首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Germline mutations in the BRCA2 gene have been shown to be associated with familial female and male breast cancer. Mutations occur throughout the entire coding region of the gene, and there is considerable ethnic and geographical diversity in the deleterious mutations detected in different populations. No data exist on the role of the BRCA2 gene in the Cypriot population. In this study we present the results of characterizing mutations in the BRCA2 gene, in 26 Cypriot families with multiple cases of breast/ovarian cancer. The entire coding region, including splice sites, of BRCA2 were sequenced using cycle sequencing. In total 29 BRCA2 variants were detected which include 3 truncating mutations, 8 missense mutations, 6 polymorphisms and 12 intronic variants. The 3 truncating mutations are frameshift mutation 8984delG (exon 22), and two nonsense mutations, namely C1913X (exon 11) which is a novel mutation, and K3326X (exon 27). It is of interest that frameshift mutation 8984delG was the most frequent, since it was detected in 5 patients from three different families. Among the 6 polymorphisms detected, polymorphism T77T is novel and similarly 4 of the 12 intronic variants were also novel, namely IVS1+8G>A, IVS1-96insA, IVS4+36A>G and IVS11-51G>T. These results show that deleterious BRCA2 mutations, occur at the same frequency, about 20%, in Cypriot families, as that recorded in other European populations. We conclude that the BRCA2 gene plays a significant role in the familial breast cancer phenotype in the Cypriot population.  相似文献   

6.
Germline mutation analysis of BRCA1 gene has demonstrated significant allelic heterogeneity. These differences represent historical influences of migration, population structure and geographic or cultural isolation. To date, there have been no reports of Indian families with mutations in BRCA1. We have screened for mutations in selected coding exons of BRCA1 and their flanking intron regions in three breast or breast and ovarian cancer families with family history of three or more cases of breast cancer under age 45 and/or ovarian cancer at any age. We have also analyzed 10 female patients with sporadic breast cancer regardless of age and family history, as well as 50 unrelated normal individuals as controls. Thus a total of 90 samples were analyzed for BRCA1 mutations using polymerase chain reaction-mediated site directed mutagenesis (PSM) and single stranded conformation polymorphism (SSCP) analysis for various selected exons followed by sequencing of variant bands. Eight point mutations were identified. Two deleterious pathogenic, protein truncating non-sense mutations were detected in exon 11 (E1250X) and exon 20 (E1754X) and six novel and unique amino acid substitutions (F1734S, D1739Y, V1741G, Q1747H, P1749A, R1753K). One complex missense mutation of exon 20 [V1741G; P1749A] was seen in two out of three families and another complex combination of missense and non-sense mutations of the same exon [V1741G; E1754X] was observed in only one family. These complex mutations exist only in breast cancer families but not in control populations of women. Three splice site variants (IVS20+3A>C, IVS20+4A>T, IVS20+5A>T) and two intronic variants (IVS20+21_22insG, IVS20+21T>G) were also detected. In the group of 10 sporadic female patients no mutations were found.  相似文献   

7.
Germline mutations in BRCA1 gene account for varying proportions of breast/ovarian cancer families, and demonstrate considerable variation in mutational spectra coincident with ethnic and geographical diversity. We have screened for mutations the entire coding sequence of BRCA1 in 30 breast/ovarian cancer women with family history of two or more cases of breast cancer under age 50 and/or ovarian cancer at any age. Genomic DNA from patient was initially analyzed for truncating mutations in exon 11 with PTT followed by DNA sequencing. In the cases where no frameshift mutation was observed in exon 11, all other exons were screened with direct sequencing. Two novel (3099delT, 3277insG) and three already described (3741insA, 1623del5-TTAAA, 5382insC-twice) truncating mutations were identified. In addition, 6 point mutations (L771L, P871L, E1038G, K1183R, S1436S, S1613G) which are already classified as polymorphisms were identified. Three unclassified intronic variants (IVS16-68 G>A, IVS16-92 G>A, IVS18+65G>A) were also detected. These results show that BRCA1 deleterious mutations are present in a fraction (20%) of Greek breast/ovarian cancer families similar to other European countries. Mutations were detected in high- (>/=3 members) as well as in moderate-risk (2 members) families. This is the first report of BRCA1 mutation analysis in Greece.  相似文献   

8.
In Cyprus, the prevalence of breast cancer associated with BRCA1 and BRCA2 mutations in young women is unknown. In this study, we present the results of mutational analysis of the BRCA1 and BRCA2 genes in 26 Cypriot women diagnosed with breast cancer by the age of 40. The entire coding regions, including splice sites, of the BRCA1 and BRCA2 genes were sequenced using cycle sequencing. We identified four pathogenic mutations: two in BRCA1 [c.1840A>T (K614X), c.5310delG (5429delG)] and two in BRCA2 [c.3531-3534delCAGC (3758del4), c.8755delG (8984delG)] in six of 26 unrelated patients. The BRCA2 mutation c.3531-3534delCAGC (3758del4) is novel and the BRCA1 mutation c.1840A>T (K614X) is reported for the first time in Cypriot patients. The BRCA2 Cypriot founder mutation c.8755delG (8984delG) was detected in three unrelated patients. Additionally, we identified one novel BRCA1 missense mutation, two novel polymorphisms and three novel intronic variants of which BRCA1 c.4185+3A>G (IVS12+3A>G) may be pathogenic. Of the six BRCA1/2 mutation carriers, only four had a family history. These results show that the prevalence of BRCA1 and BRCA2 mutations in Cypriot women diagnosed with early-onset breast cancer is high. We conclude that Cypriot women with early-onset breast cancer should be offered BRCA1/2 testing irrespective of their family history.  相似文献   

9.
Heterozygous carriers of ATM (ataxia telangiectasia mutated gene) mutations have increased risk of breast cancer (BC). We have estimated the prevalence of mutations in the ATM gene among Spanish patients with early-onset BC. Forty-three patients diagnosed with BC before the age of 46 years, and negative for BRCA1 and BRCA2 mutations, were analysed for the presence of ATM mutations. A total of 34 ATM sequence variants were detected: 1 deleterious mutation, 10 unclassified variants and 23 polymorphisms. One patient (2.3%) carried the ATM deleterious mutation (3802delG that causes ataxia telangiectasia in the homozygous state) and 13 patients carried the 10 ATM unclassified variants. The truncating mutation 3802delG and eight of the rare variants were not detected in a control group of 150 individuals. Different bioinformatic sequence analysis tools were used to evaluate the effects of the unclassified ATM changes on RNA splicing and function protein. This in silico analysis predicted that the missense variants 7653 T>C and 8156 G>A could alter the splicing by disrupting an exonic splicing enhancer motif and the 3763 T>G, 6314 G>C, and 8156 G>A variants would affect the ATM protein function. These are the initial results concerning the prevalence of germline mutations in the ATM gene among BC cases in a Spanish population, and they suggest that ATM mutations can confer increased susceptibility to early-onset BC.  相似文献   

10.
11.
A large number of sequence variants identified in BRCA1 and BRCA2 cannot be distinguished as either disease-causing mutations or neutral variants. These so-called unclassified variants (UVs) include variants that are located in the intronic sequences of BRCA1 and BRCA2. The purpose of this study was to assess the use of splice-site prediction programs (SSPPs) to select intronic variants in BRCA1 and BRCA2 that are likely to affect RNA splicing. We performed in vitro molecular characterization of RNA of six intronic variants in BRCA1 and BRCA2. In four cases (BRCA1, c.81-6T>A and c.4986+5G>T; BRCA2, c.7617+2T>G and c.8754+5G>A) a deleterious effect on RNA splicing was seen, whereas the c.135-15_-12del variant in BRCA1 showed no effect on RNA splicing. In the case of the BRCA2 c.68-7T>A variant, RNA analysis was not sufficient to establish the clinical significance. Six SSPPs were used to predict whether an effect on RNA splicing was expected for these six variants as well as for 23 intronic variants in BRCA1 for which the effect on RNA splicing has been published. Out of a total of 174 predictions, 161 (93%) were informative (i.e., the wild-type splice-site was recognized). No false-negative predictions were observed; an effect on RNA splicing was always predicted by these programs. In four cases (2.5%) a false-positive prediction was observed. For DNA diagnostic laboratories, these programs are therefore very useful to select intronic variants that are likely to affect RNA splicing for further analysis.  相似文献   

12.
Metachromatic leukodystrophy (MLD) is an autosomal recessive disorder caused by mutations in the arylsulfatase A (ASA) gene. We identified a Thai boy with typical late-infantile MLD and found that he was a compound heterozygote for a novel mutation, g.IVS3-2A>G causing c.679-696del inherited from his father, and a previously reported missense mutation, g.1144G>A causing c.1102-1204del inherited from his mother. The g.1144G>A mutation was located in the middle of exon 7 and previously assumed to be deleterious by causing an amino acid change, E382K. We, herein, found that its actual pathogenic effect was splicing-related by disrupting a potential exonic splicing enhancer (ESE) and causing a complete exon 7 skipping. This is the first missense mutation in the ASA gene that is deleterious from disrupting a potential ESE. The results prompted us to investigate pathogenic effects of other reported missense mutations in the ASA gene. Unlike pathogenic missense mutations in some other genes, those in the ASA gene do not colocalize with ESE sites suggesting that pathogenic effects of majority of them are not splicing-related.  相似文献   

13.
中国上海家族性乳腺癌BRCA1和BRCA2基因的突变   总被引:6,自引:0,他引:6  
目的研究上海地区家族性乳腺癌中BRCA1/BRCA2基因的突变位点及携带情况。方法研究对象来自35个汉族家族性乳腺癌家系,家系中至少有一个一级亲属乳腺癌患病史。共35例患者,其中13例发病年龄≤加岁。由静脉血提取基因组DNA,对BRCA1/BRCA2基因的全部编码序列进行扩增。扩增产物突变分析先由变性高效液相色谱分析进行筛查,之后进行DNA直接测序证实。结果在BRCA1基因中发现有4个突变位点,其中2个为新发现位点——拼接点突变(IVS17-1G〉T;IVS21+1G〉C);另两个为已报道的致病突变位点——移码突变(1100delAT;5640delA)。BRCA2基因的1个致病突变位点位于11号外显子上,为移码突变(5802delAATT)。另外,共发现有12个新的单核苷重复多态位点,都未引起氨基酸编码改变;其中,8个在BRCA1基因上,4个在BRCA2基因上。在家族性乳腺癌中,BRCA1突变频率(11.4%)高于BRCA2基因(2.9%)。结论新发现的2个BRCA1基因的拼接点突变可能是中国上海人群家族性乳腺癌的特有突变位点;在我国上海地区人群中,BRCA1基因突变起着比BRCA2基因更大的作用;该研究丰富了中国人群中BRCA基因的突变谱,并为未来的临床基因检测提供了筛查模式。  相似文献   

14.
We screened index cases from 410 Spanish breast/ovarian cancer families and 214 patients (19 of them males) with breast cancer for germ-line mutations in the BRCA1 and BRCA2 genes, using SSCP, PTT, CSGE, DGGE, and direct sequencing. We identified 60 mutations in BRCA1 and 53 in BRCA2. Of the 53 distinct mutations observed, 11 are novel and 12 have been reported only in Spanish families (41.5%). The prevalence of mutations in this set of families was 26.3%, but the percentage was higher in the families with breast and ovarian cancer (52.1%). The lowest proportion of mutations was found in the site-specific female breast cancer families (15.4%). Of the families with male breast cancer cases, 59.1% presented mutations in the BRCA2 gene. We found a higher frequency of ovarian cancer associated with mutations localized in the 5' end of the BRCA1 gene, but there was no association between the prevalence of this type of cancer and mutations situated in the ovarian cancer cluster region (OCCR) region of exon 11 of the BRCA2 gene. The mutations 187_188delAG, 330A>G, 5236G>A, 5242C>A, and 589_590del (numbered after GenBank U14680) account for 46.6% of BRCA1 detected mutations whereas 3036_3039del, 6857_6858del, 9254_9258del, and 9538_9539del (numbered after GenBank U43746) account for 56.6% of the BRCA2 mutations. The BRCA1 330A>G has a Galician origin (northwest Spain), and BRCA2 6857_6858del and 9254_9258del probably originated in Catalonia (northeast Spain). Knowledge of the spectrum of mutations and their geographical distribution in Spain will allow a more effective detection strategy in countries with large Spanish populations.  相似文献   

15.
Mutations in the proteolipid protein 1 (PLP1) gene cause the X-linked dysmyelinating diseases Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia 2 (SPG2). We examined the severity of the following mutations that were suspected of affecting levels of PLP1 and DM20 RNA, the alternatively spliced products of PLP1: c.453G>A, c.453G>T, c.453G>C, c.453+2T>C, c.453+4A>G, c.347C>A, and c.453+28_+46del (the old nomenclature did not include the methionine codon: G450A, G450T, G450C, IVS3+2T>C, IVS3+4A>G, C344A, and IVS3+28-+46del). These mutations were evaluated by information theory-based analysis and compared with mRNA expression of the alternatively spliced products. The results are discussed relative to the clinical severity of disease. We conclude that the observed PLP1 and DM20 splicing patterns correlated well with predictions of information theory-based analysis, and that the relative strength of the PLP1 and DM20 donor splice sites plays an important role in PLP1 alternative splicing.  相似文献   

16.
Sixty high-risk breast and/or ovarian cancer families from North-Eastern Poland were screened for germline mutations in BRCA1 (MIM# 113705) and BRCA2 (MIM# 600185), using a combination of protein truncation test, denaturing high-performance liquid chromatography and direct sequencing. Sixteen (27%) of the families were found to carry nine different BRCA mutations, including 14 families with BRCA1 mutation and two families with BRCA2 mutation. The results suggest the presence of two strong BRCA1 founder mutations in the Polish population - 5382insC (6 families) and 300T>G (Cys61Gly; 3 families). The remaining seven mutations were found in single families and included three previously reported BRCA1 mutations (185delAG, 2682C>T [Gln855Ter] and 3819del5), a novel BRCA1 mutation (IVS14+1G>A), as well as two BRCA2 mutations (4088delA and 7985G>A [Trp2586Ter]) not previously observed in Polish families. We confirm the strong influence of two Central-Eastern European BRCA1 founder mutations in familial breast and/or ovarian cancer in Poland. We also conclude that the Polish population has a more dispersed BRCA mutation spectrum than had been earlier thought. This warrants further careful BRCA mutation screening in order to optimise genetic counselling and disease prevention in affected families.  相似文献   

17.

Background

A large number of distinct mutations in the BRCA1 and BRCA2 genes have been reported worldwide, but little is known regarding the role of these inherited susceptibility genes in breast cancer risk among Indian women. We investigated the distribution and the nature of BRCA1 and BRCA2 germline mutations and polymorphisms in a cohort of 204 Indian breast cancer patients and 140 age-matched controls.

Method

Cases were selected with regard to early onset disease (≤40 years) and family history of breast and ovarian cancer. Two hundred four breast cancer cases along with 140 age-matched controls were analyzed for mutations. All coding regions and exon-intron boundaries of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis followed by direct sequencing of detected variants.

Results

In total, 18 genetic alterations were identified. Three deleterious frame-shift mutations (185delAG in exon 2; 4184del4 and 3596del4 in exon 11) were identified in BRCA1, along with one missense mutation (K1667R), one 5'UTR alteration (22C>G), three intronic variants (IVS10-12delG, IVS13+2T>C, IVS7+38T>C) and one silent substitution (5154C>T). Similarly three pathogenic protein-truncating mutations (6376insAA in exon 11, 8576insC in exon19, and 9999delA in exon 27) along with one missense mutation (A2951T), four intronic alterations (IVS2+90T>A, IVS7+75A>T, IVS8+56C>T, IVS25+58insG) and one silent substitution (1593A>G) were identified in BRCA2. Four previously reported polymorphisms (K1183R, S1613G, and M1652I in BRCA1, and 7470A>G in BRCA2) were detected in both controls and breast cancer patients. Rare BRCA1/2 sequence alterations were observed in 15 out of 105 (14.2%) early-onset cases without family history and 11.7% (4/34) breast cancer cases with family history. Of these, six were pathogenic protein truncating mutations. In addition, several variants of uncertain clinical significance were identified. Among these are two missense variants, one alteration of a consensus splice donor sequence, and a variant that potentially disrupts translational initiation.

Conclusion

BRCA1 and BRCA2 mutations appear to account for a lower proportion of breast cancer patients at increased risk of harboring such mutations in Northern India (6/204, 2.9%) than has been reported in other populations. However, given the limited extent of reported family history among these patients, the observed mutation frequency is not dissimilar from that reported in other cohorts of early onset breast cancer patients. Several of the identified mutations are unique and novel to Indian patients.  相似文献   

18.
Since the identification of the BRCA1 and BRCA2 genes (MIM#s 113705 and 600185), more than hundred different mutations throughout both genes have been reported. Recurrent mutations are rare and mainly due to founder effects. We analyzed 12 sporadic female patients with breast cancer before age 35, as well as 16 unrelated families, presenting with either (i) at least 3 first degree relatives with breast and/or ovarian cancer diagnosed at any age, or (ii) at least 2 first and/or second degree relatives with breast and/or ovarian cancer before age 45 years. We performed a protein truncation test for BRCA1 exon 11 and BRCA2 exons 10 and 11 and heteroduplex analysis for all the remaining exons of BRCA1 and 2. Presence of genomic deletions encompassing exons 13 or 22 of BRCA1, known to be Dutch founder mutations, was investigated by PCR. In 6/16 (37.5%) unrelated families the causal mutation in either the BRCA1 or BRCA2 gene was identified. Four different mutations were found in the BRCA1 gene: IVS5+3A>G (intron 5), 1191delC (exon 11), R1443X (exon 13), IVS22+5G>A (intron 22) and two in the BRCA2 gene: 6503delTT (exon 11), 6831delTG (exon 11). 1191delC (BRCA1) and 6831delTG (BRCA2) are novel mutations. IVS5+3A>G in exon 5 of BRCA1 published by Peelen et al. (1997) as a novel Belgian mutation, was identified in one additional family, not fulfilling our inclusion criteria. In the group of 12 sporadic female patients no mutations were found.  相似文献   

19.
BRCA1 and BRCA2 mutations underlie a substantial proportion of all hereditary breast cancer. The mutational spectrum in these genes is very broad, with hundreds of different BRCA mutations reported worldwide. However, high frequency founder mutations make up a substantial fraction of all mutations in some ethnic groups. We directly sequenced BRCA1 and BRCA2 in 35 Spanish breast/ovarian cancer families and found 13 mutations of which 3 had been reported previously in Spain. The ten novel mutations are: IVS5+1 G>A, 1491delA, Leu1086Ter, and Gln895Ter in BRCA1; Glu49Ter, 5373delGTAT, 5947delCTCT, 6672delTA, 8281insA, and Pro3039Leu (which also involves a splice site) in BRCA2. Our data, in combination with previous reports, indicate that 14 mutations have been seen recurrently in Spanish families. Analyzing these 14 mutations in 42 previously untested breast/ovarian cancer families revealed only two families testing positive, one for BRCA1 185delAG and one for BRCA2 9254delATCAT. While several mutations have been found recurrently in Spain, none appear to be high frequency founder mutations based on studies of breast and ovarian cancer families.  相似文献   

20.
Mutations in the BRCA1 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intron-exon boundaries, precluding the identification of mutations in noncoding and untranslated regions (UTR). As 3'UTR mutations can influence cancer susceptibility by altering protein and microRNA (miRNA) binding regions, we screened the BRCA1 3'UTR for mutations in a large series of BRCA-mutation negative, population and clinic-based breast cancer cases, and controls. Fifteen novel BRCA1 3'UTR variants were identified, the majority of which were unique to either cases or controls. Using luciferase reporter assays, three variants found in cases, c.* 528G>C, c.* 718A>G, and c.* 1271T>C and four found in controls, c.* 309T>C, c.* 379G>A, c.* 823C>T, and c.* 264C>T, reduced 3'UTR activity (P < 0.02), whereas two variants found in cases, c.* 291C>T and c.* 1139G>T, increased 3'UTR activity (P < 0.01). Three case variants, c.* 718A>G, c.* 800T>C, and c.* 1340_1342delTGT, were predicted to create new miRNA binding sites and c.* 1340_1342delTGT caused a reduction (25%, P = 0.0007) in 3'UTR reporter activity when coexpressed with the predicted targeting miRNA, miR-103. This is the most comprehensive identification and analysis of BRCA1 3'UTR variants published to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号