首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characterization of two distinct classes of hematopoietic stem cells based on CD34 expression and the ability of human bone marrow (BM) cells to differentiate into nonhematopoietic cells introduced new levels of complexity within the stem cell compartment. Here we report the identification and purification of a rare human stem cell population with hematopoietic and hepatic potential based on the expression of a receptor for the complement molecule C1q (C1qR(p)). We show that C1qR(p) is a positive marker of all BM-repopulating stem cells because it is expressed on both CD34(-) and CD34(+) stem cells from umbilical cord blood and adult BM. In addition, we show that highly purified lineage-negative CD45(+)CD38(-)CD34(+or-)C1qR(p)(+) cells not only have BM-repopulating capacity but also can differentiate into human hepatocytes in vivo. The identification of human hepatocytes in mouse livers indicates that the NOD/SCID (nonobese diabetic/severe combined immunodeficient) mouse model can be a valuable tool to study the differentiation potential of adult human stem cells. These findings may have important scientific and clinical implications in the field of human stem cell biology and transplantation.  相似文献   

2.
We have previously reported the ability of uncharacterized human bone marrow (BM) cells to engraft into preimmune fetal sheep, thereby creating sheep-human chimera suitable for in vivo examination of the properties of human hematopoietic stem cells (HSC). Adult human bone marrow CD34+ HLA-DR- cells have been extensively characterized in vitro and have been demonstrated to contain a number of primitive hematopoietic progenitor cells (PHPC). However, the capacity of such highly purified populations of human marrow CD34+ HLA-DR- cells to undergo in vivo self-renewal and multipotential lymphohematopoietic differentiation has not been previously demonstrated. To achieve that, human CD34+ HLA-DR- cells were transplanted in utero into immunoincompetent fetal sheep to investigate the BM-populating potential of these cells. Long-term chimerism, sustained human hematopoiesis, and expression of human cells belonging to all human blood cell lineages were demonstrated in two animals for more than 7 months' posttransplantation. Chimeric BM contained erythroid, granulocytic/monocytic, and megakaryocytic hematopoietic progenitor cells, as well as the primitive high proliferative potential colony- forming cell (HPP-CFC). Under a variety of in vitro experimental conditions, chimeric BM cells gave rise to human T cells expressing T- lymphocyte-specific markers, human natural killer (NK) cells, and human IgG-producing B cells. In vivo expansion and possibly self-renewal of transplanted PHPC was confirmed by the detection in chimeric BM 130 days' posttransplantation of CD34+ HLA-DR- cells, the phenotype of human cells constituting the stem-cell graft. These studies demonstrate not only the BM-populating capacity, multipotential differentiation, and most likely self-renewal capabilities of human CD34+ HLA-DR- cells, but also that this BM population contains human HSC. Furthermore, it appears that this animal model of xenogeneic stem-cell transplantation is extremely useful for in vivo examination of human hematopoiesis and the behavioral and functional characteristics of human HSC.  相似文献   

3.
Primitive hematopoietic cells in murine bone marrow express the CD34 antigen   总被引:11,自引:5,他引:11  
Morel  F; Szilvassy  SJ; Travis  M; Chen  B; Galy  A 《Blood》1996,88(10):3774-3784
The CD34 antigen is expressed on most, if not all, human hematopoietic stem cells (HSCs) and hematopoietic progenitor cells, and its use for the enrichment of HSCs with repopulating potential is well established. However, despite homology between human and murine CD34, its expression on subsets of primitive murine hematopoietic cells has not been examined in full detail. To address this issue, we used a novel monoclonal antibody against murine CD34 (RAM34) to fractionate bone marrow (BM) cells that were then assayed in vitro and in vivo with respect to differing functional properties. A total of 4% to 17% of murine BM cells expressed CD34 at intermediate to high levels, representing a marked improvement over the resolution obtained with previously described polyclonal anti-CD34 antibodies. Sixty percent of CD34+ BM cells lacked lineage (Lin) markers expressed on mature lymphoid or myeloid cells. Eighty-five percent of Sca-1+Thy-1(10)Lin- /10 cells that are highly enriched in HSCs expressed intermediate, but not high, levels of CD34 antigen. The remainder of these phenotypically defined stem cells were CD34-. In vitro colony-forming cells, day-8 and -12 spleen colony-forming units (CFU-S), primitive progenitors able to differentiate into B lymphocytes in vitro or into T lymphocytes in SCID mice, and stem cells with radioprotective and competitive long-term repopulating activity were all markedly enriched in the CD34+ fraction after single-parameter cell sorting. In contrast, CD34-BM cells were depleted of such activities at the cell doses tested and were capable of only short-term B-cell production in vitro. The results indicate that a significant proportion of murine HSCs and multilineage progenitor cells express detectable levels of CD34, and that the RAM34 monoclonal antibody is a useful tool to subset primitive murine hematopoietic cells. These findings should facilitate more direct comparisons of the biology of CD34+ murine and human stem and progenitor cells.  相似文献   

4.
In previous studies we showed that 5 days of treatment with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) mobilized murine repopulating cells to the peripheral blood (PB) and that these cells could be efficiently transduced with retroviral vectors. We also found that, 7-14 days after cytokine treatment, the repopulating ability of murine bone marrow (BM) increased 10-fold. In this study we examined the efficiency of gene transfer into cytokine-primed murine BM cells and extended our observations to a nonhuman primate autologous transplantation model. G-CSF/SCF-primed murine BM cells collected 7-14 days after cytokine treatment were equivalent to post-5-fluorouracil BM or G-CSF/SCF-mobilized PB cells as targets for retroviral gene transfer. In nonhuman primates, CD34-enriched PB cells collected after 5 days of G-CSF/SCF treatment and CD34-enriched BM cells collected 14 days later were superior targets for retroviral gene transfer. When a clinically approved supernatant infection protocol with low-titer vector preparations was used, monkeys had up to 5% of circulating cells containing the vector for up to a year after transplantation. This relatively high level of gene transfer was confirmed by Southern blot analysis. Engraftment after transplantation using primed BM cells was more rapid than that using steady-state bone marrow, and the fraction of BM cells saving the most primitive CD34+/CD38- or CD34+/CD38dim phenotype increased 3-fold. We conclude that cytokine priming with G-CSF/SCF may allow collection of increased numbers of primitive cells from both the PB and BM that have improved susceptibility to retroviral transduction, with many potential applications in hematopoietic stem cell-directed gene therapy.  相似文献   

5.
Differentiative potential of human metanephric mesenchymal cells   总被引:19,自引:0,他引:19  
OBJECTIVE: To evaluate the ability of mesenchymal cells derived from nonhematopoietic organs to form blood and other tissues in vitro and in vivo. MATERIALS AND METHODS: Because of its mesodermic derivation, human fetal kidney was used as a source of mesenchymal cells. Two populations of kidney cells were studied at a nonclonal level: a crude preparation, and an adherent fraction that was derived from the first by propagation in vitro (MNMC). Both populations were transplanted into sheep fetuses and analyzed at intervals for the presence of human cells in different organs by flow cytometry, PCR, immunohistochemistry, and in situ hybridization. Secondary transplantation studies were performed using human hematopoietic cells obtained from the bone marrow (BM) of primary recipients. RESULTS: MNMC were Thy-1(+), CD51(+), CD44(+), CD45(-), and vimentin(+), a phenotype consistent with that of metanephric mesenchyme. The crude population displayed the same phenotype but was contaminated with 0.4% CD34(+)CD45(+) cells. Cells with hepatocyte-like morphology and phenotype were obtained from the MNMC after culture in specific inducing media. After transplantation, both populations of cells produced multilineage hematopoietic engraftment and gave rise to CD34(+) cells. Successful hematopoietic engraftment in secondary recipients demonstrated the generation of long-term engrafting hematopoietic stem cells from MNMC. PCR analysis confirmed human hematopoietic engraftment and revealed that human cells were also present within other organs. Liver sections of transplanted animals contained human albumin-producing hepatocyte-like cells. CONCLUSION: A human metanephric mesenchymal cell population simultaneously gave rise to human blood and liver-like cells, suggesting that mesenchymal cells may represent a broad population of putative stem cells in multiple adult organs.  相似文献   

6.
Keller  DC; Du  XX; Srour  EF; Hoffman  R; Williams  DA 《Blood》1993,82(5):1428-1435
Interleukin-11 (IL-11) is a bone marrow (BM) stromal-derived growth factor that has been shown to stimulate murine myeloid and lymphoid cells both in vitro and in vivo and to inhibit adipogenesis in a murine fibroblast cell line. We have studied the effects of IL-11 on highly purified human BM stem and progenitor cells and on human long-term marrow cultures (LTMC). Adipocyte differentiation is an integral component of murine and human LTMC. IL-11 stimulates myeloid growth as a single cytokine when added to highly enriched CD34+, HLA-DR+ bone marrow cells. IL-11 stimulated no growth in the more primitive CD34+, HLA-DR- population even in the presence of additional cytokines. IL-11 addition to human LTMC resulted in the expansion of myeloid and mixed, but not erythroid, progenitor populations. IL-11 dramatically increased the adherent cell populations, including both stromal cells and macrophages. Treated cultures also showed marked inhibition of fat accumulation in the adherent cells due in part to a block in the differentiation of preadipocytes to adipocytes, as shown by RNA analysis using adipocyte-specific markers. These data show that IL-11 stimulates a more differentiated, although multipotential, progenitor cell in human BM and that LTMC provide a useful model for studying the effects of this cytokine in the context of the hematopoietic microenvironment.  相似文献   

7.
Enforced expression of Hoxb4 dramatically increases the regeneration of murine hematopoietic stem cells (HSCs) after transplantation and enhances the repopulation ability of human severe combined immunodeficiency (SCID) repopulating cells. Therefore, we asked what physiologic role Hoxb4 has in hematopoiesis. A novel mouse model lacking the entire Hoxb4 gene exhibits significantly reduced cellularity in spleen and bone marrow (BM) and a subtle reduction in red blood cell counts and hemoglobin values. A mild reduction was observed in the numbers of primitive progenitors and stem cells in adult BM and fetal liver, whereas lineage distribution was normal. Although the cell cycle kinetics of primitive progenitors was normal during endogenous hematopoiesis, defects in proliferative responses of BM Lin(-) Sca1(+) c-kit(+) stem and progenitor cells were observed in culture and in vivo after the transplantation of BM and fetal liver HSCs. Quantitative analysis of mRNA from fetal liver revealed that a deficiency of Hoxb4 alone changed the expression levels of several other Hox genes and of genes involved in cell cycle regulation. In summary, the deficiency of Hoxb4 leads to hypocellularity in hematopoietic organs and impaired proliferative capacity. However, Hoxb4 is not required for the generation of HSCs or the maintenance of steady state hematopoiesis.  相似文献   

8.
The transplantation of primitive human cells into sublethally irradiated immune-deficient mice is the well-established in vivo system for the investigation of human hematopoietic stem cell function. Although mast cells are the progeny of hematopoietic stem cells, human mast cell development in mice that underwent human hematopoietic stem cell transplantation has not been reported. Here we report on human mast cell development after xenotransplantation of human hematopoietic stem cells into nonobese diabetic severe combined immunodeficient (NOD/SCID)/gamma(c)(null) (NOG) mice with severe combined immunodeficiency and interleukin 2 (IL-2) receptor gamma-chain allelic mutation. Supported by the murine environment, human mast cell clusters developed in mouse dermis, but they required more time than other forms of human cell reconstitution. In lung and gastric tract, mucosal-type mast cells containing tryptase but lacking chymase located on gastric mucosa and in alveoli, whereas connective tissue-type mast cells containing both tryptase and chymase located on gastric submucosa and around major airways, as in the human body. Mast cell development was also observed in lymph nodes, spleen, and peritoneal cavity but not in the peripheral blood. Xenotransplantation of human hematopoietic stem cells into NOG mice can be expected to result in a highly effective model for the investigation of human mast cell development and function in vivo.  相似文献   

9.
Lam BS  Cunningham C  Adams GB 《Blood》2011,117(4):1167-1175
The ability of hematopoietic stem cells (HSCs) to undergo self-renewal is partly regulated by external signals originating from the stem cell niche. Our previous studies with HSCs obtained from fetal liver of mice deficient for the calcium-sensing receptor (CaR) have shown the crucial role of this receptor in HSC lodgment and engraftment in the bone marrow (BM) endosteal niche. Using a CaR agonist, Cinacalcet, we assessed the effects of stimulating the CaR on the function of murine HSCs. Our results show that CaR stimulation increases primitive hematopoietic cell activity in vitro, including growth in stromal cell cocultures, adhesion to extracellular matrix molecules such as collagen I and fibronectin, and migration toward the chemotactic stimulus, stromal cell-derived factor 1α. Receptor stimulation also led to augmented in vivo homing, CXCR4-mediated lodgment at the endosteal niche, and engraftment capabilities. These mechanisms by which stimulating the CaR dictates preferential localization of HSCs in the BM endosteal niche provide additional insights into the fundamental interrelationship between the stem cell and its niche. These studies also have implications in the area of clinical stem cell transplantation, where ex vivo modulation of the CaR may be envisioned as a strategy to enhance HSC engraftment in the BM.  相似文献   

10.
Plasticity of marrow-derived stem cells   总被引:72,自引:0,他引:72       下载免费PDF全文
Herzog EL  Chai L  Krause DS 《Blood》2003,102(10):3483-3493
Bone marrow (BM) contains hematopoietic stem cells (HSCs), which differentiate into every type of mature blood cell; endothelial cell progenitors; and marrow stromal cells, also called mesenchymal stem cells (MSCs), which can differentiate into mature cells of multiple mesenchymal tissues including fat, bone, and cartilage. Recent findings indicate that adult BM also contains cells that can differentiate into additional mature, nonhematopoietic cells of multiple tissues including epithelial cells of the liver, kidney, lung, skin, gastrointestinal (GI) tract, and myocytes of heart and skeletal muscle. Experimental results obtained in vitro and in vivo are the subject of this review. The emphasis is on how these experiments were performed and under what conditions differentiation from bone marrow to epithelial and neural cells occurs. Questions arise regarding whether tissue injury is necessary for this differentiation and the mechanisms by which it occurs. We also consider which bone marrow subpopulations are capable of this differentiation. Only after we have a better understanding of the mechanisms involved and of the cells required for this differentiation will we be able to fully harness adult stem cell plasticity for clinical purposes.  相似文献   

11.
OBJECTIVE: Hematopoietic progenitors generated by ex vivo expansion "home" less efficiently to the bone marrow (BM) after intravenous transplantation than fresh cells. To explore the underlying cause of this transplantation defect, we examined the homing and engraftment properties in vivo of fresh and cultured marrow cells differing in beta1 integrin expression. MATERIALS AND METHODS: Fresh murine BM cells, or the expanded progeny of enriched Sca-1(+) c-kit(+)Lin(-) stem cells, were fractionated into beta1(-/lo) and beta1(+) subpopulations by cell sorting. These populations were assayed for their content of in vitro colony-forming cells (CFCs), cells able to provide radioprotection, and early and long-term multilineage hematopoietic reconstitution following transplantation into myeloablated recipients. These endpoints were correlated with the homing properties of beta1(-/lo) and beta1(+) cells that were labeled with 5- (and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE) and tracked to hematopoietic organs 24 hours after injection into lethally irradiated mice. RESULTS: Most normal stem and progenitor cells express high levels of beta1 integrin. In contrast, most clonogenic cells generated in vitro are beta1(-/lo). Consequently, expanded beta1(-/lo) progenitors failed to provide radioprotection or repopulate the hematopoietic system following intravenous transplantation. Defective engraftment of expanded cells was associated with reduced homing of beta1(-/lo) cells to the bone marrow. CONCLUSION: Downregulation of beta1 integrin on primitive hematopoietic cells during ex vivo expansion reduces their homing efficiency and negatively impacts hematopoietic reconstitution in vivo. Strategies directed at preserving beta1 integrin expression during culture may improve the clinical utility of expanded hematopoietic cells.  相似文献   

12.
Hematopoietic and mesenchymal stem cells can potentially be the same cell type or adhere simultaneously in both bone marrow (BM) and muscle. In this study, we asked whether murine BM-derived cells could be tracked in muscle tissue after BM transplantation and whether muscle-derived cells have hematopoietic potential. To answer the first question, we transplanted BM from male BALB/c mice into irradiated female recipients and analyzed for engraftment. We used quantitative polymerase chain reaction (PCR) and fluorescent in situ hybridization techniques for Y chromosome-specific gene probes. A high number of BM-derived cells were located in both the intravascular and extravascular spaces in muscle tissue after BM transplantation. To answer the second question, we analyzed colony-forming potential in vitro with soft-agar assays and the competitive engraftment potential in vivo of muscle-derived cells. Engraftment levels of male cell populations were tested by quantitative PCR. The long-term engraftment potential of muscle-derived cells was low compared with that of BM. We conclude that there is intensive cellular trafficking between BM and muscle tissue. The engraftment potential of muscle-derived stem cells into BM is low and corresponds to the low amounts of hematopoietic colony-forming cells found in muscle tissue.  相似文献   

13.
Stem Cell Plasticity in the Hematopoietic System   总被引:6,自引:0,他引:6  
Bone marrow (BM) contains hematopoietic stem cells, which differentiate into all mature blood cells, and marrow stromal cells that provide the microenvironment for hematopoietic stem/progenitor cells along with the capability to differentiate into mature cells of multiple mesenchymal tissues including fat, bone, and cartilage. Recent studies indicate that adult BM also contains cells that can differentiate into nonhematopoietic cells of ectodermal, mesodermal, and endodermal tissues other than hematopoietic tissues, including liver, pancreas, kidney, lung, skin, gastrointestinal tract, heart, skeletal muscles, and neural tissues. Studies reporting the multipotentiality of BM cells have become a focus of interest because they suggest that clinical applications could be at hand using easily obtainable cells in the treatment of tissue damage or degenerative diseases. Presently, however, definitive evidence explaining the mechanism of this multipotentiality of BM stem cells is lacking. In this review, we summarize recent progress and controversies in investigation of the multipotentiality of adult BM-derived stem cells to differentiate into nonhematopoietic tissues.  相似文献   

14.
The characterization of many cytokines involved in the control of hematopoiesis has led to intense investigation into their potential use in ex vivo culture to expand progenitor numbers. We have established the optimum ex vivo culture conditions that allow substantial amplification of transient engrafting murine stem cells and which, simultaneously, augment the ability to sustain serial bone marrow transplantation (BMT). Short-term incubation of unfractionated BM cells in liquid culture with stem cell factor (SCF) and interleukin-11 (IL- 11) produced a 50-fold amplification of clonogenic multipotential progenitors (CFU-A). Following such ex vivo expansion, substantially fewer cells were required to rescue lethally irradiated mice. When transplanted in cell doses above threshold for engraftment, BM cells expanded ex vivo resulted in significantly more rapid hematopoietic recovery. In a serial transplantation model, unmanipulated BM was only able to consistently sustain secondary BMT recipients, but BM expanded ex vivo has sustained quaternary BMT recipients that remain alive and well more than 140 days after 4th degree BMT. These results show augmentation of both short-term recovery posttransplant and the ability to serially transplant marrow by preincubation in culture with SCF and IL-11.  相似文献   

15.
SSEA-4 identifies mesenchymal stem cells from bone marrow   总被引:18,自引:0,他引:18  
Adult bone marrow (BM) contains hematopoietic stem cells (HSCs) as well as a nonhematopoietic, stromal cell population. Within this stromal population are mesenchymal stem cells (MSCs), which not only support hematopoiesis but also differentiate into multiple lineages, including fat, bone, and cartilage. Because of this multipotentiality, the MSC is an attractive candidate for clinical applications to repair or regenerate damaged tissues of mesenchymal origin. However, research progress has been hampered by the limited existing knowledge of the biology of these cells, particularly by the lack of a suitable marker for their prospective isolation. Here, we report that SSEA-4, an early embryonic glycolipid antigen commonly used as a marker for undifferentiated pluripotent human embryonic stem cells and cleavage to blastocyst stage embryos, also identifies the adult mesenchymal stem cell population.  相似文献   

16.
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that have emerged as a promising tool for clinical application. Further clinical interest has been raised by the observation that MSCs are immunoprivileged and, more important, display immunosuppressive capacities. These properties may be of therapeutic value in allogeneic transplantation to prevent graft rejection and to prevent and treat graft-versus-host disease. In the present study, we examined the in vivo immunomodulatory properties of MSCs in murine models of allogeneic bone marrow (BM) transplantation. Sublethally irradiated recipients received allogeneic BM with or without host or donor MSCs. The addition of host MSCs significantly enhanced the long-term engraftment associated with tolerance to host and donor antigens. However, the infusion of donor MSCs was associated with significantly increased rejection of allogeneic donor BM cells. Moreover, we showed that the injection of merely allogeneic donor MSCs in naive mice was sufficient to induce a memory T-cell response. Although the observed engraftment-promoting effects of host MSCs in vivo support the therapeutic potential of MSCs, our results also indicate that allogeneic MSCs are not intrinsically immunoprivileged and that under appropriate conditions, allogeneic MSCs induce a memory T-cell response resulting in rejection of an allogeneic stem cell graft.  相似文献   

17.
To overcome the limitations of allogeneic hematopoietic stem cell transplantation (HSCT), we conducted a study to identify a strategy for enhancing hematopoietic stem cell (HSC) engraftment during HSCT. Co-transplantation experiments with mesenchymal stem cells (MSCs) derived from adult human tissues including bone marrow (BM), adipose tissue (AT), and umbilical cord blood (CB) were conducted. We showed that AT-MSCs and CB-MSCs enhanced the engraftment of HSCs as effectively as BM-MSCs in NOD/SCID mice, suggesting that AT-MSCs and CB-MSCs can be used as alternative stem cell sources for enhancing the engraftment and homing of HSCs. CB-MSCs derived from different donors showed different degrees of efficacy in enhancing the engraftment of HSCs. The most effective CB-MSCs showed higher proliferation rates and secreted more MCP-1, RANTES, EGF, and VEGF. Our results suggest that AT-MSCs and CB-MSCs could be alternative stem cell sources for co-transplantation in HSCT. Furthermore, in terms of MSCs’ heterogeneity, characteristics of each population of MSCs are considerable factors for selecting MSCs suitable for co-transplantation with HSC.  相似文献   

18.
The most common human cell-based therapy applied today is hematopoietic stem cell (HSC) transplantation. Currently, human bone marrow, mobilized peripheral blood, and umbilical cord blood represent the major sources of transplantable HSCs, but their availability for use is limited by both compatibility between donor and recipient and required quantity. Although increasing evidence suggests that somatic HSCs can be expanded to meet current needs, their in vivo potential is concomitantly compromised after ex vivo culture. In contrast, human embryonic stem cells (hESC) possess indefinite proliferative capacity in vitro and have been shown to differentiate into the hematopoietic cell fate, giving rise to erythroid, myeloid, and lymphoid lineages using a variety of differentiation procedures. Human ESC-derived hematopoietic cells emerge from a subset of embryonic endothelium expressing PECAM-1, Flk-1, and VE-Cadherin, but lacking CD45 (CD45negPFV). These CD45negPFV precursors are exclusively responsible for hematopoietic potential of differentiated hESCs. hESC-derived hematopoietic cells show similar clonogenic capacity and primitive phenotype to somatic sources of hematopoietic progenitors and possess limited in vivo repopulating capacity in immunodeficient mice, suggestive of HSC function. Here, we will review current progress in studies of hESC-derived hematopoietic cells and discuss the potential precincts and applications.  相似文献   

19.
OBJECTIVE: To compare the ability of allogeneic versus autologous purified human Stro-1(+) mesenchymal stem cell (MSC) populations from different human donors to support the ex vivo expansion and maintenance of human hematopoietic stem/progenitor cells (HSCs). Furthermore, we compared the results obtained with MSC as a feeder layer to traditional allogeneic stromal layers grown in long-term bone marrow culture media (LT-ST). METHODS: Adult human bone marrow CD34(+)-enriched cells were cultured in serum-free medium for 2 to 3 weeks over the respective MSC-irradiated feeder layers or over traditional allogeneic LT- ST stromal layers in the presence of stem cell factor, basic fibroblast growth factor, leukemia inhibitory factor, and Flt-3 and analyzed every 2 to 4 days for expansion, phenotype, and clonogenic ability. RESULTS: There was a progressive expansion of total numbers of cells in all the experimental groups; however, allogeneic MSCs were more efficient at expanding CD34(+)CD38(-) cells and showed a higher clonogenic potential than both allogeneic LT-ST and autologous MSCs. The differentiative potential of cells cultured on both MSC and LT-ST was primarily shifted toward myeloid lineage; however, only MSCs were able to maintain/expand a CD7(+) population with lymphocytic potential. Importantly, transplantation into preimmune fetal sheep demonstrated that the HSCs cultured over MSCs retained their engraftment capability. CONCLUSION: These results indicate that purified Stro-1(+) MSCs may be used as a universal and reproducible stromal feeder layer to efficiently expand and maintain human bone marrow HSCs ex vivo.  相似文献   

20.
Liu YJ  Lu SH  Xu B  Yang RC  Ren Q  Liu B  Li B  Lu M  Yan FY  Han ZB  Han ZC 《Blood》2004,103(12):4449-4456
The cells of hematopoietic and vascular endothelial cell lineages are believed to share a common precursor, termed hemangioblast. However, the existence of a growth factor acting relatively specifically on hemangioblasts remains unclear. Here we report the identification of hemangiopoietin (HAPO), a novel growth factor acting on both hematopoietic and endothelial cell lineages. In vitro in the human system, recombinant human HAPO (rhHAPO) significantly stimulated the proliferation and hematopoietic and/or endothelial differentiation of human bone marrow mononuclear cells and of purified CD34+, CD133+, kinase domain receptor-positive (KDR+), or CD34+/KDR+ cell populations. In the murine system, rhHAPO stimulated the proliferation of long-term culture-initiating cells (LTC-ICs) as well as CD34+ and stem cell antigen-1 (Sca-1+) cell subsets. In vivo, subcutaneous injection of rhHAPO into normal mice resulted in a significant increase in bone marrow hematopoietic cells. Furthermore, irradiated mice injected with rhHAPO had an enhanced survival rate and accelerated hematopoiesis. Our data suggest that HAPO is a novel growth factor acting on the primitive cells of both hematopoietic and endothelial cell lineages and that HAPO may have a clinical potential in the treatment of various cytopenias and radiation injury and in the expansion of hematopoietic and endothelial stem/progenitor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号