首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agmatine is an endogenous amine derived from arginine that potentiates morphine analgesia and blocks symptoms of naloxone-precipitated morphine withdrawal in rats. In this study, we sought to determine whether treatment with agmatine during the development of morphine dependence inhibits the withdrawal symptoms and that the effect is mediated by cAMP system. Exposure of rats to morphine for 7 days resulted in marked naloxone-induced withdrawal symptoms and agmatine treatment along with morphine significantly decreasing the withdrawal symptoms. The levels of cAMP were markedly increased in morphine-treated rat brain slices when incubated with naloxone and this increase was significantly reduced in rats treated with morphine and agmatine. The induction of tyrosine hydroxylase after morphine exposure was also reduced in locus coeruleus when agmatine was administered along with morphine. We conclude that agmatine reduces the development of dependence to morphine and that this effect is probably mediated by the inhibition of cAMP signaling pathway during chronic morphine exposure.  相似文献   

2.
Is agmatine a novel neurotransmitter in brain?   总被引:35,自引:0,他引:35  
Recent evidence suggests that agmatine, which is an intermediate in polyamine biosynthesis, might be an important neurotransmitter in mammals. Agmatine is synthesized in the brain, stored in synaptic vesicles in regionally selective neurons, accumulated by uptake, released by depolarization, and inactivated by agmatinase. Agmatine binds to alpha2-adrenoceptors and imidazoline binding sites, and blocks NMDA receptor channels and other ligand-gated cationic channels. Furthermore, agmatine inhibits nitric oxide synthase, and induces the release of some peptide hormones. As a result of its ability to inhibit both hyperalgesia and tolerance to, and withdrawal from, morphine, and its neuroprotective activity, agmatine has potential as a treatment of chronic pain, addictive states and brain injury.  相似文献   

3.
Studies have demonstrated that clonidine (α(2)-adrenoceptor and imidazoline receptor agonist) and BMS182874 (endothelin ET(A) receptor antagonist) potentiate morphine and oxycodone analgesia. Agmatine, an endogenous clonidine-like substance, enhances morphine analgesia. However, its effect on oxycodone analgesia and its interaction with endothelin ET(A) receptor antagonists are not known. The present study was performed to determine the effect of agmatine on morphine and oxycodone analgesia and the involvement of α(2)-adrenoceptors, imidazoline receptors, opioid receptors, and endothelin receptors. Antinociception at various time intervals was determined by the tail-flick latency method in mice. Agmatine produced dose-dependent increase in tail-flick latency, while BMS182874 did not produce any change over the 360-min observation period. Agmatine significantly potentiated morphine as well as oxycodone analgesia which was not altered by BMS182874. BMS182874 pretreatment did not increase the analgesic effect produced by agmatine alone. Agmatine-induced potentiation of morphine and oxycodone analgesia was blocked by idazoxan (imidazoline receptor/α(2)-adrenoceptor antagonist) and yohimbine (α(2)-adrenoceptor antagonist). BMS182874-induced potentiation of morphine or oxycodone analgesia was not affected by yohimbine. However, idazoxan blocked BMS182874-induced potentiation of oxycodone but not morphine analgesia. This is the first report demonstrating that agmatine potentiates not only morphine but also oxycodone analgesia in mice. Potentiation of morphine and oxycodone analgesia by agmatine appears to involve α(2)-adrenoceptors, imidazoline receptors, and opioid receptors. In addition, imidazoline receptors may be involved in BMS182874-induced potentiation of oxycodone but not morphine analgesia. It is concluded that agmatine may be used as an adjuvant in opiate analgesia.  相似文献   

4.
Agmatine is the endogenous ligand of imidazoline receptor, it enhanced morphine analgesia, inhibited tolerance to and physical dependence on morphine. In the present study, the effect of agmatine on the psychological dependence on morphine and the possible mechanism was evaluated.  相似文献   

5.
Agmatine : metabolic pathway and spectrum of activity in brain   总被引:1,自引:0,他引:1  
Halaris A  Plietz J 《CNS drugs》2007,21(11):885-900
Agmatine is an endogenous neuromodulator that, based on animal studies, has the potential for new drug development. As an endogenous aminoguanidine compound (1-amino-4-guanidinobutane), it is structurally unique compared with other monoamines. Agmatine was long thought to be synthesised only in lower life forms, until its biosynthetic pathway (decarboxylation of arginine) was described in the mammalian brain in 1994. Human arginine decarboxylase has been cloned and shown to have 48% identity to ornithine decarboxylase. In neurons of the brain and spinal cord, agmatine is packaged into synaptic vesicles and released upon neuronal depolarisation. Other evidence of a neuromodulation role for agmatine is the presence of a specific cellular uptake mechanism and a specific metabolic enzyme (agmatinase; which forms putrescine).Initially, agmatine was conceptualised as an endogenous clonidine-displacing substance of imidazoline receptors; however, it has now been established to have affinity for several transmembrane receptors, such as alpha(2)-adrenergic, imidazoline I(1) and glutamatergic NMDA receptors. In addition to activity at these receptors, agmatine irreversibly inhibits neuronal nitric oxide synthase and downregulates inducible nitric oxide synthase.Endogenous agmatine is induced in response to stress and/or inflammation. Stressful conditions that induce agmatine include hypoxic-ischaemia and cold-restraint stress of ulcerogenic proportion. Induction of agmatine in the brain seems to occur in astrocytes, although neurons also synthesise agmatine. The effects of injected agmatine in animals include anticonvulsant-, antineurotoxic- and antidepressant-like actions. Intraperitoneal or intracerebroventricular injections of agmatine rapidly elicit antidepressant-like behavioural changes in the rodent forced swim test and tail suspension test. Intraperitoneal injections of agmatine into rats and mice also elicit acute anxiolytic-like behavioural changes in the elevated plus-maze stress test. In an animal model of acute stress disorder, intraperitoneal agmatine injections diminish contextual fear learning. Furthermore, intraperitoneal injections of agmatine reduce alcohol and opioid dependence by diminishing behaviour in a rat conditioned place preference paradigm.Based on these findings, agmatine appears to be an endogenous neuromodulator of mental stress. The possible roles and/or beneficial effects of agmatine in stress-related disorders, such as depression, anxiety and post-traumatic stress disorder, merit further investigation.  相似文献   

6.
Agmatine derived from arginine is recently considered as a neurotransmitter and/or neuromodulator that potentiates morphine analgesia and inhibits the symptoms of naloxone-precipitated withdrawal in morphine dependent rats.The exact mechanisms of the inhibition of agmatine are not completely known.Recently,more and more results indicate that down-regulation of hippocampal neurogenesis is involved in opioid physical dependence.Therefore,the present study was undertaken to investigate the relationships between agmatine anti-abstinent syndrome and its inhibition on down-regulation of hippocampal neurogenesis in morphine dependent rats,and the possible mechanisms.We found that the chronic pretreatment with morphine induced a classical naloxone-precipitated abstinent syndrome and a decrease in neurogenesis by 23% in the adult rat hippocampal granule cell layer compared with those of saline control.Co-administration of agmatine with morphine was able to inhibit significantly the abstinent syndrome and the decrease in neurogenesis in the adult rat hippocampal granule cell layer at same time.Furthermore,agmatine inhibited the decreased hippocampal expression of brain-derived neurotrophic factor and phosphorylated CREB,in response to chronic pretreatment with morphine.On the other hand,pretreatment with agmatine in vitro significantly increased the proliferation of cultured hippocampal progenitor cells.All these results suggest that agmatine could inhibit morphine-induced physical dependence by up-regulation of the expression of brain-derived neurotrophic factor and cell proliferation in the adult rat hippocampus.Although agmatine is thought to ameliorate morphine dependence in multiple ways,the neurotrophic pathway may be one of the most important routes.  相似文献   

7.
胍丁胺对吗啡所致小鼠耐受和物质依赖的作用   总被引:14,自引:0,他引:14  
李锦  李昕 《中国药理学报》1999,20(3):232-238
目的 观察胍丁胺对吗啡所致耐受和依赖的作用。方法 分别在小鼠耐受和跳跃实验中观察胍丁胺抑制吗啡所致耐受和物质依赖的作用,结果:胍下胺0.125~2.5mg.kg^-1剂量依赖性地阻止小鼠对吗啡耐受,用吗啡预处理小鼠使吗啡镇痛ED50(20.1,14.4-28.0mg.kg^-1)与盐水组相比(6.3,5.1-7.8mg.kg^-1)增加3倍以上,用胍丁胺和吗啡共同预处理小鼠则使吗啡丧失引直耐受的能  相似文献   

8.
Agmatine blocks morphine withdrawal symptoms and enhances morphine analgesia in rats. Yet, the role of agmatine in the pharmacological effects of other abused drugs has not been investigated. The present study investigates the effect of agmatine administration on the hypothermic response to cannabinoids. Hypothermia is an effective endpoint because cannabinoid agonists produce a rapid, reproducible, and significant decrease in body temperature that is abolished by cannabinoid CB(1) receptor antagonists. WIN 55212-2, a cannabinoid agonist, was administered to rats by itself and with agmatine. WIN 55212-2 (1, 2.5, 5 and 10 mg/kg, i.m.) caused a significant hypothermia. Agmatine (10, 25 and 50 mg/kg, i.p.) was ineffective. For combined administration, agmatine (50 mg/kg, i.p.) enhanced the hypothermic effect of WIN 55212-2 (1, 2.5, 5 and 10 mg/kg, i.m.). The enhancement was strongly synergistic, indicated by a 2.7-fold increase in the relative potency of WIN 55212-2. The central administration of agmatine (25 and 50 mug/rat, i.c.v.) significantly increased the hypothermic effect of WIN 55212-2 (2.5 mg/kg, i.m.). This indicates that agmatine acts through a central mechanism to augment cannabinoid-evoked hypothermia. Idazoxan (2 mg/kg, i.p.), an imidazoline antagonist, blocked the enhancement by agmatine, thus suggesting that imidazoline receptor activation is required for agmatine to enhance cannabinoid-evoked hypothermia. The present data reveal that agmatine and a cannabinoid agonist interact to produce a hypothermic synergy in rats. These results show that agmatine acts in the brain and via imidazoline receptors to enhance cannabinoid-evoked hypothermia.  相似文献   

9.
胍丁胺对小鼠和大鼠镇痛及增强吗啡镇痛   总被引:16,自引:0,他引:16  
AIM: To study the effect of agmatine on pain and morphine analgesia. METHODS: The effect of agmatine on pain was observed in mouse heat radiant tail-flick test, mouse acetic acid writhing test, and rat 4% saline test. Its enhancing effect on analgesia of morphine and clonidine was assessed in rat and mouse heat radiant tail-flick tests. RESULTS: Agmatine did not significantly prolong tail-flick latency of mice, but reduced the number of acetic acid-induced writhing of mice and inhibited writhing responses to saline completely. It potentiated the analgesic effects of morphine and clonidine in dose-dependent manner and decreased the analgesic ED50 of morphine and clonidine by more than 75% in mouse heat radiant tail-flick test. These effects of agmatine were antagonized by idazoxan. CONCLUSION: Agmatine has weak analgesic effects and potentiates morphine and clonidine analgesia by activation of imidazoline receptors.  相似文献   

10.
The effects of agmatine on morphine-induced locomotion sensitization and morphine-induced changes in extracellular striatal dopamine (DA) and DA metabolites were studied. The locomotor response to morphine challenge (3 mg/kg, s.c.) was enhanced in rats 3 days after repeated morphine administration, indicating development of locomotion sensitization. In vivo microdialysis demonstrated a significant increase in striatal basal levels of the DA metabolites DOPAC and HVA, but not in DA itself, and an increase in DA response to morphine challenge in rats 3 days after withdrawal. Agmatine (1, 10, 80 mg/kg) inhibited morphine-induced locomotion sensitization and the changes in DA noted above. Idazoxan attenuated the effects of agmatine on locomotion, suggesting that the effects are mediated by imidazoline receptors. In addition, repeated morphine also increased the expression of tyrosine hydroxylase mRNA in the VTA after 4 days of morphine pretreatment, while decreasing the expression of dynorphin mRNA at 3 days after withdrawal. Agmatine inhibited morphine-induced changes in dynorphin, but not in tyrosine hydroxylase mRNA expression. These data suggest that agmatine, likely by activating imidazoline receptors, inhibits morphine-induced locomotion sensitization and morphine-induced changes in extracellular DA and in dynorphin expression. Thus, agmatine deserves further study as an anti-opioid medication.  相似文献   

11.
目的:观察胍丁胺抑制纳洛酮引起小鼠吗啡戒断跳跃与其抑制一氧化氮合酶(NOS)的关系,方法:用测定[~3H]胍氨酸浓度的方法确定NOS活性,结果:在体外胍丁胺底物竞争性抑制正常和吗啡依赖小鼠小脑、端脑和丘脑NOS活性,纳洛酮引起吗啡依赖小鼠戒断跳跃和小脑、端脑、丘脑NOS活性升高,用吗啡和胍丁胺共同处理小鼠显著抑制纳洛酮促使小鼠戒断跳跃和NOS活性升高的作用,咪唑克生抑制胍丁胺的此作用,结论:胍丁胺对纳洛酮引起戒断跳跃的抑制作用与其通过激活咪唑啉受体和底物竞争性抑制NOS活性相关。  相似文献   

12.
胍丁胺抑制小鼠吗啡戒断与其抑制一氧化氮合酶的关系   总被引:18,自引:0,他引:18  
李锦  李昕 《中国药理学报》1999,20(4):375-380
AIM: To study correlation between inhibitions of naloxone-precipitated withdrawal jumps and nitric-oxide synthase (NOS) activity by agmatine. METHODS: NOS activities in mouse brain were measured by determination of concentration of [3H]citrulline, the product of [3H]arginine. RESULTS: Agmatine inhibited NOS activity in naive and morphine-dependent mouse cerebellum, forebrain, and thalamus in substrate-competitive manner in vitro. Naloxone induced withdrawal jumps and an increase in NOS activity in cerebellum, forebrain, and thalamus of abstinent mice. Pretreatment of mice with morphine plus agmatine inhibited the effect of naloxone to precipitate withdrawal jumps and increase in NOS activity. The effect of agmatine was blocked by idazoxan. CONCLUSION: The inhibitory effect of agmatine on naloxone-precipitated withdrawal jumps is related to its inhibition of NOS activity by substrate competitive manner and activation of imidazoline receptors.  相似文献   

13.
The effects of agmatine, which is an endogenous polyamine metabolite formed by decarboxylation of L-arginine, and a combination of agmatine and morphine on tail-flick test have been investigated in mice. Adult male Swiss-Webster mice were used in the study. Agmatine (10, 20 and 40 mg/kg), clonidine (0.15 mg/kg), yohimbine (0.625 and 1.25 mg/kg), or saline were injected into mice intraperitoneally. Morphine (1 and 2 mg/kg) was given subcutaneously. Agmatine alone did not produce any significant change on radiant tail-flick latencies, but it potentiated significantly and dose-dependently morphine-induced (1 mg/kg) analgesia. The potentiating effect of agmatine (40 mg/kg) on morphine-induced analgesia was blocked completely by yohimbine (0.625 mg/kg), a selective alpha(2)-adrenoceptor antagonist, pretreatment. Clonidine (0.15 mg/kg), an alpha(2-)adrenergic receptor agonist, caused a significant increase of the tail-flick latencies of the mice. Yohimbine (0.625 mg/kg) also blocked clonidine-induced analgesia. In addition, yohimbine (0.625 mg/kg) was ineffective on the tail-flick test and did not produce any significant change on the morphine-induced analgesia. Our results indicate that cotreatment of agmatine with morphine produces antinociceptive enhancement via an alpha(2-)adrenergic receptor-mediated mechanism and agmatine-morphine combination may be an effective therapeutic strategy for medical treatment of pain.  相似文献   

14.
近年研究表明某些药物尽管不能与阿片受体发生相互作用,但能对阿片药理作用产生重要的调节.特别是有些药物能对阿片功能产生双向调节作用,即增强阿片镇痛,对抗阿片耐受和躯体依赖.我们将这些不与阿片受体发生作用,但具有双向调节阿片功能的药物称之为双向阿片功能调节剂(biphasic opioid function modulator,BOFM).基于我们的研究工作,可以认定胍丁胺就是一个典型的双向阿片功能调节剂.胍丁胺本身有弱的镇痛作用,它能增强吗啡镇痛,对抗吗啡耐受和依赖:胍丁胺产生上述作用的主要机制与抑制阿片长期作用下在阿片受体信号转导系统产生的代偿性适应过程相关.  相似文献   

15.
A biphasic opioid function modulator: agmatine   总被引:14,自引:1,他引:13  
Recently it has been revealed that some agents that are not able to interact with opioid receptors play an important role in regulating the pharmacological actions of opioids. Especially, some of them show biphasic modulation on opioid functions, which enhance opioid analgesia, but inhibit tolerance to and substance dependence on opioids. We would like to call these agents which do not interact with opioid receptors, but do have biphasic modulation on opioid functions as biphasic opioid function modulator (BOFM). Mainly based on our results, agmatine is a typical BOFM. Agmatine itself was a weak analgesic which enhanced analgesic action of morphine and inhibited tolerance to and dependence on opioid. The main mechanisms of agmatine were related to inhibition of the adaptation of opioid receptor signal transduction induced by chronic treatment of opioid.  相似文献   

16.
Wu N  Su RB  Xu B  Lu XQ  Liu Y  Zheng JQ  Piletz JE  Li J  Qin BY 《Biochemical pharmacology》2005,70(7):1079-1087
Agmatine, an endogenous ligand for the I1-imidazoline receptor, has previously been shown to prevent morphine dependence in rats and mice. To investigate the role of imidazoline receptor antisera-selected protein (IRAS), a strong candidate for I1R, in morphine dependence, two CHO cell lines were created, in which mu opioid receptor (MOR) was stably expressed alone (CHO-mu) or MOR and IRAS were stably co-expressed (CHO-mu/IRAS). After 48 h administration of morphine (10 microM), naloxone induced a cAMP overshoot in both cell lines, suggesting cellular morphine dependence had been produced. Agmatine (0.1-2.5 microM) concentration-dependently inhibited the naloxone-precipitated cAMP overshoot when co-pretreated with morphine in CHO-mu/IRAS, but not in CHO-mu. Agmatine at 5-100 microM also inhibited the cAMP overshoot in CHO/mu and CHO-mu/IRAS. Efaroxan, an I1R-preferential antagonist, completely blocked the effect of agmatine on the cAMP overshoot at 0.1-2.5 microM in CHO-mu/IRAS, while partially reversing the effects of agmatine at 5-100 microM. L-type calcium channel blocker nifedipine entirely mimicked the effects of agmatine at high concentrations on forskolin-stimulated cAMP formation in CHO-mu and naloxone-precipitated cAMP overshoot in morphine-pretreated CHO-mu. Therefore, IRAS, in the co-transfected CHO-mu/IRAS cell line, appears necessary for low concentrations of agmatine to cause attenuation of cellular morphine dependence. An additional effect of agmatine at higher concentrations seems to relate to both transfected IRAS and some naive elements in CHO cells, and L-type voltage-gated calcium channels are not ruled out. This study suggests that IRAS mediates agmatine's high affinity effects on cellular morphine dependence and may play a role in opioid dependence.  相似文献   

17.
Agmatine inhibits morphine-induced drug discrimination in rats   总被引:1,自引:0,他引:1  
Our previous studies have shown that agmatine inhibited morphine-induced conditioned place preference and locomotor sensitization in rats. In the present study, we further investigated the effects of agmatine on the discriminative stimulating effects produced by morphine in rats. Agmatine, at the dose range of 10-80 mg/kg (i.g.), neither induced drug discrimination, nor substituted for morphine stimulus in rats that were previously treated with morphine, suggesting that agmatine itself has no psychomotor-stimulating potential. However, pretreatment with agmatine (40, 80 mg/kg, i.g.) significantly inhibited the acquisition, but not expression, of morphine-induced drug discrimination as assessed by the correct nose-poke response. Further, chronic administration of agmatine (40, 80 mg/kg/dayx12 days, i.g., 25 min prior to morphine) also significantly accelerated the extinction of the discrimination induced by morphine. These data suggest that agmatine inhibits the acquisition and accelerates the extinction of morphine-induced discrimination, supporting possible use of agmatine in the treatment of opioid dependence.  相似文献   

18.
目的:观察胍丁胺对吗啡长期处理引起的NMDA受体蛋白改变的影响。方法:采用吗啡递增给药制备大鼠慢性依赖模型,并观察依赖状态下大鼠海马和伏隔核NMDA受体NR1和NR2B亚基蛋白表达量的变化,以及胍丁胺对吗啡作用的影响。结果:与对照组相比,吗啡慢性处理大鼠在纳洛酮催促下能出现典型的戒断综合征,提示依赖模型建立成功。用免疫印记(Western blotting)技术发现,海马部位的NR2B亚基明显下调,而NR1亚基未见显著性变化;吗啡慢性处理不引起伏隔核NR2B亚基的明显变化,但NR1亚基却显著上调。胍丁胺与吗啡伴随给药能逆转吗啡对两脑区NMDA受体蛋白表达的调节作用。结论:胍丁胺调节阿片依赖可能与其逆转吗啡对NMDA受体亚基数量和构成的调节有关。  相似文献   

19.
It has been proved that agmatine inhibits opioid dependence, yet the neural mechanism remains unclear. In the present study, the effect of agmatine on the neuroadaptation of glutamate neurotransmission induced by morphine dependence, including changes of the extracellular glutamate level and glutamate receptors in the nucleus accumbens was investigated.We found that agmatine (2.5–20 mg/kg, s.c.) inhibited development of morphine dependence, which was consistent with our previous report. In rats repeatedly treated with morphine, the glutamate level in the nucleus accumbens dialysate was markedly increased after naloxone-precipitated withdrawal. When agmatine (20 mg/kg, s.c.) was co-pretreated with morphine or was applied before naloxone-precipitated withdrawal, this elevation of the extracellular glutamate level was inhibited. In the synaptosome model, repeated morphine treatment and naloxone precipitation induced an increase in glutamate release, while agmatine (20 mg/kg, s.c.) co-pretreated with morphine reversed the increase of glutamate release. However, neither morphine or agmatine treatment alone nor morphine and agmatine co-administration had any influence on [3H]-glutamate uptake. It indicated that the elevation of the glutamate level in the nucleus accumbens might be caused by the increase of glutamate release of synaptosome in the withdrawal conditions of morphine-dependent rat. Furthermore, agmatine concomitant treatment with morphine entirely abolished the up-regulation of the NR1 subunit of N-methyl-d-aspartate (NMDA) receptors in the nucleus accumbens in repeated morphine-treated rats.Taken together, the present study demonstrated that agmatine could modulate the neuroadaptations of glutamate transmission in the nucleus accumbens in the case of morphine dependence, including modulating extracellular glutamate concentration and NMDA receptor expression.  相似文献   

20.
Currently available analgesics cannot meet the increasing clinical needs and new analgesics with better therapeutic profiles are in great demand. The imidazoline I? receptor is an emerging drug target for analgesics. However, few studies have examined the effects of selective I? receptor ligands on the antinociceptive activity of opioids. This study examined the antinociceptive effects of the opioids morphine (0.1-10 mg/kg) and tramadol (3.2-56 mg/kg), the nonselective I? receptor ligand agmatine (10-100 mg/kg), and the selective I? receptor ligands 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI; 1-10 mg/kg) and 2-(4, 5-dihydroimidazol-2-yl) quinoline hydrochloride (BU224; 1-10mg/kg), alone and in combination, in a warm water tail withdrawal procedure in rats. Morphine and tramadol but not agmatine, 2-BFI or BU224 increased tail withdrawal latency in a dose-related manner at 48°C water. Agmatine and 2-BFI but not BU224 dose-dependently enhanced the antinociceptive effects of morphine and tramadol, shifting the dose-effect curves of morphine and tramadol leftward. The enhancement of agmatine and 2-BFI on morphine and tramadol antinociception was prevented by BU224. These results, combined with the fact that BU224 and 2-BFI share similar behavioral effects under other conditions, suggest that BU224 has lower efficacy than 2-BFI at I? receptors, and that the enhancement of opioid antinociception by I? receptor ligands depends on their efficacies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号