首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we describe the “temporal lens” concept that can be used for the focus and magnification of ultrashort electron packets in the time domain. The temporal lenses are created by appropriately synthesizing optical pulses that interact with electrons through the ponderomotive force. With such an arrangement, a temporal lens equation with a form identical to that of conventional light optics is derived. The analog of ray diagrams, but for electrons, are constructed to help the visualization of the process of compressing electron packets. It is shown that such temporal lenses not only compensate for electron pulse broadening due to velocity dispersion but also allow compression of the packets to durations much shorter than their initial widths. With these capabilities, ultrafast electron diffraction and microscopy can be extended to new domains,and, just as importantly, electron pulses can be delivered directly on an ultrafast techniques target specimen.  相似文献   

2.
Electron microscopy is arguably the most powerful tool for spatial imaging of structures. As such, 2D and 3D microscopies provide static structures with subnanometer and increasingly with ångstrom-scale spatial resolution. Here we report the development of 4D ultrafast electron microscopy, whose capability imparts another dimension to imaging in general and to dynamics in particular. We demonstrate its versatility by recording images and diffraction patterns of crystalline and amorphous materials and images of biological cells. The electron packets, which were generated with femtosecond laser pulses, have a de Broglie wavelength of 0.0335 Å at 120 keV and have as low as one electron per pulse. With such few particles, doses of few electrons per square ångstrom, and ultrafast temporal duration, the long sought after but hitherto unrealized quest for ultrafast electron microscopy has been realized. Ultrafast electron microscopy should have an impact on all areas of microscopy, including biological imaging.  相似文献   

3.
In this contribution, we consider the advancement of ultrafast electron diffraction and microscopy to cover the attosecond time domain. The concept is centered on the compression of femtosecond electron packets to trains of 15-attosecond pulses by the use of the ponderomotive force in synthesized gratings of optical fields. Such attosecond electron pulses are significantly shorter than those achievable with extreme UV light sources near 25 nm ( approximately 50 eV) and have the potential for applications in the visualization of ultrafast electron dynamics, especially of atomic structures, clusters of atoms, and some materials.  相似文献   

4.
Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.  相似文献   

5.
Visualization of atomic-scale structural motion by ultrafast electron diffraction and microscopy requires electron packets of shortest duration and highest coherence. We report on the generation and application of single-electron pulses for this purpose. Photoelectric emission from metal surfaces is studied with tunable ultraviolet pulses in the femtosecond regime. The bandwidth, efficiency, coherence, and electron pulse duration are investigated in dependence on excitation wavelength, intensity, and laser bandwidth. At photon energies close to the cathode's work function, the electron pulse duration shortens significantly and approaches a threshold that is determined by interplay of the optical pulse width and the acceleration field. An optimized choice of laser wavelength and bandwidth results in sub-100-fs electron pulses. We demonstrate single-electron diffraction from polycrystalline diamond films and reveal the favorable influences of matched photon energies on the coherence volume of single-electron wave packets. We discuss the consequences of our findings for the physics of the photoelectric effect and for applications of single-electron pulses in ultrafast 4D imaging of structural dynamics.  相似文献   

6.
Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging.In 4D ultrafast electron microscopy (UEM), ultrafast light pulses generate electron packets by photoemission at the cathode of an electron microscope, and these are used to probe a dynamic process initiated by heating or exciting the microscopic specimen with a second, synchronized ultrafast light pulse (1, 2). In conventional implementations, each pump pulse on the specimen is accompanied by one suitably delayed laser pulse on the cathode to generate one packet of electrons probing a single time point in the evolution of the specimen. A record of the full course of temporal evolution of the specimen is then constructed by repeating the experiment multiple times with variation of the delay time between the two light pulses, reading out a separate CCD image for each delay time. Thus, information about different time points in the dynamic response of the specimen is obtained from different excitation events. This implementation is ideally suited for a specimen that undergoes irreversible but sufficiently well-defined dynamics to allow a new specimen area to be used for each time point (Fig. 1A), or for a specimen that recovers fully to allow repeated identical excitations of the same area (Fig. 1B); see also Methodology. The applications of these two approaches are numerous, as highlighted in a recent review account of the work (3).Open in a separate windowFig. 1.Variant implementations of UEM. (A) Single-pulse UEM, which enables single-shot imaging of homogeneous specimens. (B) Stroboscopic UEM. (D) Multiple-cathode UEM. For comparison, we include, in C, the single-cathode, deflection method. See text for details.For the study of completely nonrepetitive dynamics, for example, a stochastic process in a heterogeneous sample that does not return to its initial configuration, a series of snapshots following a single excitation event can provide the only direct and detailed view of the evolution. Observing the effects of a single excitation pulse with video-mode imaging can currently reach millisecond-scale time resolution, far short of the time scale for many phenomena of interest in nanoscale materials science, chemistry, and physics. Nanosecond resolution has been reached (4) by combining one excitation pulse with a train of light pulses on a single cathode, with deflection of the imaging electrons after passing the specimen plane to direct each successive pulse to a new region of the detector (Fig. 1C). This nanosecond method has been successfully used with a high-speed electrostatic deflector array to obtain time sequences of irreversible and stochastic processes (5, 6).Here we demonstrate a technique that removes any limit on time resolution imposed by image deflection and in a single frame enables the capture of ultrafast phenomena. With this approach, it is possible to probe and distinctly record multiple time points in a dynamic process following a single initiation pulse. The probing electron packets are all generated by a single light pulse that impinges on multiple, spatially distinct, cathode surfaces (Fig. 1D). Time separations between packets in the electron-pulse train are adjusted by the cathode spatial and electrostatic configuration. In the present application, two electron packets, generated from two source locations at the same potential and separated in time by 19 picoseconds (ps), are recorded on each CCD frame after undergoing diffraction in a gold film following femtosecond heating. The packets originate from different cathode locations, pass through the same area of the specimen, and are recorded at distinct locations on the detector, thereby encoding two different time points in the evolution of the specimen. The results obtained provide the basis for exploration of expanded application of the multiple-cathode concept.  相似文献   

7.
Reported here is direct imaging (and diffraction) by using 4D ultrafast electron microscopy (UEM) with combined spatial and temporal resolutions. In the first phase of UEM, it was possible to obtain snapshot images by using timed, single-electron packets; each packet is free of space-charge effects. Here, we demonstrate the ability to obtain sequences of snapshots ("movies") with atomic-scale spatial resolution and ultrashort temporal resolution. Specifically, it is shown that ultrafast metal-insulator phase transitions can be studied with these achieved spatial and temporal resolutions. The diffraction (atomic scale) and images (nanometer scale) we obtained manifest the structural phase transition with its characteristic hysteresis, and the time scale involved (100 fs) is now studied by directly monitoring coordinates of the atoms themselves.  相似文献   

8.
Advances in the imaging of biological structures with transmission electron microscopy continue to reveal information at the nanometer length scale and below. The images obtained are static, i.e., time-averaged over seconds, and the weak contrast is usually enhanced through sophisticated specimen preparation techniques and/or improvements in electron optics and methodologies. Here we report the application of the technique of photon-induced near-field electron microscopy (PINEM) to imaging of biological specimens with femtosecond (fs) temporal resolution. In PINEM, the biological structure is exposed to single-electron packets and simultaneously irradiated with fs laser pulses that are coincident with the electron pulses in space and time. By electron energy-filtering those electrons that gained photon energies, the contrast is enhanced only at the surface of the structures involved. This method is demonstrated here in imaging of protein vesicles and whole cells of Escherichia coli, both are not absorbing the photon energy, and both are of low-Z contrast. It is also shown that the spatial location of contrast enhancement can be controlled via laser polarization, time resolution, and tomographic tilting. The high-magnification PINEM imaging provides the nanometer scale and the fs temporal resolution. The potential of applications is discussed and includes the study of antibodies and immunolabeling within the cell.  相似文献   

9.
The development of four-dimensional ultrafast electron microscopy (4D UEM) has enabled not only observations of the ultrafast dynamics of photon–matter interactions at the atomic scale with ultrafast resolution in image, diffraction, and energy space, but photon–electron interactions in the field of nanoplasmonics and nanophotonics also have been captured by the related technique of photon-induced near-field electron microscopy (PINEM) in image and energy space. Here we report a further extension in the ongoing development of PINEM using a focused, nanometer-scale, electron beam in diffraction space for measurements of infrared-light-induced PINEM. The energy resolution in diffraction mode is unprecedented, reaching 0.63 eV under the 200-keV electron beam illumination, and separated peaks of the PINEM electron-energy spectrum induced by infrared light of wavelength 1,038 nm (photon energy 1.2 eV) have been well resolved for the first time, to our knowledge. In a comparison with excitation by green (519-nm) pulses, similar first-order PINEM peak amplitudes were obtained for optical fluence differing by a factor of more than 60 at the interface of copper metal and vacuum. Under high fluence, the nonlinear regime of IR PINEM was observed, and its spatial dependence was studied. In combination with PINEM temporal gating and low-fluence infrared excitation, the PINEM diffraction method paves the way for studies of structural dynamics in reciprocal space and energy space with high temporal resolution.Since its invention in the 1930s by Knoll and Ruska (1), the electron microscope has become a powerful tool in the fields of physics, chemistry, materials, and biology. A great variety of techniques related to the electron microscope has been developed in image, diffraction, and energy space (2, 3), with the spatial and energy resolutions of the transmission electron microscope now reaching 0.5 Å with Cs corrector (4) and sub-100 meV with electron monochromators (5, 6), respectively.To these capabilities of spatial and energy resolution has been added the high resolution in the fourth dimension (time) by the development of four-dimensional ultrafast electron microscopy (4D UEM) (79), currently enabling nanoscale dynamic studies with temporal resolution that is 10 orders of magnitude better than the millisecond range of video-camera-rate recording in conventional microscopes. In 4D UEM, ultrafast time resolution is reached by using two separate but synchronized ultrashort laser pulses, one to generate a probing electron pulse by photoemission at the microscope cathode and the other to excite the specimen into a nonequilibrium state. The state of the specimen within the window of time of the probe pulse can be observed by recording the probe electron packet scattered from the specimen in any of the different working modes of the microscope, such as image and diffraction (10), energy spectrum (11), convergent beam (12), or scanning transmission electron microscopy (TEM) (13). Scanning the time delay between arrival of the pump and probe pulses at the specimen, which is controlled by a precise optical delay line, allows the evolution of the specimen to be traced.One of the important techniques developed in, and unique to, UEM is photon-induced near-field electron microscopy (PINEM) (14). PINEM has extended the capability of UEM to observation of light–electron interactions near nanostructures or at an interface, which offers exciting prospects for the study of dynamics of photonics and plasmonics at the nanometer scale (15). The three-body interaction of photon, electron, and nanostructure relaxes momentum conservation and leads to efficient coupling between photons and electrons (16). In PINEM, an ultrashort optical pulse is used to excite evanescent electromagnetic fields near a nanostructure or at an interface. When the probe electron packet is in spatiotemporal overlap with these evanescent or scatter fields, some of its electrons can absorb/emit one or more scattered photons and then be detected by their contributions to displaced energy peaks in the electron energy spectrum. These displaced peaks appear as discrete sidebands to the zero-loss peak at separations given by the photon energy () of the pump optical pulse. When using energy filtering to select for imaging only those electrons gaining energy, the resulting PINEM image reflects the strength and topology of the excited near field around the nanostructure or interface.The PINEM technique has been used to detect the evanescent near field surrounding a variety of structures with different materials properties and different geometries, such as carbon nanotubes (14), silver nanowires (14, 17), nanoparticles (16, 18), cells and protein vesicles (19), and several-atoms-thick graphene-layered steps (20). In addition, focused-beam PINEM has been used in scanning TEM mode to obtain induced near-field distributions for a copper grid bar (21), a nanometer gold tip (22), and a silver nanoparticle at the subparticle level (21). In a recent publication, three pulses, two optical and one electron, were introduced into the arsenal of techniques to gate the electron pulse and make its width only limited by the optical-pulse durations (23). Numerous general theoretical treatments (2428) have successfully described the phenomenon, with detailed treatments quantitatively reproducing many unique features of these multifaceted experimental observations (17, 2022).Despite the growing body of PINEM studies, almost all previously published PINEM results were obtained in the image mode of the electron microscope using optical pulses with wavelengths of 500–800 nm. An exception is a single unresolved PINEM spectrum for 1,038-nm excitation published from this laboratory (25). Because the PINEM response of a material is governed by its optical properties and dimensions relative to the wavelength of light, excitation wavelength is an important parameter largely remaining to be explored experimentally.Here we report the development of IR PINEM using excitation at the wavelength of 1,038 nm (photon energy 1.2 eV). The spatial- and fluence-dependent behavior of well-resolved IR PINEM induced at the edge of a copper grid bar is examined by combining nanometer-scale convergent-beam electron diffraction and diffraction-mode detection for electron-energy spectroscopy with an unprecedented energy resolution down to 0.63 eV at 200 keV. Different e-beam size effects were compared for PINEM generated by green and IR pump pulses. The spatial dependence of IR PINEM at the interface was studied at low-pulse fluence (linear regime) and high-pulse fluence (nonlinear regime). Diffraction of a gold crystal film was observed using the energy-resolved PINEM electrons produced by interaction with the scatter field of the adjacent copper grid edge. Notably, substantial PINEM peak amplitudes were achievable at dramatically lower fluence for IR pulses than for green pulses, opening up a possible path for studies of photosensitive materials. This general accessibility of strong PINEM signals is of particular importance for our primary interest of ultrafast dynamics, for which PINEM photon gating has the potential to vastly improve temporal resolution.All PINEM experiments reported here were performed on the California Institute of Technology UEM-2 apparatus. The operation voltage on UEM-2 is 200 keV. The laser system used emits a train of ∼220-fs pulses with wavelength of 1,038 nm, set to operate at a repetition rate of 1 MHz. The laser output was frequency-doubled two successive times to provide the 259-nm pulses used to generate the electron packet (probe beam) at the 200-keV microscope photocathode source. The residual 1,038-nm and 519-nm optical pulses were each available for use as the PINEM pump beam to excite the near-field plasmons at the interface. All of the experiments were carried out with polarization set to be perpendicular to the interface and in the single-electron regime (8) to eliminate space-charge effects. In diffraction mode, a camera length of 920 mm and a spectrometer entrance aperture of 1 mm were used to obtain a small collection angle for better energy resolution.  相似文献   

10.
Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to approximately 200 nm. By using imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens with techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy, and photoactivated localization microscopy. Here, we report a versatile soft x-ray diffraction microscope with 70- to 90-nm resolution by using two different tabletop coherent soft x-ray sources-a soft x-ray laser and a high-harmonic source. We also use field curvature correction that allows high numerical aperture imaging and near-diffraction-limited resolution of 1.5lambda. A tabletop soft x-ray diffraction microscope should find broad applications in biology, nanoscience, and materials science because of its simple optical design, high resolution, large depth of field, 3D imaging capability, scalability to shorter wavelengths, and ultrafast temporal resolution.  相似文献   

11.
The static structure of macromolecular assemblies can be mapped out with atomic-scale resolution by using electron diffraction and microscopy of crystals. For transient nonequilibrium structures, which are critical to the understanding of dynamics and mechanisms, both spatial and temporal resolutions are required; the shortest scales of length (0.1-1 nm) and time (10(-13) to 10(-12) s) represent the quantum limit, the nonstatistical regime of rates. Here, we report the development of ultrafast electron crystallography for direct determination of structures with submonolayer sensitivity. In these experiments, we use crystalline silicon as a template for different adsorbates: hydrogen, chlorine, and trifluoroiodomethane. We observe the coherent restructuring of the surface layers with subangstrom displacement of atoms after the ultrafast heat impulse. This nonequilibrium dynamics, which is monitored in steps of 2 ps (total change 相似文献   

12.
A capability for scanning electron microscopy of wet biological specimens is presented. A membrane that is transparent to electrons protects the fully hydrated sample from the vacuum. The result is a hybrid technique combining the ease of use and ability to see into cells of optical microscopy with the higher resolution of electron microscopy. The resolution of low-contrast materials is approximately 100 nm, whereas in high-contrast materials the resolution can reach 10 nm. Standard immunogold techniques and heavy-metal stains can be applied and viewed in the fluid to improve the contrast. Images present a striking combination of whole-cell morphology with a wealth of internal details. A possibility for direct inspection of tissue slices transpires, imaging only the external layer of cells. Simultaneous imaging with photons excited by the electrons incorporates data on material distribution, indicating a potential for multilabeling and specific scintillating markers.  相似文献   

13.
14.
Scanning Transmission Electron Microscopy at High Resolution   总被引:7,自引:7,他引:0       下载免费PDF全文
We have shown that a scanning transmission electron microscope with a high brightness field emission source is capable of obtaining better than 3 A resolution using 30 to 40 keV electrons. Elastic dark field images of single atoms of uranium and mercury are shown which demonstrate this fact as determined by a modified Rayleigh criterion. Point-to-point micrograph resolution between 2.5 and 3.0 A is found in dark field images of micro-crystallites of uranium and thorium compounds. Furthermore, adequate contrast is available to observe single atoms as light as silver.  相似文献   

15.
The electron optical analog of immunofluorescence microscopy combines three developments: (i) photo-electron microscopy to produce a high-resolution image of exposed components of the cell, (ii) site-specific antibodies, and (iii) photoemissive markers coupled to the antibodies to make the distribution of sites visible. This approach, in theory, provides a way to extend the useful immunofluorescence microscopy technique to problems requiring much higher resolution. The resolution limit of fluorescence microscopy is limited to about 200 nm by the wavelength of the light used to form the image, whereas in photoelectron microscopy the image is formed by electrons (current resolution: 10-20 nm; theoretical limit: 5 nm or better depending on the electron optics). As a test system, cytoskeletons of CV-1 epithelial cells were prepared under conditions that preserve microtubules, and the microtubule networks were visualized by both indirect immunofluorescence and immunophotoelectron microscopy using colloidal gold coated with antibodies. Colloidal gold serves as a label for immunophotoelectron microscopy, providing enhanced photoemission from labeled cellular components so that they stand out against the darker background of the remaining unlabeled structures. In samples prepared for both immunofluorescence and immunophotoelectron microscopy, individual microtubules in the same cells were visualized by both techniques. The photoemission of the colloidal gold markers is sufficiently high that the microtubules are easily recognized without reference to the immunofluorescence micrographs, indicating that this approach can be used, in combination with antibodies, to correlate structure and function in cell biological studies.  相似文献   

16.
Fluorescence microscopy is indispensable in many areas of science, but until recently, diffraction has limited the resolution of its lens-based variant. The diffraction barrier has been broken by a saturated depletion of the marker's fluorescent state by stimulated emission, but this approach requires picosecond laser pulses of GW/cm2 intensity. Here, we demonstrate the surpassing of the diffraction barrier in fluorescence microscopy with illumination intensities that are eight orders of magnitude smaller. The subdiffraction resolution results from reversible photoswitching of a marker protein between a fluorescence-activated and a nonactivated state, whereby one of the transitions is accomplished by means of a spatial intensity distribution featuring a zero. After characterizing the switching kinetics of the used marker protein asFP595, we demonstrate the current capability of this RESOLFT (reversible saturable optical fluorescence transitions) type of concept to resolve 50-100 nm in the focal plane. The observed resolution is limited only by the photokinetics of the protein and the perfection of the zero. Our results underscore the potential to finally achieve molecular resolution in fluorescence microscopy by technical optimization.  相似文献   

17.
Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon–electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a “single” light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a “second” optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM.In ultrafast electron microscopy (UEM) (13), electrons generated by photoemission at the cathode of a transmission electron microscope are accelerated down the microscope column to probe the dynamic evolution of a specimen initiated by an ultrafast light pulse. The use of femtosecond lasers to generate the electron probe and excite the specimen has made it possible to achieve temporal resolution on the femtosecond time scale, as determined by the cross-correlation of the optical and electron pulses. One important method in the UEM repertoire is photon-induced near-field electron microscopy (PINEM) (4, 5), in which the dynamic response detected by the electron probe is the pump-induced charge density redistribution in nanoscale specimens (6).Photon–electron coupling is the basic building block of PINEM, which takes place in the presence of nanostructures when the energy-momentum conservation condition is satisfied (4, 5). This coupling leads to inelastic gain/loss of photon quanta by electrons in the electron packet, which can be resolved in the electron energy spectrum (5, 7, 8). This spectrum consists of discrete peaks, spectrally separated by multiples of the photon energy (n?ω), on the higher and lower energy sides of the zero loss peak (ZLP) (4) (Fig. 1). The development of PINEM enables the visualization of the spatiotemporal dielectric response of nanostructures (9), visualization of plasmonic fields (4, 5) and their spatial interferences (10), imaging of low atomic number nanoscale materials (11), characterization of ultrashort electron packets (12, 13), and imaging of different biological structures (14).Open in a separate windowFig. 1.Concept of photon gating in 4D electron microscopy. (A) The microscope column with one electron (dark blue) and two optical (red) pulses focused onto the specimen. The wavefunctions of the three pulses are schematically shown at the top. One optical pulse is coincident with the electron pulse at the specimen to generate a PINEM signal. The resulting light blue PINEM pulse is sliced out from other electrons for detection as an energy spectrum, an image, or a diffraction signal (see the text). The second optical pulse initiates the dynamics to be probed. (B) Electron energy spectrum generated at the specimen plane when optical and electron pulses arrive simultaneously. The gain energy range is shaded light blue. (C) Illustration for the temporal pulse sequence, two optical and one electron pulse for ultrafast time-resolved PINEM measurements.As shown by Park et al. (5), the PINEM intensity (IPINEM) is given by the square modulus of the field integral F˜0 (i.e., IPINEM|F˜0|2), in the weak interaction limit. The near field of a nanoparticle leads to the scattering of the electron packet, which can be treated rigorously using the Schrödinger equation/Mie scattering theory. It follows that PINEM images the object and displays its field characteristics depending on its shape, the polarization and wavelength of optical excitation, and the width of pulses used. For a spherical nanoparticle, the field integral at point (x, y) in the specimen plane is simplified to give (6)F˜0iE˜0cosϕχs23a3(Δk)2K[Δkb],[1]where E˜0 is the electric field amplitude of the incident light, ? the light polarization angle, a the particle radius, b=x2+y2 the impact parameter, K the modified Bessel function of the second type, Δk the momentum change of the electron, and χs = 3(ε ? 1)/(ε + 2), where χs is the material susceptibility and ε the dielectric function.In previous studies of the parameters in Eq. 1, only E˜0 was time dependent. The PINEM intensity, at a given point in space, was a function only of the time delay between the optical and electron pulses, providing, for the pulse lengths currently used, a cross-correlation profile when this delay was scanned across the time of temporal coincidence, or t = 0 (4, 5, 9, 13). Hitherto, PINEM has not been used to study the ultrafast dynamics of matter. Here, we follow the strategy of using the PINEM gain electrons generated by a first optical pulse, whose delay relative to the electron pulse is maintained at t = 0, to probe dynamics initiated by introduction of a second optical pulse on the specimen, as proposed theoretically in ref. 15. By this approach, we were able to optically gate the electron pulse (i.e., create an electron pulse that only lasts for the duration of the optical pulse) and achieve significant enhancement of the temporal resolution (see the second paragraph below).The concept of the experiment is illustrated by Fig. 1A, in which the electron pulse in blue and one optical pulse (P1) in red are shown arriving at the specimen plane simultaneously. Interaction between photon and electron in the presence of the specimen “slices out” the light blue pulse of gain electrons, which are separated from all other electrons by energy dispersion or filtering to be detected according to microscope settings in spectroscopy, imaging, or diffraction mode, as illustrated schematically at the bottom of the column. Note, it is possible to obtain PINEM diffraction, but this is not the subject of this paper. A second, or pump, optical pulse (P2) is shown below the specimen, having already triggered the dynamics of interest. A series of time axes is plotted in Fig. 1C showing examples of characteristic sequences of pulse arrival times at the specimen plane during the experiment, with the pump arrival defining the zero of time.A striking feature of this technique that was alluded to above is the potential for high temporal resolution, unlimited by the electron pulse duration, because the optical pulse acts as a temporal gate for a longer electron pulse. In the weak interaction limit, the duration of the pulse of PINEM electrons emulates that of the optical pulse that created it (15), as clearly shown in Fig. 1A. When these photon-gated electrons are used to probe dynamics triggered by a second ultrafast optical pulse, the time resolution is determined by the cross-correlation of the two optical pulses. This paves the way for the realization of attosecond electron microscopy, as done in all-optical spectroscopy (16) but with the spatial resolution being that of atomic motions. As suggested in Fig. 1A, we envisage the use of the photon-gated electron pulses, in imaging or in diffraction mode, for the study of a variety of optically initiated material processes, either of the nanostructure or of its surrounding media.The PINEM signal can be directly monitored to detect changes in any of the specimen optical or physical properties expressed in Eq. 1. Here, we demonstrate the use of the time-resolved PINEM technique where it is shown that the photoinduced dielectric response of VO2—which is strongly related to the lattice symmetry (17)—manifests itself in a change in PINEM intensity. We relate the changes in optical properties of the polycrystalline VO2 nanoparticles to the phase transition dynamics from initial (monoclinic) insulator phase to (tetragonal) metal phase, the subject of numerous previous studies.Vanadium dioxide has been discussed as an active metamaterial (18) and one of the best candidates for solid-state ultrafast optical switches in photonics applications (19, 20) due to its unique structural photoinduced phase transition behavior (21). This phase transition has been examined by investigating the change in the heat capacity through thermal excitation (22, 23), whereas its ultrafast dynamics has been studied by optical spectroscopy (24, 25), THz spectroscopy (26, 27), X-ray diffraction (28, 29), ultrafast electron crystallography (30), and electron microscopy (31).  相似文献   

18.
Understanding molecular-scale architecture of cells requires determination of 3D locations of specific proteins with accuracy matching their nanometer-length scale. Existing electron and light microscopy techniques are limited either in molecular specificity or resolution. Here, we introduce interferometric photoactivated localization microscopy (iPALM), the combination of photoactivated localization microscopy with single-photon, simultaneous multiphase interferometry that provides sub-20-nm 3D protein localization with optimal molecular specificity. We demonstrate measurement of the 25-nm microtubule diameter, resolve the dorsal and ventral plasma membranes, and visualize the arrangement of integrin receptors within endoplasmic reticulum and adhesion complexes, 3D protein organization previously resolved only by electron microscopy. iPALM thus closes the gap between electron tomography and light microscopy, enabling both molecular specification and resolution of cellular nanoarchitecture.  相似文献   

19.
This paper presents the design of a reflection electron energy spectrometer (REELS) attachment for low voltage scanning electron microscopy (LVSEM) applications. The design is made by carrying out a scattered electron trajectory ray paths simulation. The spectrometer attachment is small enough to fit on the specimen stage of an SEM, and aims to acquire nanoscale spatially resolved REELS information. It uses a retarding field electrostatic toroidal sector energy analyzer design, which is able to lower the kinetic energies of elastically backscattered electrons to pass energies of 10 eV or less. For the capture of 1 keV BSEs emitted in the polar angular range between 40 to 50°, direct ray-tracing simulations predict that the spectrometer attachment will have an energy resolution of around 0.4 eV at a pass energy of 10 eV, and 0.2 eV at a pass energy of 5 eV. This predicted performance will make it a suitable REELS attachment for SEMs that use field emission electron sources.  相似文献   

20.
Four-dimensional scanning ultrafast electron microscopy is used to investigate doping- and carrier-concentration-dependent ultrafast carrier dynamics of the in situ cleaved single-crystalline GaAs(110) substrates. We observed marked changes in the measured time-resolved secondary electrons depending on the induced alterations in the electronic structure. The enhancement of secondary electrons at positive times, when the electron pulse follows the optical pulse, is primarily due to an energy gain involving the photoexcited charge carriers that are transiently populated in the conduction band and further promoted by the electron pulse, consistent with a band structure that is dependent on chemical doping and carrier concentration. When electrons undergo sufficient energy loss on their journey to the surface, dark contrast becomes dominant in the image. At negative times, however, when the electron pulse precedes the optical pulse (electron impact), the dynamical behavior of carriers manifests itself in a dark contrast which indicates the suppression of secondary electrons upon the arrival of the optical pulse. In this case, the loss of energy of material’s electrons is by collisions with the excited carriers. These results for carrier dynamics in GaAs(110) suggest strong carrier–carrier scatterings which are mirrored in the energy of material’s secondary electrons during their migration to the surface. The approach presented here provides a fundamental understanding of materials probed by four-dimensional scanning ultrafast electron microscopy, and offers possibilities for use of this imaging technique in the study of ultrafast charge carrier dynamics in heterogeneously patterned micro- and nanostructured material surfaces and interfaces.Recent advances in four-dimensional (4D) ultrafast electron microscopy (UEM) have made it possible to investigate nonequilibrium electronic and structural dynamics with atomic-scale spatial resolution and femtosecond temporal resolution (1). Unlike UEM, which operates in the transmission mode, scanning UEM techniques exploit the time evolution of secondary electrons (SEs) produced in the specimen, and provide additional marked advantages over the transmission mode. These include a relatively facile sample preparation requirement, an efficient heat dissipation, a lower radiation damage, and an accessibility to low-voltage environmental study (2, 3). Since its development this technique has been used to study carrier excitation dynamics in several prototypical semiconducting materials surfaces. In these studies, image contrast was monitored as a function of time, and it was found that Si exhibits a bright contrast in the image at positive times without appreciable dynamics at negative times, whereas CdSe displays bright contrast at positive times and dark contrast at negative times (2). However, the correlation between the measured time-dependent SE intensity and electronic structure of the material of interest remains elusive. Chemical doping is a widely used method to control the electronic properties of semiconducting materials by incorporating charge donating or accepting dopant atoms. It is a key element in developments involving modern semiconductor-based solid-state electronics.Here, we present a systematic study for the doping- and carrier-concentration-dependent carrier dynamics in the in situ cleaved GaAs(110) surface observed in the images obtained using scanning UEM. We show that the enhancement of the SE signal at time 0 is associated with the energy gained by the optical excitation, which increases SE production from the probing pulse, and this process mirrors the electronic doping characteristics of the semiconducting material. In contrast, the persistent dark contrast at both positive and negative times for carrier dynamics in GaAs(110) suggests an energy loss mechanism that involves strong suppression of SEs through carrier–carrier scatterings. Our simulations of the transient behavior further support this conclusion.A schematic representation of the experimental setup is given in Fig. 1. Electron pulses generated from a field-emission gun using femtosecond laser pulse irradiation are scanned across the specimen surface, which is illuminated with the optical pulse. The electrons emitted from the material surface are used to construct time-resolved images at various time delays between the optical pulse and the electron pulse. The detailed account of the experimental setup was described in previous publications from this laboratory (24), and thus here we briefly describe the imaging setup: the laser used in our experiments is an ytterbium-doped fiber laser system that generates ultrashort pulses at a central wavelength of 1,030 nm (measured pulse width of ∼400 fs). The second harmonic (photon energy of 2.4 eV) of the laser beam was directed to the sample at room temperature, whereas the quadrupled harmonic (photon energy of 4.8 eV) was used for the pulsed electron generation from the field-emission gun in SEM. For the series of experiments presented here, the pump laser fluence, repetition rate, and the data acquisition methodology were kept the same for comparison of samples with different doping characteristics. The pump laser fluence was deduced to be 69 μJ/cm2, which is more than three orders of magnitude lower than that reported for the laser-induced damage threshold of a crystalline GaAs (∼0.1 J/cm2 at a photon energy of 1.9 eV) (5). The emitted electrons from the material were measured using a positively biased Everhart-Thornley detector.Open in a separate windowFig. 1.Schematic representation of the scanning UEM at California Institute of Technology. Pulsed electrons are scanned over a specimen that is illuminated with an optical pulse, and SEs emitted from the material surface are detected to construct time-resolved images at various time delays between the optical and the electron pulse. In the case of a semiconducting material, at time 0, the optical pulse promotes electrons from the valence band to the conduction band, and immediately after that the electron pulse excites transiently populated conduction electrons above the vacuum level, resulting in an enhanced (bright contrast) SE emission. If SEs experience a material-dependent energy loss through the various channels of scattering processes involved while migrating toward the surface, then a decreased emission will result (dark contrast). Here, Ec, Ev, and Evac are the energies of the bottom of the conduction band, the top of the valence band, and the vacuum level, respectively. Scale bars in the time-resolved images correspond to 50 μm.All scanning UEM images were acquired at a dwell time of 1 μs and were integrated 64 times to improve the signal-to-noise ratio. All experiments were conducted at a repetition rate of 4.2 MHz to ensure a full recovery of the material’s dynamical response before the arrival of a next pump pulse. Single crystals of GaAs (a direct band gap of 1.43 eV at room temperature) were all grown via Vertical Gradient Freeze method (purchased from MTI); the method is known to produce fewer defects during the growth, compared with those grown via the liquid encapsulated Czochralski method (6). The crystals were in situ cleaved in high vacuum (<1.5 × 10−6 Torr) to reduce the effects of contamination and formation of surface defects or adsorbates for the systematic study presented here. A clean (110) crystallographic orientation of GaAs does not possess any surface states within the band gap and thus a bulk-like band structure is expected at the surface without band-bending effects (7, 8). Cleavage along a direction perpendicular to the (001) orientation of GaAs exposes a fresh (110) plane. The cleaved surface was positioned at a working distance of 10 mm and perpendicular to the propagation direction of the pulsed primary electron beam with its energy of 30 keV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号