首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The differentiation effects of sodium butyrate were examined in a series of human pancreatic adenocarcinoma cell lines: Panc-1, a poorly differentiated cell line; HPAF, a pleomorphic cell line isolated in this laboratory; and two clones of the parental HPAF cell line, well-differentiated CD11 and less-differentiated CD18. Incubation with 2 mM sodium butyrate induced a dramatic decrease in cell proliferation and saturation densities in culture and an increase in alkaline phosphatase activity. Of particular interest, incubation with sodium butyrate also caused a number of morphologic alterations in these cells, attributed to an induction of secretory differentiation. Following sodium butyrate treatment, CD18 cells were virtually indistinguishable from the more highly differentiated CD11 cells as evidenced by an increase in the number of profiles of rough endoplasmic reticulum and of Golgi. Intercellular and intracytoplasmic lumens, whose appearance is quite common in CD11 cells but nonexistent in untreated CD18 cells, appeared in these cells following only 5 days of sodium butyrate treatment. An increase in the cytoplasmic secretory elements was also observed in sodium butyrate-treated Panc-1 cells; however, lumen formation never occurred in these cells.  相似文献   

2.
Wang F  Permert J  Ostenson CG 《Pancreas》2000,20(3):264-269
Islet amyloid polypeptide (IAPP) is produced in pancreatic beta cells. Intraislet function of IAPP is still uncertain. In the present study, we investigated effects of IAPP and somatostatin on stimulus-secretion coupling of beta cells in isolated rat pancreatic islets. Insulin secretion induced by 22.2 mM glucose was increased by an IAPP antiserum (0.1%) or an IAPP antagonist (IAPP8-37, 10 microM). Pretreatment of islets with pertussis toxin (PTX) abolished the stimulating effect of IAPP8-37 on glucose-induced insulin secretion. In contrast, IAPP antiserum and IAPP8-37 did not change insulin secretion induced by 30 mM KCl. Somatostatin (1 nM) inhibited insulin secretion induced by 22.2 mM glucose, 10 mM L-arginine, 25 microM forskolin, and 200 microM carbachol. IAPP (10 microM) enhanced the inhibitory effect of somatostatin on insulin secretion induced by L-arginine or forskolin. PTX pretreatment abolished the effects of somatostatin and IAPP on arginine-induced insulin secretion. In conclusion, IAPP regulates multiple steps in signal transductions of beta cells. The effects of IAPP on beta cells are mediated by PTX-sensitive regulatory G proteins.  相似文献   

3.
Gasa R  Gomis R  Casamitjana R  Novials A 《Pancreas》2001,22(3):307-310
We studied the contribution of the constitutive and the regulated pathways to the total secretion of islet amyloid polypeptide (IAPP) in human pancreatic islets after prolonged culture at either 5.5 or 24.4 mM glucose. In islets cultured in low concentrations of glucose, the secretion of IAPP in response to glucose was unaffected by brefeldin A (BFA) and completely blocked by ethyleneglycoltetraacetic acid. In islets cultured in high glucose concentrations, it was strongly inhibited by both agents. BFA had no effect on the glucose-induced insulin secretion. The determination of the islet peptide contents and the mRNA levels revealed a several-fold increase in the IAPP/insulin molar ratio of islets cultured in high glucose concentrations. Thus, prolonged exposure of human islets to high concentrations of glucose results in an increase in the synthesis of IAPP with respect to insulin. As a result, the release of IAPP through a mechanism sensitive to BFA is favored. These data support the hypothesis that IAPP and insulin are regulated in a noncoordinated way in human pancreatic islets.  相似文献   

4.
《Pancreatology》2002,2(4):402-406
Background: In malignant diseases, circulating amino acid profiles correlate with organ sites of malignancy. Direct effects of malignant cells on the extracellular amino acid profile are still uncertain. Methods: Free amino acids were measured in serum-free culture media (RPMI1640) conditioned by two human pancreatic cancer cell lines (Panc-1 and HPAF), a hamster pancreatic cancer cell line (PC-1), a human epidermoid carcinoma cell line (A431), and a human fibroblastic cell line (Ag-1523). Nonconditioned RPMI-1640 medium was used as control. Results: Amino acid profiles were changed in all the conditioned media, caused by a decrease or increase in the original amino acids and by the appearance of amino acids that were not present in non-conditioned medium. Media conditioned by two human pancreatic cancer cell lines showed similar amino acid profiles, which were characterized by a decrease in glutamine, cysteine and serine, increase in glycine, proline and glutamic acid and appearance of ornithine and alanine. Conclusion: Culture media show changed amino acid profiles following incubation with cell lines of pancreatic or non-pancreatic origins. Different human pancreatic cancer cell lines cause similar changes in amino acid profiles of media.  相似文献   

5.
Islet amyloid polypeptide (IAPP) is the constituent peptide of amyloid deposits found in the islets of non-insulin-dependent diabetic patients. Formation of islet amyloid is associated with a progressive destruction of insulin-producing beta cells. Factors responsible for the conversion of IAPP into insoluble amyloid fibrils are unknown. Both the amino acid sequence of human IAPP (hIAPP) and hypersecretion of hIAPP have been implicated as factors for amyloid fibril formation in man. We have generated transgenic mice using rat insulin promoter-hIAPP or rat IAPP (rIAPP) gene constructs. No fibrillar islet amyloid was detectable in vivo in these normoglycemic mice, although small amorphous perivascular accumulations of IAPP were observed in hIAPP mice only. To determine the effects of glucose on IAPP secretion and fibrillogenesis, pancreatic islets from transgenic and control mice were examined in vitro. Islet IAPP secretion and content were increased in transgenic islets compared with control islets. IAPP-immunoreactive fibrils were formed at both intra- and extracellular sites in isolated hIAPP islets cultured with glucose at 11.1 and 28 mM for only 7 days. At 28 mM glucose, fibrils were present in deep invaginations of beta cells as observed in non-insulin-dependent diabetic patients. No fibrils were present at low glucose concentrations in hIAPP islets or at any glucose concentration in rIAPP or control islets. Thus, glucose-induced expression and secretion of hIAPP in transgenic mouse islets can lead to formation of amyloid fibrils similar to that found in non-insulin-dependent diabetes mellitus.  相似文献   

6.
Islet amyloid polypeptide in the islets of Langerhans: friend or foe?   总被引:6,自引:1,他引:6  
Islet amyloid polypeptide (IAPP), or amylin, was originally discovered as the constituent peptide in amyloid occurring in human insulinomas and in pancreatic islets in human subjects with Type II (non-insulin-dependent) diabetes mellitus. Its normal expression in beta cells and its co-secretion with insulin in response to nutrient stimuli, suggest a metabolic function for the peptide. Specifically, IAPP has most frequently been shown to inhibit insulin secretion, implying that IAPP has a role in the regulation of islet hormone homeostasis. The physiological significance of IAPP in islets has been difficult to assess; very high IAPP concentrations are required to alter insulin secretion. Moreover, until recently, IAPP receptors have not been characterised at the molecular level, thus leaving the actual target cells for IAPP unidentified. Furthermore, in experimental diabetes in rodents, the ratio of IAPP expression to that of insulin invariably is increased. In view of the pleiotropic effects attributed to IAPP, such regulation could be both adverse and beneficial in diabetes. Metabolic characterisation of mice carrying a null mutation in the IAPP gene or which overexpress IAPP in beta cells have recently confirmed that IAPP is a physiological inhibitor of insulin secretion. Based on experiments in which IAPP-deficient mice develop a more severe form of alloxan-induced diabetes, we argue that the action of IAPP in the islets normally is beneficial for beta-cell function and survival; thus, the established up regulation of IAPP expression compared with that of insulin in experimental rodent diabetes could serve to protect islets under metabolically challenging circumstances. [Diabetologia (2000) 43: 687–695]  相似文献   

7.
Two new monoclonal antibodies, E5/E10 and E10/B4, were raised which reacted with surface antigens on the metastatic rat pancreatic adenocarcinoma cell line ASML, but not with antigens localized on the cell surface of the nonmetastatic rat pancreatic adenocarcinoma line AS. These two monoclonal antibodies are of the IgG1 subclass and recognize protein bands with molecular weight 28,000 and 35,000 D. E5/E10 and E10/B4 cross-reacted only with antigens on the human colon cancer cell line HT-29, as well as with normal rat kidney.  相似文献   

8.
Tomita T 《Islets》2011,3(6):344-351
Aims/hypothesis: Islet amyloid polypeptide is originally identified as the chief constituent of amyloid in insulinomas and type 2 diabetic islets. This study aimed to identify islet amyloid polypeptide by immunocytochemical staining in pancreatic endocrine tumors including 30 cases of insulinomas and non-β-cell pancreatic endocrine tumors. Results: In normal islets, 62% of islet cells and 52% of insulin cells were granularly positive for insulin and IAPP, respectively, with more insulin positive cells than IAPP positive cells and some densely positive staining for insulin and IAPP in irregularly shaped a nuclear, degenerating islet β-cells. In pancreatic endocrine tumors, all 10 insulinomas were positive for islet amyloid polypeptide but 2 glucogonomas, 1 somatostatinoma, 6 of 7 pancreatic polypeptidomas, all 7 gastrinomas and all 3 non-functioning pancreatic endocrine tumors were negative for islet amyloid polypeptide whereas one pancreatic polypeptidoma was positive for islet amyloid polypeptide. Methods: Using commercially available rabbit anti-islet amyloid polypeptide antibody, immunocytochemical staining was performed on 30 cases of pancreatic endocrine tumors, consisting of 10 insulinomas, 2 glucagonomas, 1 somatostatinoma, 7 pancreatic polypeptidomas, 7 gastrinomas and 3 non-functioning pancreatic endocrine tumors. Pancreatic tissues containing pancreatic endocrine tumors were systematically immunostained for insulin, glucagon, somatostatin, pancreatic polypeptide, gastrin and chromogranin A, in addition to islet amyloid polypeptide. When normal pancreatic tissues adjacent to pancreatic endocrine tumors were present, insulin, glucagon, somatostatin and islet amyloid polypeptide positive cells were counted for a total of 20 islets, which were divided into large islets and medium islets for each case. Conclusions/Interpretations: All 10 insulinomas and 1 pancreatic polypeptidoma were granularly positive for islet amyloid polypeptide, suggesting all 10 insulinomas contained enough insulin granules for IAPP whereas only one non-β-cell pancreatic endocrine tumor was co-localized with islet amyloid polypeptide in their secretary granules.  相似文献   

9.
《Islets》2013,5(6):344-351
Aims/hypothesis: Islet amyloid polypeptide is originally identified as the chief constituent of amyloid in insulinomas and type 2 diabetic islets. This study aimed to identify islet amyloid polypeptide by immunocytochemical staining in pancreatic endocrine tumors including 30 cases of insulinomas and non-β-cell pancreatic endocrine tumors.

Results: In normal islets, 62% of islet cells and 52% of insulin cells were granularly positive for insulin and IAPP, respectively, with more insulin positive cells than IAPP positive cells and some densely positive staining for insulin and IAPP in irregularly shaped a nuclear, degenerating islet β-cells. In pancreatic endocrine tumors, all 10 insulinomas were positive for islet amyloid polypeptide but 2 glucogonomas, 1 somatostatinoma, 6 of 7 pancreatic polypeptidomas, all 7 gastrinomas and all 3 non-functioning pancreatic endocrine tumors were negative for islet amyloid polypeptide whereas one pancreatic polypeptidoma was positive for islet amyloid polypeptide.

Methods: Using commercially available rabbit anti-islet amyloid polypeptide antibody, immunocytochemical staining was performed on 30 cases of pancreatic endocrine tumors, consisting of 10 insulinomas, 2 glucagonomas, 1 somatostatinoma, 7 pancreatic polypeptidomas, 7 gastrinomas and 3 non-functioning pancreatic endocrine tumors. Pancreatic tissues containing pancreatic endocrine tumors were systematically immunostained for insulin, glucagon, somatostatin, pancreatic polypeptide, gastrin and chromogranin A, in addition to islet amyloid polypeptide. When normal pancreatic tissues adjacent to pancreatic endocrine tumors were present, insulin, glucagon, somatostatin and islet amyloid polypeptide positive cells were counted for a total of 20 islets, which were divided into large islets and medium islets for each case.

Conclusions/Interpretations: All 10 insulinomas and 1 pancreatic polypeptidoma were granularly positive for islet amyloid polypeptide, suggesting all 10 insulinomas contained enough insulin granules for IAPP whereas only one non-β-cell pancreatic endocrine tumor was co-localized with islet amyloid polypeptide in their secretary granules.  相似文献   

10.
《Islets》2013,5(3):223-232
Aims/hypothesis: Islet amyloid polypeptide (IAPP) is a chief constituent of amyloid deposits in pancreatic islets, characteristic histopathology for type 2 diabetes. The goal of this study was to analyze islet cell composition in diabetic islets for the process of transforming water-soluble IAPP in β-cells to water-insoluble amyloid deposits by Immunocytochemical staining using different dilutions of anti-IAPP antibody. IAPP in β-cell granules may initiate β-cell necrosis through apoptosis to form interstitial amyloid deposits in type 2 diabetic islets.

Results: Control islets revealed twice as much β-cells as α-cells whereas 15 of 18 type 2 diabetic cases (83%) revealed α- cells as major cells in larger islets. Diabetic islets consisted of more larger islets with more σ-cells than β-cells, which contribute to hyperglucagonemia. In control islets, percentage of IAPP-positive cells against β-cells was 40–50% whereas percentage for type 2 diabetic islets was about 25%. Amyloid deposits in diabetic islets were not readily immunostained for IAPP using 1: 800 diluted antibody, however, 1: 400 and 1: 200 diluted solutions provided stronger immunostaining in early stages of islet amyloidogenesis after treating the deparaffinized sections with formic acid.

Methods: Using commercially available rabbit antihuman IAPP antibody, immunocytochemical staining was performed on 18 cases of pancreatic tissues from type 2 diabetic subjects by systematically immunostaining for insulin, glucagon, somatostatin (SRIF) and IAPP compared with controls. Sizes of islets were measured by 1 cm scale, mounted in 10X eye piece.

Conclusions/Interpretation: α cells were major islet cells in majority of diabetic pancreas (83%) and all diabetic islets contained less IAPP-positive cells than controls, indicating that IAPP deficiency in pancreatic islets is responsible for decreased IAPP in blood. In diabetic islets, water-soluble IAPP disappeared in β-cell granules, which transformed to water-insoluble amyloid deposits. Amyloid deposits were not readily immunostained using IAPP 1: 800 diluted antibody but were stronger immunostained for IAPP in early stages of amyloid deposited islets using less diluted solutions after formic acid treatment. In early islet amyloidogenesis, dying β-cell cytoplasm was adjacently located to fine amyloid fibrils, supporting that IAPP in secretary granules from dying β cells served as nidus for islet β-sheet formation.  相似文献   

11.
Effects of rat islet amyloid polypeptide (IAPP) on insulin biosynthesis and secretion were examined in isolated rat islets and mouse beta TC3 cells. Culture of islets or mouse beta TC3 cells for 24 h in the presence of 10(-6) M IAPP and 5.5 mM glucose had no effect on insulin mRNA levels. The rates of proinsulin biosynthesis were not altered in islets incubated in 10(-4)-10(-9) M IAPP. In beta TC3 cells, proinsulin biosynthesis was stimulated by glucose, though no effects of IAPP were shown. Addition of 10(-5) M IAPP to islets incubated in 11 mM glucose decreased the fractional insulin secretion rates; however, the secretion of insulin from beta TC3 cells was not affected by 10(-5) M IAPP. On the other hand, mouse beta TC3 cells expressed the elevated level of IAPP mRNA. Metabolic labeling of beta TC3 cells revealed the synthesis of both proIAPP and mature IAPP. In pulse chase experiments, proIAPP was processed to IAPP in a manner similar to proinsulin. These data indicate that IAPP is a possible polypeptide hormone synthesized in pancreatic beta cells though it is unlikely that IAPP is a physiologically relevant modulator of insulin biosynthesis or secretion.  相似文献   

12.
Tomita T 《Islets》2012,4(3):223-232
Aims/hypothesis: Islet amyloid polypeptide (IAPP) is a chief constituent of amyloid deposits in pancreatic islets, characteristic histopathology for type 2 diabetes. The goal of this study was to analyze islet cell composition in diabetic islets for the process of transforming water-soluble IAPP in β-cells to water-insoluble amyloid deposits by Immunocytochemical staining using different dilutions of anti-IAPP antibody. IAPP in β-cell granules may initiate β-cell necrosis through apoptosis to form interstitial amyloid deposits in type 2 diabetic islets. Results: Control islets revealed twice as much β-cells as α-cells whereas 15 of 18 type 2 diabetic cases (83%) revealed α- cells as major cells in larger islets. Diabetic islets consisted of more larger islets with more σ-cells than β-cells, which contribute to hyperglucagonemia. In control islets, percentage of IAPP-positive cells against β-cells was 40–50% whereas percentage for type 2 diabetic islets was about 25%. Amyloid deposits in diabetic islets were not readily immunostained for IAPP using 1: 800 diluted antibody, however, 1: 400 and 1: 200 diluted solutions provided stronger immunostaining in early stages of islet amyloidogenesis after treating the deparaffinized sections with formic acid. Methods: Using commercially available rabbit antihuman IAPP antibody, immunocytochemical staining was performed on 18 cases of pancreatic tissues from type 2 diabetic subjects by systematically immunostaining for insulin, glucagon, somatostatin (SRIF) and IAPP compared with controls. Sizes of islets were measured by 1 cm scale, mounted in 10X eye piece. Conclusions/Interpretation: α cells were major islet cells in majority of diabetic pancreas (83%) and all diabetic islets contained less IAPP-positive cells than controls, indicating that IAPP deficiency in pancreatic islets is responsible for decreased IAPP in blood. In diabetic islets, water-soluble IAPP disappeared in β-cell granules, which transformed to water-insoluble amyloid deposits. Amyloid deposits were not readily immunostained using IAPP 1: 800 diluted antibody but were stronger immunostained for IAPP in early stages of amyloid deposited islets using less diluted solutions after formic acid treatment. In early islet amyloidogenesis, dying β-cell cytoplasm was adjacently located to fine amyloid fibrils, supporting that IAPP in secretary granules from dying β cells served as nidus for islet β-sheet formation.  相似文献   

13.
BACKGROUND: Pancreatic cancer is one of the leading causes of cancer-related death. Using DNA gene expression analysis based on a custom made Affymetrix cancer array, we investigated the expression pattern of both primary and established pancreatic carcinoma cell lines. METHODS: We analyzed the gene expression of 5 established pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-1, Capan-2 and HPAF II) and 5 primary isolates, 1 of them derived from benign pancreatic duct cells. RESULTS: Out of 1,540 genes which were expressed in at least 3 experiments, we found 122 genes upregulated and 18 downregulated in tumor cell lines compared to benign cells with a fold change >3. Several of the upregulated genes (like Prefoldin 5, ADAM9 and E-cadherin) have been associated with pancreatic cancer before. The other differentially regulated genes, however, play a so far unknown role in the course of human pancreatic carcinoma. By means of immunohistochemistry we could show that thymosin beta-10 (TMSB10), upregulated in tumor cell lines, is expressed in human pancreatic carcinoma, but not in non-neoplastic pancreatic tissue, suggesting a role for TMSB10 in the carcinogenesis of pancreatic carcinoma. CONCLUSION: Using gene expression profiling of pancreatic cell lines we were able to identify genes differentially expressed in pancreatic adenocarcinoma, which might contribute to pancreatic cancer development.  相似文献   

14.
L M Chuang  H P Wu  T S Jou  T Y Tai  B J Lin 《Pancreas》1992,7(4):472-476
Islet amyloid polypeptide (IAPP) has been recently identified as the principal constituent of amyloid deposits in pancreatic islets of patients with type 2 (non-insulin-dependent) diabetes mellitus and causes insulin resistance in some target cells. In addition, glucose-induced insulin secretion is inhibited by IAPP. We studied the effect of IAPP on proinsulin biosynthesis in rat insulinoma (RINr) cells. Glucose at concentrations of 0, 15, 30, 60, 100, and 300 mg/dl stimulated proinsulin biosynthesis in a dose-responsive and and actino-mycin D-inhibitable manner after 6 h of incubation. At a glucose concentration of 300 mg/dl, IAPP decreased the mean responses of proinsulin biosynthesis to 61.2 and 29% at concentrations of 0.1 and 1 microM, respectively, compared with the IAPP-free control. In conclusion, IAPP inhibits glucose-induced proinsulin biosynthesis in RINr cells. IAPP might play an important role in the pathogenesis of type 2 diabetes mellitus.  相似文献   

15.
Summary Conclusion BxPC-3, Hs 766T, Capan-2, Panc-1, and Capan-1 cells possess receptors for VIP and β-adrenergic agonists that are functionally coupled to adenylate cyclase. In this respect, they resemble pancreatic duct cells. However, we speculate that the process of neoplastic transformation has either downregulated the expression of secretin receptors or led to a defect in the receptor itself, placing a question mark over the usefulness of these adenocarcinoma cell lines as models of the pancreatic ductal epithelium. Background Because of the importance of ducts in pancreatic disease, we wished to establish which duct cells receptors are functional on adenocarcinoma cell lines. Methods We investigated the expression of agonist-stimulated adenylate cyclase activity in six human pancreatic adenocarcinoma cell lines. Known stimulants of pancreatic ductal secretion, VIP, PHI, secretin, β-adrenergic, and dopamine, were tested. Results For responsive cell lines, VIP was the most effective stimulant followed by adrenaline, isoprenaline, PHI, and secretin. Dopamine was without effect. Since high concentrations of PHI and secretin were required to stimulate cyclase activity, their effect is probably mediated by VIP receptors. Based on the degree of stimulation observed with the individual agonists, Hs 766T and BxPC-3 were the most responsive cell lines, followed by Capan-2 and Capan-1, and finally Panc-1. MIAPaCa-2 cells did not respond to any of the agonists tested.  相似文献   

16.
AIM: To evaluate the effect of MSX2 on gemcitabine-induced caspase-3 activation in pancreatic cancer cell line Panc-1. METHODS: Using V5-tagged MSX2 expression vector, stable transfectant of MSX2 was generated from Panc-1 cells (P×l4 cells). Cell viability under gemcitabine administration was determined by MTT assay relative to control cell line (empty-vector transfected Panc-1 cells; P-3EV cells). Hoechst staining was used for the detection of apoptotic cell. Activation of caspase-3 was assessed using Western blotting analysis and direct measurement of caspase-3 specific activities. RESULTS: MSX2 overexpression in Panc-1 cells resulted in decreased gemcitabine-induced caspase-3 activation and increased cell viability under gemcitabine treatment in P×l4 cells. CONCLUSION: MSX2 exerts repressive effects on gemcitabine-induced apoptotic pathway. This novel apoptosis-regulating function of MSX2 may provide a new therapeutic target for pancreatic cancer.  相似文献   

17.
With a limiting dilution technique, clones have been established from the human pancreatic adenocarcinoma cell line, HPAF. Phenotypic analysis by a panel of murine monoclonal antibodies demonstrated distinct profiles of antigenic expression between the clones. However, identical isozyme patterns of different clones indicated their common origin from the parental HPAF cells. Two clones, CD11 and CD18, appeared to be arrested at different stages of secretory epithelial cell differentiation. CD11 cells demonstrated many characteristics of a well-differentiated state, including the formation of ductal structures with polarized, long columnar-shaped cells, the presence of secretory granules in the cytoplasm, high DU-PAN-2 antigen expression in nude mouse xenografts, and a longer doubling time (42 h) in tissue culture. In contrast, CD18 cells exhibited characteristics of a poorly differentiated state, including solid nests of isoprismatic cells without luminal spaces and cellular polarization, absence of secretory granules and DU-PAN-2 antigen expression in xenografts, and a shorter doubling time (26 h) in tissue culture. Since no culture systems of normal pancreatic ductal cells are currently available, these two pancreatic adenocarcinoma clones may provide a unique system to study genes and antigens related to pancreatic ductal cell differentiation.  相似文献   

18.
Macrophages and pancreatic islet amyloidosis.   总被引:3,自引:0,他引:3  
Islet amyloid formed from islet amyloid polypeptide (IAPP, amylin) is found in spontaneously diabetic monkeys and cats. Islet amyloidosis is progressive, apparently irreversible and is associated with destruction of insulin-secreting cells. The role of macrophages in the destruction and removal of islet amyloid is unknown. Therefore, the presence and morphology of macrophages were determined by electron and quantitative light microscopy in islets of diabetic and nondiabetic man and monkeys and in transgenic mice expressing the gene for human IAPP. Tissue macrophages were present in all pancreatic sections and tissue distribution was similar in exocrine and endocrine areas. There was no difference in macrophage density in amyloidotic and amyloid-free islets in monkeys and man. Macrophage density was similar in islets of transgenic mice expressing human IAPP which do not contain amyloid in vivo but in which fibrils are formed in vitro following islet isolation compared to islets from mice expressing rat IAPP which is not amyloidogenic. IAPP amyloid fibrils were visible by electron microscopy in lysosomes of pancreatic macrophages in man, monkeys and human IAPP transgenic mice. Thus, human IAPP is internalised but inefficiently degraded by tissue macrophages. Diabetes-associated amyloidosis is not associated with visible recruitment of macrophages for removal of amyloid or islet debris.  相似文献   

19.
[目的]体外观察姜黄素(curcumin)联合顺铂(CDDP)抗胰腺癌细胞(Pane-1)增殖的效应。[方法]采用MTT法观察不同浓度姜黄素、CDDP单独应用对Panc-1细胞生长的抑制效应,并利用中效原理判定2药合用的效果,应用中位效应原理和联合作用指数法来定量姜黄素与CDDP的联合作用。[结果]姜黄素和CDDP对Panc-1有剂量依赖性的抑制增殖作用,作用48h姜黄素、CDDP的IC50值分别为(20.05±1.32)μmol/L、(0.89±0.31)μg/ml。中效原理分析显示,2药在联合应用时为协同效应,在相同的抑制效应下可降低姜黄素和明显降低CDDP的使用量。[结论]姜黄素可以促进Panc-1对CDDP的敏感性,降低其有效治疗浓度。  相似文献   

20.
PTH-related protein (PTHrP) is expressed in many common malignancies such as breast and prostate cancer and can regulate their growth. Little is known, however, about the role of PTHrP in pancreatic adenocarcinoma. To study PTHrP in pancreatic exocrine cancer, we studied its expression in pancreatic cancer cell lines and surgical specimens. Eight human pancreatic adenocarcinoma cell lines were evaluated: AsPC-1, BxPC-3, Capan-1, CFPAC-1, MIA PaCa-2, PANC-1, PANC-28, and PANC-48. Murine monoclonal antibodies to the amino-terminal (1-34), mid-region (38-64), and carboxyl-terminal peptides (109-141) of PTHrP were used to identify cellular PTHrP and secreted PTHrP, including Western blotting and immunocytochemical staining for PTHrP from each cell line. Cellular PTHrP was detected in all cell line extracts by both Western blotting and immunoassay. CFPAC-1, derived from a pancreatic liver metastasis, had the highest concentration of PTHrP, and MIA PaCa-2, derived from primary pancreatic adenocarcinoma, had the lowest. PTHrP was localized by immunocytochemical staining in the cytoplasm in all but one cell line, and both nuclear and cytoplasmic immunostaining were observed in the MIA PaCa-2 and PANC-1 cells. Secretion of PTHrP into cell medium was also observed for each cell line and paralleled intracellular PTHrP levels. Evidence for differential processing of PTHrP expression was provided by studies demonstrating different patterns of PTHrP among the cell lines when assessed by PTHrP immunoassays directed against different PTHrP peptides. In specific, PTHrP secretion measured by a PTHrP-(38-64) assay was highest for BxPC-3, whereas the highest levels of secreted PTHrP-(109-141) occurred in CFPAC-1 and PANC-1. Growth of AsPC-1 cells was stimulated in a dose-dependent manner by PTHrP-(1-34). Immunostaining from archival tissue of patients with pancreatic adenocarcinoma revealed strong PTHrP expression in all 14 specimens. All patients were eucalcemic preoperatively. These results demonstrate that PTHrP is commonly expressed in pancreatic cancer. Our data suggest that PTHrP may have growth-regulating properties in pancreatic adenocarcinoma cells, but further studies are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号