首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate radiologists' performance at interpreting digital radiographic images, we compared the detectability of pneumothoraces on computed radiographic chest images with 0.2-mm pixel size (2.5 Ip/mm) with their detectability on matched conventional screen-film images (5 Ip/mm). Eight radiologists reviewed 50 computed and 50 screen-film chest radiographs from 25 patients with pneumothoraces and 25 patients with other (or no) abnormalities. Four of the readers who best detected pneumothoraces on screen-film examinations performed worse when interpreting computed radiographic studies; the other four readers detected pneumothoraces similarly with both techniques. No relationship was found between the size of a pneumothorax and its likelihood of detection by either technique. These results raise concerns about implementing computed radiography for comprehensive chest imaging.  相似文献   

2.
Two methods are commonly used to visualize digital radiologic imaging data: (1) hard-copy viewing, in which the digital data are used to modulate the intensity of a laser beam that exposes an analog film and (2) soft-copy viewing, in which the digital data are converted to an analog video signal and presented on a CRT monitor. The film method allows new digital imaging systems to be easily integrated into conventional radiologic management and viewing methods. The second method, soft-copy viewing, allows digital imaging data to be managed and viewed electronically in a picture archiving and communication system (PACS). These PACS systems are hypothesized to have improved operational efficiency and enhanced image-analysis capabilities. The quality of soft-copy images is still not widely accepted. This article reports on the results of a large-scale receiver-operating-characteristic study comparing observers' performance in detecting various pediatric chest abnormalities on soft-copy 2048 x 2048K byte displays with their performance with digital laser-printed film from computed radiography. The disease categories studied were pneumothorax, linear atelectasis, air bronchogram, and interstitial disease. The selected data set included 239 images; 77 contained no proved abnormality and 162 contained one or more of the abnormalities mentioned. Seven pediatric radiologists participated in the study, two as judges and five as observers. Our results show no significant difference between viewing images on digital hard copy and soft copy for the detection of pneumothoraces and air bronchograms. A slight performance edge for soft copy was seen for interstitial disease and linear atelectasis. This result indicates that computed chest radiographs in children viewed in a soft-copy PACS environment should result in diagnoses similar to or slightly more accurate than those obtained in a laser-printed film-based environment.  相似文献   

3.
Computed radiography in musculoskeletal imaging: state of the art.   总被引:1,自引:0,他引:1  
Computed radiography is a 2K x 2K x 10 bit digital radiographic system that replaces the film-screen combination with a photo-stimulable phosphor plate. The advantages of this relatively new technology include linear detector response, improved detector efficiency, and digital processing capabilities. Musculoskeletal applications benefit significantly from these attributes, which result clinically in the ability to reduce both radiation dose and number of exposures. Studies of observers' performance have shown no statistically significant difference in diagnostic accuracy between film-screen and computed radiographic musculoskeletal images. Computed radiography is particularly useful in the evaluation of the musculoskeletal system in traumatized patients with portable radiographs, spine radiographs, scoliosis studies, and depiction of soft-tissue abnormalities. Limitations include change in image format and size, high cost, decreased spatial resolution, restricted throughput, increased perception of noise, and new artifacts that must be recognized. Spatial resolution limitations of computed radiography in identification of fine detail information can be improved by using magnification techniques. Radiation dose reduction with an exposure decrease of 25-50% can be achieved without loss of diagnostic accuracy, although this depends on the examination and the abnormality. An interactive workstation is important in the use of a computed radiographic system with capabilities to adjust display parameters to best depict images and disease. We conclude that computed radiography is an alternative to film-screen radiography without significant differences in diagnostic quality in the evaluation of musculoskeletal images.  相似文献   

4.
In this pilot study, conventional and digital radiography of the chest was compared in 170 patients. Two digitized radiographs, one frequency modified and one simulating the conventional film-screen combination, and the conventional films were reviewed independently by 5 radiologists with different experience. In spite of the smaller size and lower spatial resolution of the digitized compared with the conventional radiograph, only slight differences were revealed in the observation of different pulmonary and mediastinal changes. Digitized radiography is therefore considered suitable for chest examinations.  相似文献   

5.
OBJECTIVE: The objective of this study was to compare clinical chest radiographs of a large-area, flat-panel digital radiography system and a conventional film-screen radiography system. The comparison was based on an observer preference study of image quality and visibility of anatomic structures. MATERIALS AND METHODS: Routine follow-up chest radiographs were obtained from 100 consecutive oncology patients using a large-area, amorphous silicon flat-panel detector digital radiography system (dose equivalent to a 400-speed film system). Hard-copy images were compared with previous examinations of the same individuals taken on a conventional film-screen system (200-speed). Patients were excluded if changes in the chest anatomy were detected or if the time interval between the examinations exceeded 1 year. Observer preference was evaluated for the image quality and the visibility of 15 anatomic structures using a five-point scale. RESULTS: Dose measurements with a chest phantom showed a dose reduction of approximately 50% with the digital radiography system compared with the film-screen radiography system. The image quality and the visibility of all but one anatomic structure of the images obtained with the digital flat-panel detector system were rated significantly superior (p < or = 0.0003) to those obtained with the conventional film-screen radiography system. CONCLUSION: The image quality and visibility of anatomic structures on the images obtained by the flat-panel detector system were perceived as equal or superior to the images from conventional film-screen chest radiography. This was true even though the radiation dose was reduced approximately 50% with the digital flat-panel detector system.  相似文献   

6.
We report the results of a comparative study of digital and conventional chest radiographs to detect normal anatomical structures of the thorax. A digital Toshiba unit (TCR 201) was used to examine 100 selected patients who were diagnosed with no chest pathologic conditions. The images in both modes were submitted for interpretation to five radiologists. The depiction of nine normal anatomical structures was more accurate on digital than on conventional radiographs. The mean confidence levels achieved in viewing digital images were higher than those obtained with conventional radiographs. This difference was statistically significant (p = 0.002).  相似文献   

7.
OBJECTIVE: The purpose of this study was to evaluate the accuracy of temporal subtraction with a commercially available computer-assisted diagnosis system for the detection of multifocal hazy pulmonary opacities on chest radiographs, which are sometimes difficult to detect directly on chest radiographs. MATERIALS AND METHODS: Thirty healthy patients and 30 patients with new multifocal hazy pulmonary opacities that were confirmed by serial chest CT examinations were evaluated with and without temporal subtraction images. Chest radiographs were taken from either film-screen or digital radiography images and were digitized with a spatial resolution of 0.171 mm per pixel. Temporal subtraction images were produced by an iterative image-warping technique. We designed an observer performance study in which observers (six chest radiologists and four residents) indicated their confidence level for the presence or absence of hazy pulmonary opacities on two sets of images, current and previous radiographs only (set A), and current and previous radiographs with temporal subtraction images (set B). Receiver operating characteristic curves were generated. RESULTS: For chest radiologists, observer performance with set B (with temporal subtraction images; A(z) = 0.947) was superior to that with set A (without temporal subtraction images; A(z) = 0.916) (p < 0.05). For residents, no statistically significant difference was found between sets A and B. CONCLUSION: The temporal subtraction technique clearly improves diagnostic accuracy for the detection of multifocal hazy pulmonary opacities on chest radiographs, especially when the observers are experienced chest radiologists who have sufficient skill to evaluate the patient's condition as revealed on the images.  相似文献   

8.
A digital system for chest radiography based on a large image intensifier was compared with a conventional film-screen system. The diagnostic performance was evaluated with special reference to the digital monitor images with a modified version of receiver operating characteristic (ROC) analysis--free response ROC (FROC) analysis--on a chest equivalent phantom. Measurements of spatial resolution and energy imparted were also performed. The detectability of low-contrast objects as well as spatial resolution was better for the full-size film-screen radiographs than for both the digital monitor images and the 100 mm photofluorograms. The image-intensifier system has a potential for considerable dose savings in relation to the conventional technique provided that fluoroscopy is excluded in the positioning of the patients.  相似文献   

9.
Photofluorography with a large image intensifier, which provides an image field of 40 x 40 cm, reduces both the radiation dose and the imaging costs in chest radiography as compared with the film-screen technique. The two techniques were evaluated in a clinical study of 135 patients with suspected chest abnormalities. Photofluorographs and film-screen chest radiographs were interpreted independently by three radiologists. The diagnoses were confirmed by CT, follow-up radiographs, and clinical records. Among the 135 patients, 75 had primary lung cancer, 39 had pulmonary nodules, 52 had hilar or mediastinal abnormalities, 17 had pleural fluid, and 45 had pneumonic or atelectatic changes. Twenty-three normal subjects were included. Differences in diagnostic accuracy, measured by sensitivity and specificity, were not statistically significant. A larger number of true-positive cases (65%) with peripheral lung nodules were found by photofluorography than by film-screen radiography (54%) (p less than .05). The results suggest that the diagnostic accuracy of chest images made by photofluorography is sufficient to warrant using it instead of the film-screen technique in routine chest radiography, especially to detect lung tumors and metastases.  相似文献   

10.
Observer performance tests were conducted to compare the effects on diagnostic accuracy of digital hard copy and video display formats versus conventional radiographic film. Digital images were obtained by digitizing conventional chest radiographs to a 2048 x 2048 matrix with a laser film scanner. Three digital display formats were used: laser-printed digital film, a 2048-line video monitor without user interaction, and a 2048-line video monitor with user interaction. Thirty-one posteroanterior chest radiographs, determined by consensus of four thoracic radiologists to contain septal lines (n = 11), parenchymal nodules (n = 7), nodules and septal lines (n = 7), or neither abnormality (n = 6), were used for the study. Images were interpreted by four radiologists in four separate viewing sessions. Diagnostic accuracy was determined by receiver-operating characteristic analysis for each observer with each viewing technique. No statistical differences in diagnostic accuracy, determined by the area under the receiver-operating-characteristic curve, were found between the analog film, the digital film, and the two video digital display formats. This preliminary study suggests that 2048-line digital displays may be an acceptable alternative to the traditional lightbox viewing method for the perception of these two abnormalities commonly seen on chest radiographs.  相似文献   

11.
Excretory urography using computed radiography   总被引:2,自引:0,他引:2  
A computed radiographic system for generating digital film images was evaluated in the performance of excretory urography. Three experienced radiologists reviewed digital and conventional screen-film urograms for 100 patients in a prospective study to evaluate the clinical utility of the digital system. Results indicate no difference between digital and screen-film urograms in diagnostic sensitivity, specificity, or receiver-operating-characteristic curves for differentiating normal from abnormal studies. Readers' performances in making specific diagnoses were also the same with both techniques.  相似文献   

12.
A prototype digital unit dedicated to chest radiography was used to examine 50 selected patients for a comparison study of the capability of digital images and conventional chest radiographs to reveal normal anatomic structures and a variety of pathologic states. The images in both modes were submitted for interpretation to seven experienced radiologists and a standardized questionnaire completed for each. Visibility of seven anatomic structures in the mediastinum was consistently better on the digital images than on the conventional radiographs. With minor exceptions, pathologic states were equally well seen in the two systems. Despite the less familiar viewing format of the digital images, the mean confidence levels achieved were higher than for those on the conventional radiographs; this difference was statistically significant both for normal anatomic structures (p = 0.001) and pathologic states (p = 0.01). The advantages and disadvantages of the digital technique are discussed.  相似文献   

13.
Low-dose digital computed radiography in pediatric chest imaging   总被引:3,自引:0,他引:3  
A prototype digital computed radiographic imaging system that uses laser-stimulated luminescence was evaluated for its ability to achieve reproducible, high-detail, low-dose pediatric chest radiographs. Using this system, we performed a total of 401 examinations in infants and children, and achieved an 85% reduction in radiation dose, as compared with that delivered when film-screen techniques were used. We also achieved satisfactory image resolution, and the images obtained were of acceptable diagnostic quality. A direct comparison of analog and digital radiographs showed that comparable quality and clinical acceptability could be readily maintained between the two techniques. This study shows that high-quality images can be produced by this system at radiation doses reduced by 85% when compared with doses from standard radiographic techniques.  相似文献   

14.
PURPOSE: To compare observer performance in the detection of abnormalities on 1,760 x 2,140 matrix (2K) and 3,520 x 4,280 matrix (4K) digital storage phosphor chest radiographs. MATERIALS AND METHODS: One hundred sixty patients who underwent dedicated computed tomography (CT) of the thorax were prospectively recruited into the study. Posteroanterior and lateral computed radiographs of the chest were acquired in each patient and printed in 2K and 4K formats. Six radiologists independently analyzed the hard-copy images and scored the presence of parenchymal (opacities 2 cm, and subtle interstitial), mediastinal, and pleural abnormalities on a five-point confidence scale. With CT as the reference standard, observer performance tests were carried out by using receiver operating characteristic (ROC) analysis. RESULTS: Analysis of averaged observer performance showed 2K and 4K images were equally effective in detection of all three groups of abnormalities. In the detection of the three subtypes of parenchymal abnormalities, there were no significant differences in averaged performance between the 2K and 4K formats (area below ROC curve [A(z)] values: opacities 2 cm, 0.86 +/-.025 and 0.85 +/- 0.030; subtle interstitial abnormalities, 0.73 +/- 0.041 and 0.72 +/- 0.041). Averaged performance in detection of mediastinal and pleural abnormalities was equivalent (A(z) values: mediastinal, 0.70 +/- 0.046 and 0.73 +/- 0.033; pleural, 0.85 +/- 0.032 and 0.86 +/- 0.033). CONCLUSION: Observer performance in detection of parenchymal, mediastinal, and pleural abnormalities was not significantly different on 2K and 4K storage phosphor chest radiographs.  相似文献   

15.
The aim of this study was to compare the image quality and entrance skin dose (ESD) for film-screen and computed chest radiography. Analysis of the image quality and dose on chest radiography was carried out on a conventional X-ray unit using film-screen, storage phosphor plates and selenium drum direct chest radiography. For each receptor, ESD was measured in 60 patients using thermoluminescent dosemeters. Images were printed on 35 x 43 cm films. Image quality was assessed subjectively by evaluation of anatomic features and estimation of the image quality, following the guidelines established by the protocols of the Commission of the European Communities. There was no statistically significant difference noted between the computed and conventional images (Wilcoxon rank sum test, P > 0.05). Imaging of the mediastinum and peripheral lung structures were better visualized with the storage phosphor and selenium drum technique than with the film-screen combination. The patients' mean ESD for chest radiography using the storage phosphor, film-screen combination and selenium drum was 0.20, 0.20 and 0.25 mGy, respectively, with no statistically significant difference with P > 0.05 (chi(2) tests).  相似文献   

16.
A digital system for chest radiography based on a large image intensifier was compared to a conventional film-screen system. The digital system was optimized with regard to spatial and contrast resolution and dose. The images were digitally processed for contrast and edge enhancement. A simulated pneumothorax and two simulated nodules were positioned over the lungs and the mediastinum of an anthropomorphic phantom. Observer performance was evaluated with ROC analysis. Five observers assessed the processed digital images and the conventional full-size radiographs. The time spent viewing the full-size radiographs and the digital images was recorded. For the simulated pneumothorax, the results showed perfect performance for the full-size radiographs and detectability was high also for the processed digital images. No significant difference in the detectability of the simulated nodules was seen between the two imaging systems. The results for the digital images showed a significantly improved detectability for the nodules in the mediastinum as compared to a previous ROC study where no optimization and image processing was available. No significant difference in detectability was seen between the former and the present ROC study for small nodules in the lung. No difference was seen in the time spent assessing the conventional full-size radiographs and the digital images. The study indicates that processed digital images produced by a large image intensifier are equal in image quality to conventional full-size radiographs for low-contrast objects such as nodules.  相似文献   

17.
OBJECTIVE: The objective of this study was to compare the diagnostic performance of a digital large-area silicon flat-panel detector with that of a conventional screen-film system in clinical chest imaging using abnormal findings documented by CT as the reference standard. SUBJECTS AND METHODS: Eighty patients (46 men and 34 women; age range,18-91 years; mean age, 63 years) who underwent CT of the chest were examined with the new digital radiography system, which is based on a 43 x 43 cm silicon flat-panel detector, and with a conventional screen-film system, which is used routinely in clinical practice. Posteroanterior and lateral radiographs were obtained. Four radiologists analyzed the digital and conventional images separately for chest abnormalities and rated the images using a five-level scale of confidence; CT was used as the reference standard. Diagnostic value was assessed using receiver operating characteristic curves for each abnormality. RESULTS: No significant differences were found between the area under the receiver operating characteristic curve of the digital and that of the conventional radiography method for almost all investigated criteria. The only exception was mediastinal abnormalities, for which the digital method provided better results than the conventional method (p < 0.05). CONCLUSION. The diagnostic performance of the new large-area silicon flat-panel detector is equivalent or superior to that of the conventional screen-film system for clinical chest imaging and can replace conventional radiography systems. This new technology offers transmission and storage possibilities inherent to digital radiology that would facilitate daily practice and reduce the initial high costs in the long-term.  相似文献   

18.
OBJECTIVE: To evaluate image quality of a large-area direct-readout flat-panel detector system in chest radiography, we conducted an observer preference study. A clinical comparative study was conducted of the flat-panel system versus the storage phosphor and standard film-screen systems. MATERIALS AND METHODS: Routine chest radiographs (posteroanterior) of 30 patients that were obtained using flat-panel, storage phosphor, and film screen systems were compared. The visibility of 10 anatomic regions and the overall image quality criteria were rated independently by three radiologists using a 5-point scale. The significance of the differences in diagnostic performance was tested with a Wilcoxon's signed rank test. Dose measurements for the three modalities were performed. RESULTS: The flat-panel radiography system showed an improved visibility in most anatomic structures when compared with a state-of-the-art conventional film-screen system and an equal visibility when compared with a storage phosphor system. The flat-panel system showed the greatest enhancement in the depiction of small detailed structures (p < 0.05) and achieved this with a reduction in overall radiation dose of more than 50%. CONCLUSION: The visibility of anatomic structures provided by this flat-panel detector system is as good as if not better than that provided by conventional or storage phosphor systems while emitting a reduced radiation dose.  相似文献   

19.
The usefulness of digital image processing of chest radiographs was evaluated in a clinical study. In 54 patients, chest radiographs in the posteroanterior projection were obtained by both 14 inch digital image intensifier equipment and the conventional screen-film technique. The digital radiographs (512 x 512 image format) viewed on a 625 line monitor were processed in three different ways: (1) standard display; (2) digital edge enhancement for the standard display; and (3) inverse intensity display. The radiographs were interpreted independently by three radiologists. The diagnoses were confirmed by CT, follow-up radiographs and clinical records. Chest abnormalities of the films analyzed included 21 primary lung tumors, 44 pulmonary nodules, 16 cases with mediastinal disease and 17 cases with pneumonia/atelectasis. Interstitial lung disease, pleural plaques, and pulmonary emphysema were found in 30, 18 and 19 cases, respectively. The sensitivity of conventional radiography when averaged overall findings was better than that of the digital techniques (P less than 0.001). The differences in diagnostic accuracy measured by sensitivity and specificity between the three digital display modes were small. Standard image display showed better sensitivity for pulmonary nodules (0.74 vs 0.66; P less than 0.05) but poorer specificity for pulmonary emphysema (0.85 vs. 0.93; P less than 0.05) compared with inverse intensity display. We conclude that when using 512 x 512 image format, the routine use of digital edge enhancement and tone reversal at digital chest radiographs is not warranted.  相似文献   

20.
The subtle changes often found in interstitial lung disease can be difficult to evaluate at conventional radiography. In order to define the information obtained with digital radiography, it is particularly important to find out to what extent interstitial lung disease can be observed with this technique. Ninety-one patients, 56 with interstitial lung disease and 35 with normal lungs, were examined both with a digital system and with conventional film-screen technique. The examinations were reviewed independently by 4 radiologists with different experience and receiver operating characteristics (ROC) curves were constructed. The 2 systems were equal in diagnostic performance with no statistic difference between the conventional radiographs, the 2 digital images reviewed together or the 2 digital images reviewed separately. There was a significant difference between the 2 observers with the highest and the one with the lowest score only in the review of digital unsharp mask images, but otherwise no differences statistically. A lower number of false negatives and a higher number of false positives were seen with the digital unsharp mask image, producing a higher sensitivity and lower specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号