首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By voltage clamping presynaptic cell L10 and using pharmacologic separation techniques, we have analyzed the specific ionic currents in the presynaptic cell that correlate with presynaptic inhibition while assaying transmitter release with intracellular recordings from postsynaptic cells. We have found that presynaptic inhibition can be elicited in conditions in which the Na+ and the various K+ channels are pharmacologically blocked and depolarizing current pulses produce only an inward Ca2+ current. Both inward currents and tail currents at and above the K+ reversal potential were always less inward during presynaptic inhibition. The changes in conductance associated with presynaptic inhibition were voltage sensitive and paralleled the voltage sensitivity of the Ca2+ channel. We therefore conclude that presynaptic inhibition is caused by a direct transmitter-mediated decreased of presynaptic Ca2+-channel conductance.  相似文献   

2.
Actions of FRC8653 on the macroscopic and unitary Ba2+ currents were studied using the rabbit basilar artery. Application of (+/-)-FRC8653 (less than 1 microM) increased the amplitude of the inward current when depolarization pulses more negative than -10 mV were applied but inhibited it when depolarization was more positive than 0 mV (in each case from a holding potential of -80 mV). At a holding potential of -40 mV, (+/-)-FRC8653 (greater than 0.1 nM) consistently inhibited the inward current. (-)-FRC8653 (greater than 1 nM) inhibited the amplitude of the inward current evoked by a depolarizing pulse more positive than -10 mV (the holding potential being -80 mV). At the holding potential of -80 mV, but not at -40 mV, (+)-FRC8653 (1 microM) enhanced the current amplitude evoked by a depolarizing pulse more negative than -10 mV but inhibited the current evoked by a pulse more positive than 0 mV. (+/-)-FRC8653 shifted the voltage-dependent inhibition curves to the left, and the slope of the curve became steeper (test pulse of +10 mV). Two types of single Ca2+ channel currents (12 and 23 pS) were recorded from the basilar artery by the cell-attached patch-clamp method. Opening of the 12-pS channel occurred with a depolarizing pulse (-20 mV) from a holding potential of -80 mV, but not from one of -60 mV. (+)-FRC8653 activated, and (-)-FRC8653 inhibited, the 23-pS channel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Behavioral sensitization of the gill-withdrawal reflex of Aplysia is caused by presynaptic facilitation at the synapses of the mechanoreceptor sensory neurons of the reflex onto the motor neurons and interneurons. The presynaptic facilitation has been shown to be simulated by serotonin (the putative presynaptic facilitatory transmitter) and by cyclic AMP and to be accompanied by an increase in the Ca2+ current of sensory neuron cell bodies exposed to tetraethylammonium. This increase in the Ca2+ current could result from either a direct action on the Ca2+ channel or an action on an opposing K+ current. Here we report voltage clamp experiments which indicate that the increase in Ca2+ current associated with presynaptic facilitation results from a decrease in a K+ current. Stimulation of the connective (the pathway that mediates sensitization) or application of serotonin causes a decrease in a voltage-sensitive, steady-state outward current measured under voltage clamp as well as an increase in the transient net inward and a decrease in the transient outward currents elicited by brief depolarizing command steps. The reversal potential of the steady-state synaptic current is sensitive to extracellular K+ concentration, and both the steady-state synaptic current and the changes in the transient currents are blocked by K+ current blocking agents and by washout of K+. These results suggest that serotonin and the natural transmitter released by connective stimulation act to decrease a voltage-sensitive K+ current. The decrease in K+ current prolongs the action potential, and this in turn increases the duration of the inward Ca2+ current and thereby enhances transmitter release.  相似文献   

4.
We studied the cAMP- and Ca2(+)-activated secretory Cl- conductances in the Cl(-)-secreting colonic epithelial cell line T84 using the whole-cell patch-clamp technique. Cl- and K+ currents were measured under voltage clamp. Forskolin or cAMP increased Cl- current 2-15 times with no change in K+ current. The current-voltage relation for cAMP-activated Cl- current was linear from -100 to +100 mV and showed no time-dependent changes in current during voltage pulses. Ca2+ ionophores or increased pipette Ca2+ increased both Cl- and K+ currents 2-30 times. The Ca2(+)-activated Cl- current was outwardly rectified, activated during depolarizing voltage pulses, and inactivated during hyperpolarizing voltage pulses. Addition of ionophore after forskolin further increased Cl- conductance 1.5-5 times, and the current took on the time-dependent characteristics of that stimulated by Ca2+. Thus, cAMP and Ca2+ activate Cl- conductances with different properties, implying that these second messengers activate different Cl- channels or that they induce different conductive and kinetic states in the same Cl- channel.  相似文献   

5.
The regulation of voltage-activated Ca2+ current by acetylcholine was studied in single freshly dissociated smooth muscle cells from the stomach of the toad Bufo marinus by using the tight-seal whole-cell recording technique. Ca2+ currents were elicited by positive-going command pulses from a holding level near -80 mV in the presence of internal Cs+ to block outward K+ currents. Ca2+ current was greatest in magnitude at command potentials near 10 mV. At such command potentials, acetylcholine increased the magnitude of the inward current and slowed its decay. The effects of acetylcholine were seen in the absence of external Na+ or with low Cl- (aspartate replacement) in the bathing solution and could be mimicked by muscarine. The peak of the current-voltage relationship for the Ca2+ current was not discernibly shifted along the voltage axis by acetylcholine. These results demonstrate that activation of muscarinic receptors not only suppresses a K+ current (M-current), as we have previously demonstrated [Sims, S. M., Singer, J. J. & Walsh, J. V., Jr. (1985) J. Physiol. (London) 367, 503-529], but also increases the magnitude and slows the decay of Ca2+ current.  相似文献   

6.
The patch-clamp technique was used to study the electrophysiological properties of single smooth muscle cells obtained from the human cystic artery. These cells contracted on exposure to high K+ and had a mean resting potential of -36 +/- 7 mV. Under current clamp, regenerative responses could not be elicited when depolarizing pulses were applied. Voltage-clamp measurements demonstrated that a large fraction of the outward current was inhibited by tetraethylammonium (5-10 mM) or Ca2+ channel blockers and that it was enhanced by increasing [Ca2+]o, suggesting that it is a Ca(2+)-activated K+ current. In addition, spontaneous transient outward currents that were sensitive to extracellular Ca2+ were observed in some cells. In cell-attached patch-clamp recordings, Ca(2+)-activated K+ channels that had a conductance of 117 pS were consistently identified. At negative potentials (approximately -60 mV), these single-channel events deactivated completely and very quickly, suggesting that they do not control the resting membrane potential in healthy cystic artery cells. Ca2+ currents that were recorded using Ba2+ (10 mM) as the charge carrier were enhanced by the dihydropyridine agonist, Bay K 8644, and blocked by nifedipine (0.1 microM). Only one type of Ca2+ current, the L-type, could be identified in these cells. These results demonstrate that the major ionic currents in the human cystic artery are similar to other mammalian arteries and indicate that this tissue will be a useful model for studying the metabolic and pharmacological modulation of ionic currents in human vascular smooth muscle.  相似文献   

7.
The modulation of L-type voltage sensitive calcium channels in isolated guinea pig ventricular myocytes by the dihydropyridine (+)-202-791 was examined with the whole-cell voltage-clamp technique with 1.8 mM Ba or Ca as the charge carrier. Striking voltage- and use-dependent effects of the dihydropyridine calcium channel "agonist" (+)-202-791 were revealed. From a holding potential of -60 mV, depolarizing test pulses in the presence of (+)-202-791 demonstrated a concentration-dependent (EC50, 177 nM) increase in the measured peak inward barium current compared to control. In contrast, more depolarized holding potentials (greater than or equal to -30 mV) (+)-202-791 caused a biphasic effect on the peak inward current resulting in a transient enhancement followed by a steady-state block. A saturable, concentration-dependent hyperpolarizing shift in the voltage dependence of current inactivation was observed in the presence of (+)-202-791 with an EC50 of 10.2 nM. The voltage dependence of current activation was also shifted in the hyperpolarizing direction in the presence of (+)-202-791. A use-dependent relative block by (+)-202-791 was observed after repetitive depolarizing test pulses at a frequency of 2 Hz. Thus, the single enantiomer (+)-202-791 can result in either an increase in the whole cell calcium channel current (favored by hyperpolarized holding potentials and low rates of stimulation) or block of calcium channel current (favored by depolarized holding potentials and high rates of stimulation). Various combinations of (-)-202-791, a reported calcium channel antagonist, and (+)-202-791 resulted in intermediate effects on voltage sensitive calcium or barium currents compared with the presence of either enantiomer alone, and no clear cooperative interactions between the enantiomers were observed in contrast to a previous single channel study (Kokuban S, Prod'ham B, Becker C, Porzig H, Reuter H: Studies on Ca channels in intact cardiac cells: Voltage-dependent effects and cooperative interaction of dihydropyridine enantiomers. Mol Pharmacol 1986;30:571-584). The results are discussed in relation to the possible presence of multiple dihydropyridine receptors associated with the voltage sensitive calcium channel.  相似文献   

8.
Noxious stimulation of the tail of Aplysia californica produces behavioral sensitization; it enhances several related defensive reflexes. This reflex enhancement involves heterosynaptic facilitation of transmitter release from sensory neurons of the reflex. The facilitation is stimulated by serotonin (5-HT) and involves suppression of a 5-HT-sensitive K+ current (the S current). Suppression of the S current broadens the action potential of the sensory neurons and is thought to enhance transmitter release by prolonging entry of Ca2+ in the presynaptic terminals. We now report a component of enhanced Ca2+ accumulation that is independent of changes in spike shape. We have measured intracellular free Ca2+ transients during long depolarizing steps in voltage-clamped sensory neuron cell bodies injected with the Ca2+-sensitive dye arsenazo III. The free Ca2+ transients elicited by a range of depolarizing voltage-clamp steps increase in amplitude by 75% following application of 5-HT. Since it is observed under voltage-clamp conditions, this increase in the free Ca2+ transients is not merely secondary to the changes in K+ current but must reflect an additional mechanism, an intrinsic change in the handling of Ca2+ by the cell. We have not yet determined whether this change in Ca2+ handling reflects an increase in Ca2+ influx, a reduction in intracellular Ca2+ uptake, or a release of Ca2+ from intracellular stores. Regardless of the underlying mechanism, however, it seems possible that the enhancement of Ca2+ accumulation and the reduction in K+ current act synergistically in producing short-term presynaptic facilitation. Alternatively, this additional modulation of Ca2+ by 5-HT might contribute to processes such as classical conditioning or long-term sensitization that may depend on Ca2+.  相似文献   

9.
Effects of intracellularly perfused ATP, and extracellularly applied cyanide and 2-deoxy-D-glucose, on fast and slow Ca2+ channel currents of isolated single vascular smooth muscle cells were investigated by a whole-cell voltage-clamp method combined with an intracellular perfusion technique. Single smooth muscle cells were prepared by collagenase treatment from guinea pig small mesenteric arteries (diameter of less than 300 micron). With Cs+-rich solution in the pipette and isotonic Ba2+ solution (100 mM) in the bath, depolarizing pulses evoked two types of the Ca2+ channel current. Depolarizing pulses from the holding potential of -80 mV to over -30 mV evoked a fast Ca2+ channel current. This fast component was inhibited by shifting the holding potential in a positive direction. With a holding potential of -40 mV, the fast component was almost inhibited. In contrast, the slow current was evoked by command potentials to above -10 mV, and its full amplitude was preserved at the holding potential of -40 mV. Without ATP in the pipette, the fast current was dominant. Increase in the ATP concentration in the pipette (0.3 to 5 mM) enhanced the slow current but did not affect the fast current. Maximum enhancement of the slow current was observed at 5 mM ATP. Increase in ATP concentration, however, did not modify the shape of the current trace and the steady state inactivation curve of the slow current. Maximum amplitudes of the fast current and slow current recorded with 5 mM ATP averaged 17.4 pA (SD of 10.4 pA, n = 30; observed at -10 mV to +10 mV) and 141.8 pA (SD of 27.1 pA, n = 30; observed at +30 mV to +40 mV), respectively. Presence of CN- and 2-deoxy-D-glucose (without glucose) in the bath, and absence of ATP in the pipette, abolished the slow current within 10 minutes; in contrast, it took more than 10 minutes to depress the fast current. The inhibitory effect of CN- and 2-deoxy-D-glucose on the slow current was reduced by intracellular application of ATP. In summary, the activation of the slow Ca2+ channel required physiological concentration of ATP, whereas the fast channel current was preserved, even under ATP-free conditions. These results indicate that only the slow current is a metabolically dependent Ca2+ channel current in these vascular smooth muscle cells.  相似文献   

10.
家兔心室肌细胞的非特异性阳离子流   总被引:1,自引:0,他引:1  
目的已知有多种离子流参与动作电位的复极过程,而每种复极电流的特性及大小因动物的种属不同而不同,电流对复极所起作用的大小也不同。家兔心室肌细胞的Ito属于慢失活的电流,它几乎贯穿于整个复极相,这导致兔心室肌的复极过程非常复杂。本研究以家兔为研究对象,探索兔心室肌上是否存在其他复极电流,并研究它的特性,推测其在致、抗心律失常中的作用。方法应用全细胞膜片钳制技术记录兔心室肌单细胞电流。结果研究发现兔的心室肌细胞存在非特异性阳离子流:当电极内外液中的K^+用Cs^+替代后,去极化电位引发一组非时间依赖性电流,这种电流可以被Gd^3+(非特异性阳离子流的有效阻断剂)阻断。当从灌流液中去掉Ca^2+、Mg^2+后,这种电流的幅值在+60mV时增加40%~116%;当在灌流液中加入20μmol/L的胰岛素后,这种电流的幅值在+60mV时增加30%~60%。结论兔的心室肌细胞存在非特异性阳离子流,鉴于它快激活、无失活并呈电压依赖性,我们推测这种电流对动作电位的各个时相包括兔心室肌的静息膜电位都有重要的影响,特别是动作电位的复极阶段。可以设想,在某些病理生理条件下,该通道的通透性可能会发生改变,这将导致心律失常的发生,或者抗心律失常。  相似文献   

11.
ATP-sensitive K(+) (K(ATP)) channels are broadly distributed in the vasculature and regulate arterial tone. These channels are inhibited by intracellular ATP ([ATP](i)) and vasoconstrictor agents and can be activated by vasodilators. It is widely assumed that K(ATP) channels are insensitive to Ca(2+), although regulation has not been examined in the intact cell where cytosolic regulatory processes may be important. Thus we investigated the effects of Ca(2+) on whole-cell K(ATP) current in rat aortic smooth muscle cells recorded in a physiological [ATP](i) and K(+) gradient. Under control recording conditions, cells had a resting potential of approximately -40 mV when bathed in 1.8 mmol/L Ca(2+). The K(ATP) channel inhibitor glibenclamide caused membrane depolarization (9 mV) and inhibited a small, time-independent background current. Reducing [ATP](i) from 3 to 0.1 mmol/L hyperpolarized cells to approximately -60 mV and increased glibenclamide-sensitive current by 2- to 4-fold. Similar effects were observed when Ca(2+) levels were decreased either externally or internally by increasing EGTA from 1 to 10 mmol/L. Dialysis with solutions containing different free [Ca(2+)](i) showed that K(ATP) current was maximally activated at 10 nmol/L [Ca(2+)](i) and almost totally inhibited at 300 nmol/L. Moreover, under control conditions, when rat aortic smooth muscle cells were dialyzed with either cyclosporin A, FK-506, or calcineurin autoinhibitory peptide (structurally unrelated inhibitors of Ca(2+)-dependent protein phosphatase, type 2B), glibenclamide-sensitive currents were large and the resting potential was hyperpolarized by approximately 20 to 25 mV. We report for the first time that K(ATP) channels can be modulated by Ca(2+) at physiological [ATP](i) and conclude that modulation occurs via protein phosphatase type 2B.  相似文献   

12.
Summary This study was aimed to assess the relationship among the voltage-dependent processes underlying the excitation-contraction coupling, viz. force restitution (FR), transmembrane Ca fluxes and Ca release. The experiments (n=22) were performed on voltage-clamped dog trabeculae in which force and slow inward current were measured. Standard steady-state was achieved by clamp driving at 0.5 Hz, 300 ms, 70 mV depolarizing pulses from holding=resting potential at 30°C. Voltage and duration of single pulses and intervals in between were varied according to five protocols.The voltage dependence of Ca release was tested by varying single pulses at equal steady-state, i.e., at equal Ca availability. Contractions could be elicited in absence of ICa (20–30 mV step) and in the presence of disproportionately small ICa (above 80 mV).The voltage dependence of Ca availability for the release was tested by constant test pulses following either a variable conditioning clamp pulse or a period of rest at a variable voltage. After a low voltage pulse and, hence, depressed or absent ICa, the test contraction is diminished in presence of normal or even augmented Isi at any test interval (i.e., FR is depressed). Diminished Ca influx thus reduces the Ca availability of the subsequent beat. During prolonged depolarization (by 60 mV and more) a tonic response appears, but a phasic response cannot be elicited (FR is inhibited). Upon subsequent repolarization FR starts from zero and is significantly enhanced.It is concluded that, during depolarization, Ca release channels are in an open state, thus allowing free recirculation of Ca, but no build-up of a sufficient Ca gradient at the release site.  相似文献   

13.
The Ca(2+)-current plays a prominent role in triggering excitation-contraction coupling in the mammalian heart. It is also a target of clinically important drugs such as catecholamines or Ca(2+)-channel blockers. Until now studies of Ca(2+)-channels in human ventricular myocardium have been hampered by the fact that adequate voltage control cannot be obtained in multicellular preparations. To characterize the properties of human myocardial Ca(2+)-currents, ventricular myocytes were isolated from explanted hearts of patients with end-stage heart failure undergoing cardiac transplantation. The current-voltage relation and voltage-dependent inactivation of L-type currents were similar to those in non-diseased guinea-pig myocardium. Currents could be stimulated with isoprenaline in a dose-dependent manner. When cells were superfused with a Na(+)-free solution in the presence of Tetrodotoxin, Cs+ and Tetraethylammonium to block interfering Na+ and K(+)-currents, depolarization from a holding potential of -90 mV to -80-(-)50 mV did not elicit any time-dependent inward-current. Changing the holding potential from -90 to -45 mV did not alter the current-voltage relation. We conclude that T-type Ca(2+)-currents do not seem to make a detectable contribution to the transmembrane Ca(2+)-influx and that L-type currents in human ventricular myocytes of patients with severe heart failure have characteristics that are similar to those in other mammalian species.  相似文献   

14.
Hypertension is associated with a remodeling of arterial smooth muscle K(+) channels with Ca(2+)-gated K(+) channel (BK(Ca)) activity being enhanced and voltage-gated K(+) channel (K(v)) activity depressed. Because both of these channel types are modulated by intracellular Ca(2+), we tested the hypothesis that Ca(2+) had a larger effect on both BK(Ca) and K(v) channels in arterial myocytes from hypertensive animals. Myocytes were enzymatically dispersed from small mesenteric arteries (SMA) of 12-week-old Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Using whole cell patch clamp methods, BK(Ca) and K(v) current components were determined as iberiotoxin-sensitive and -insensitive currents, respectively. The effects of Ca(2+) on these K(+) current components were determined from measurements made with 0.2 and 2 mmol/L external Ca(2+). Increasing external Ca(2+) from 0.2 to 2 mmol/L Ca(2+) increased BK(Ca) currents recorded using myocytes from both WKY rats and SHR with a larger effect in SHR. Increasing external Ca(2+) decreased K(v) currents recorded using myocytes from both WKY and SHR also with a larger effect in SHR. In other experiments, currents through voltage-gated Ca(2+) channels (Ca(v)) measured at 0.2 mmol/L external Ca(2+) were 12 +/- 2% (n = 12) of those recorded at 2 mmol/L Ca(2+) with no differences in percent effect between WKY and SHR. In isolated SMA segments, isometric force development in response to 140 mmol/L KCl at 0.2 mmol/L external Ca(2+) was about 23 +/- 6% (n = 8) of that measured at 2 mmol/L external Ca(2+). These results suggest that an increase in Ca(2+) influx through Ca(v) or in intracellular Ca(2+) secondary to an increase in external Ca(2+) augments BK(Ca) currents and inhibits K(v) currents in SMA myocytes with a larger effect in SHR compared to WKY. This mechanism may contribute to the functional remodeling of K(+) currents of arterial myocytes in hypertensive animals.  相似文献   

15.
AIMS: The hyperpolarization-activated cyclic nucleotide-gated (HCN) current I(f)/I(HCN) is generally thought to be carried by Na(+) and K(+) under physiological conditions. Recently, Ca(2+) influx through HCN channels has indirectly been postulated. However, direct functional evidence of Ca(2+) permeation through I(f)/I(HCN) is still lacking. METHODS AND RESULTS: To possibly provide direct evidence of Ca(2+) influx through I(HCN)/I(f), we performed inside-out and cell-attached single-channel recordings of heterologously expressed HCN channels and native rat and human I(f), since Ca(2+)-mediated I(f)/I(HCN) currents may not readily be recorded using the whole-cell technique. Original current traces demonstrated HCN2 Ca(2+) inward currents upon hyperpolarization with a single-channel amplitude of -0.87+/-0.06 pA, a low open probability of 3.02+/-0.48% (at -110 mV, n=6, Ca(2+) 2 mmol/L), and a Ca(2+) conductance of 8.9+/-1.2 pS. I(HCN2-Ca2+) was significantly activated by the addition of cAMP with an increase in the open probability and suppressed by the specific I(f) inhibitor ivabradine, clearly confirming that Ca(2+) influx indeed was conducted by HCN2 channels. Changing [Na(+)] (10 vs. 100 mmol/L) in the presence or absence of 2 mmol/L Ca(2+) caused a simple shift of the reversal potential along the voltage axis without significantly affecting Na(+)/Ca(2+) conductance, whereas the K(+) conductance of HCN2 increased significantly in the absence of external Ca(2+) with increasing K(+) concentrations. The mixed K(+)-Ca(2+) conductance, however, was unaffected by the external K(+) concentration. Notably, we could also record hyperpolarization-activated Ca(2+) permeation of single native I(f) channels in neonatal rat ventriculocytes and human atrial myocytes in the presence of blockers for all known cardiac calcium conduction pores (Ca(2+) conductance of human I(f), 9.19+/-0.34 pS; amplitude, -0.81+/-0.01 pA; open probability, 1.05+/-0.61% at -90 mV). CONCLUSION: We directly show Ca(2+) permeability of native rat and, more importantly, human I(f) at physiological extracellular Ca(2+) concentrations at the physiological resting membrane potential. This might have particular implications in diseased states with increased I(f) density and HCN expression.  相似文献   

16.
Hypochlorous acid (HOCl) is a toxic oxidant produced by neutrophils at sites of cardiac inflammation. To examine the effect of this oxidant on Ca2+ homeostasis in the heart, isolated rabbit ventricular myocytes were iontophoretically loaded with the Ca2+ indicator fura 2 and superfused with 100 microM HOCl under voltage-clamp conditions. Ca2+ transients and the corresponding Ca2+ currents were elicited by 300-msec depolarizing pulses from -40 to 0 mV. Within 200 seconds after HOCl addition, the amplitude of the Ca2+ transients was reduced from 402 +/- 89 to 82 +/- 29 nM (p less than 0.01) while intracellular free ([Ca2+]i increased from 78 +/- 16 to 265 +/- 48 nM (p less than 0.01). During this time, the amplitude of the slow inward currents increased by 10%, while steady-state holding current remained stable. This sustained steady-state rise in [Ca2+]i occurred even in the absence of extracellular Ca2+ but was virtually abolished by a 20-second preexposure to 10 mM caffeine, suggesting that the major source of this Ca2+ was the sarcoplasmic reticulum. Although washout of HOCl failed to induce recovery, subsequent exposure to the dithiol reducing agent dithiothreitol caused a rapid restoration of both the steady-state [Ca2+]i and Ca2+ transient amplitude. We conclude that 1) HOCl caused a rise of [Ca2+]i by inducing the release of Ca2+ from internal stores and impairing cellular extrusion mechanisms and 2) these effects occur through alteration of protein thiol redox status.  相似文献   

17.
Openings of single L-type Ca2+ channels following repolarization to negative membrane potentials from a depolarizing step (repolarization openings, ROs) have been described previously in brain cell preparations. However, these ROs have been reported to occur only infrequently. Here we report that the frequency of ROs in cell-attached patches of cultured rat hippocampal neurons can be increased dramatically by lowering the pipette Ba2+ concentration to 20 mM from the usual 90-110 mM. This increased opening probability can last for hundreds to thousands of milliseconds following repolarization. Current-voltage analyses of open probability show that the depolarization pulse threshold for inducing ROs in 20 mM Ba2+ is -10 to 0 mV but that the probability of ROs reaches maximal levels following depolarizing pulses that approach the apparent null (equilibrium) potential for Ba2+. Comparable current-voltage curves in 110 mM Ba2+ from a more positive holding potential (-50 mV) indicate that membrane surface charge screening accounts for some, but not all, of the effect of lowering the Ba2+ concentration. Consequently, current-dependent inactivation or some other ion-dependent mechanism (e.g., ion binding inside the pore) also appears to regulate this potentially major pathway of Ca2+ entry. A high probability of ROs also can be induced under relatively physiological conditions (5-ms depolarizing steps, 2-5 mM Ca2+ in the pipette). Thus, the high open probability state at negative potentials may underlie the long Ca2+ tail currents in hippocampus that were described previously and appears to have major implications for physiological functions (e.g., the slow Ca(2+)-dependent afterhyperpolarization), particularly in brain neurons.  相似文献   

18.
During paroxysmal neocortical oscillations, sudden depolarization leading to the next cycle occurs when the majority of cortical neurons are hyperpolarized. Both the Ca(2+)-dependent K(+) currents (I(K(Ca))) and disfacilitation play critical roles in the generation of hyperpolarizing potentials. In vivo experiments and computational models are used here to investigate whether the hyperpolarization-activated depolarizing current (I(h)) in cortical neurons also contributes to the generation of paroxysmal onsets. Hyperpolarizing current pulses revealed a depolarizing sag in approximately 20% of cortical neurons. Intracellular recordings from glial cells indirectly indicated an increase in extracellular potassium concentration ([K(+)](o)) during paroxysmal activities, leading to a positive shift in the reversal potential of K(+)-mediated currents, including I(h). In the paroxysmal neocortex, approximately 20% of neurons show repolarizing potentials originating from hyperpolarizations associated with depth-electroencephalogram positive waves of spike-wave complexes. The onset of these repolarizing potentials corresponds to maximal [K(+)](o) as estimated from dual simultaneous impalements from neurons and glial cells. Computational models showed how, after the increased [K(+)](o), the interplay between I(h), I(K(Ca)), and a persistent Na(+) current, I(Na(P)), could organize paroxysmal oscillations at a frequency of 2-3 Hz.  相似文献   

19.
The first recordings of neuron-like electrical activity from endocrine cells were made from fish pituitary cells. However, patch-clamping studies have predominantly utilized mammalian preparations. This study used whole-cell patch-clamping to characterize voltage-gated ionic currents of anterior pituitary cells of Oreochromis mossambicus in primary culture. Due to their importance for control of hormone secretion we emphasize analysis of calcium currents (I(Ca)), including using peptide toxins diagnostic for mammalian neuronal Ca(2+) channel types. These appear not to have been previously tested on fish endocrine cells. In balanced salines, inward currents consisted of a rapid TTX-sensitive sodium current and a smaller, slower I(Ca); there followed outward potassium currents dominated by delayed, sustained TEA-sensitive K(+) current. About half of cells tested from a holding potential (V(h)) of -90 mV showed early transient K(+) current; most cells showed a small Ca(2+)-mediated outward current. I-V plots of isolated I(Ca) with 15 mM [Ca(2+)](o) showed peak currents (up to 20 pA/pF from V(h) -90 mV) at approximately +10 mV, with approximately 60% I(Ca) for V(h) -50 mV and approximately 30% remaining at V(h) -30 mV. Plots of normalized conductance vs. voltage at several V(h)s were nearly superimposable. Well-sustained I(Ca) with predominantly Ca(2+)-dependent inactivation and inhibition of approximately 30% of total I(Ca) by nifedipine or nimodipine suggests participation of L-type channels. Each of the peptide toxins (omega-conotoxin GVIA, omega-agatoxin IVA, SNX482) alone blocked 36-54% of I(Ca). Inhibition by any of these toxins was additive to inhibition by nifedipine. Combinations of the toxins failed to produce additive effects. I(Ca) of up to 30% of total remained with any combination of inhibitors, but 0.1mM cadmium blocked all I(Ca) rapidly and reversibly. We did not find differences among cells of differing size and hormone content. Thus, I(Ca) is carried by high voltage-activated Ca(2+) channels of at least three types, but the molecular types may differ from those characterized from mammalian neurons.  相似文献   

20.
OBJECTIVE: The human radial artery has demonstrated superior long-term results as a graft in coronary bypass surgery, but undesirable post-surgical spasm limits its clinical application. Few have examined its excitatory properties, especially the underlying ion channel mechanisms. In this study, we investigated the kinetic and pharmacological properties of the smooth muscle membrane potassium currents of this important artery. METHODS AND RESULTS: Using whole cell patch-clamp techniques, we found the K(+) current to be voltage-dependent and outwardly rectifying. Voltage-dependent inactivation was observed, being half-maximal at +28.0 mV but incomplete even at +40 mV. The K(+) currents were predominantly sensitive to the K(Ca) blocker tetraethylammonium (TEA; 63.9+/-12.1% inhibition, p<0.05), less sensitive to the Kv blocker 4-aminopyridine (4-AP; 32.8+/-4.4% inhibition, p<0.05), and the K(ATP) blocker glibenclamide (28.7+/-8.5% inhibition), at -20 mV testing potential. Resting membrane potential was -52.0+/-6.8 mV (n=5), and suppression of K(+) currents by TEA and iberiotoxin (IbTx) caused membrane depolarization. Western blot analysis with channel-specific antibodies confirmed the presence of K(Ca) and Kv channel proteins. TEA evoked 20.7+/-9.9% of the contractile response to 60 mM KCl, whereas IbTx caused about 10% of the above response at 10(-7) M. The nitric oxide donor SNAP augmented membrane K(+) currents in a concentration-dependent fashion; the augmentation was completely suppressed by TEA, but was relatively insensitive to the guanylate cyclase inhibitor ODQ. CONCLUSIONS: The radial artery manifests mainly Ca(2+)-dependent K(+) currents at rest; this current is augmented by nitric oxide through a cGMP- and protein kinase G-independent action. The relatively depolarized membrane potential, as well as its muscular structure, predisposes the radial artery to spasm. Agents that activate the Ca(2+)-dependent K(+) current could be of therapeutic value in preventing post-surgical vasospasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号