEA (Andreo et al., Draft V.7 of "An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water," IAEA, 2000) have described guidelines to base reference dosimetry of high energy photon beams on absorbed dose to water standards. In these protocols use is made of the absorbed-dose beam quality conversion factor, kQ which scales an absorbed-dose calibration factor at the reference quality 60Co to a quality Q, and which is calculated based on state-of-the-art ion chamber theory and data. In this paper we present the measurement and analysis of beam quality conversion factors kQ for cylindrical chambers in high-energy photon beams. At least three chambers of six different types were calibrated against the Canadian primary standard for absorbed dose based on a sealed water calorimeter at 60Co [TPR10(20)=0.572, %dd(10)x=58.4], 10 MV [TPR10(20)=0.682, %dd(10)x=69.6), 20 MV (TPR10(20)=0.758, %dd(10)x= 80.5] and 30 MV [TPR10(20) = 0.794, %dd(10)x= 88.4]. The uncertainty on the calorimetric determination of kQ for a single chamber is typically 0.36% and the overall 1sigma uncertainty on a set of chambers of the same type is typically 0.45%. The maximum deviation between a measured kQ and the TG-51 protocol value is 0.8%. The overall rms deviation between measurement and the TG-51 values, based on 20 chambers at the three energies, is 0.41%. When the effect of a 1 mm PMMA waterproofing sleeve is taken into account in the calculations, the maximum deviation is 1.1% and the overall rms deviation between measurement and calculation 0.48%. When the beam is specified using TPR10(20), and measurements are compared with kQ values calculated using the version of TG-21 with corrected formalism and data, differences are up to 1.6% when no sleeve corrections are taken into account. For the NE2571 and the NE2611A chamber types, for which the most literature data are available, using %dd(10)x, all published data show a spread of 0.4% and 0.6%, respectively, over the entire measurement range, compared to spreads of up to 1.1% for both chambers when the kQ values are expressed as a function of TPR10(20). For the PR06-C chamber no clear preference of beam quality specifier could be identified. When comparing the differences of our kQ measurements and calculations with an analysis in terms of air-kerma protocols with the same underlying calculations but expressed in terms of a compound conversion factor CQ, we observe that a system making use of absorbed-dose calibrations and calculated kQ values, is more accurate than a system based on air-kerma calibrations in combination with calculated CQ (rms deviation of 0.48% versus 0.67%, respectively).  相似文献   

19.
Shortt K  Shobe J  Domen S 《Medical physics》2000,27(7):1644-1654
In early 1998, three transfer ionization chambers were used to compare the air-kerma and absorbed-dose-to-water calibration factors measured by the National Research Council of Canada (NRCC) and the National Institute of Standards and Technology (NIST). The ratios between the NRCC and NIST calibration factors are 0.9950 and 1.0061 in the case of the absorbed-dose-to-water and air-kerma standards, respectively. In the case of the standard of absorbed dose to water, the combined uncertainty of the ratio between the standards of the two laboratories is about 0.6% and consequently, the observed difference of 0.5% is not significant at the one sigma level. In the case of the standard of air kerma, the combined uncertainty of the ratio between the standards of the two laboratories is about 0.4%, and so the observed difference of 0.61% is significant at the one sigma level. However, this discrepancy is due to the known differences in the methods of assessing the wall correction factor at the two laboratories. Taking into account changes implemented in the standards that form the basis of the calibrations, the present results are consistent with those of the previous comparison done in 1990/91. As a direct result of these differences in the calibration factors, changing from an air-kerma based protocol following TG-21 to an absorbed-dose-to-water based protocol following TG-51, would alter the relationship between clinical dosimetry in Canada and the United States by about 1%. For clinical reference dosimetry, the change from TG-21 to TG-51 could result in an increase of up to 2% depending upon the ion chamber used, the details of the protocol followed and the source of traceability, either NRCC or NIST.  相似文献   

20.
This report contains the recommendations of the Electron Dosimetry Working Party of the UK Institute of Physics and Engineering in Medicine (IPEM). The recommendations consist of a code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV. The code is based on the absorbed dose to water calibration service for electron beams provided by the UK standards laboratory, the National Physical Laboratory (NPL). This supplies direct N(D,w) calibration factors, traceable to a calorimetric primary standard, at specified reference depths over a range of electron energies up to approximately 20 MeV. Electron beam quality is specified in terms of R(50,D), the depth in water along the beam central axis at which the dose is 50% of the maximum. The reference depth for any given beam at the NPL for chamber calibration and also for measurements for calibration of clinical beams is 0.6R(50.D) - 0.1 cm in water. Designated chambers are graphite-walled Farmer-type cylindrical chambers and the NACP- and Roos-type parallel-plate chambers. The practical code provides methods to determine the absorbed dose to water under reference conditions and also guidance on methods to transfer this dose to non-reference points and to other irradiation conditions. It also gives procedures and data for extending up to higher energies above the range where direct calibration factors are currently available. The practical procedures are supplemented by comprehensive appendices giving discussion of the background to the formalism and the sources and values of any data required. The electron dosimetry code improves consistency with the similar UK approach to megavoltage photon dosimetry, in use since 1990. It provides reduced uncertainties, approaching 1% standard uncertainty in optimal conditions, and a simpler formalism than previous air kerma calibration based recommendations for electron dosimetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号