首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Chen X  Macica C  Nasiri A  Judex S  Broadus AE 《BONE》2007,41(5):752-759
The PTHrP gene is expressed in the periosteum and in tendon and ligament insertion sites in a PTHrP-lacZ knockin reporter mouse. Here, we present a more detailed histological evaluation of PTHrP expression in these sites and study the effects of mechanical force on PTHrP expression in selected sites. We studied the periosteum and selected entheses by histological, histochemical, and in situ hybridization histochemical techniques, and tendons or ligaments were unloaded by tail suspension or surgical transection. In the periosteum, PTHrP is expressed in the fibrous layer and the type 1 PTH/PTHrP receptor (PTH1R) in the subjacent cambial layer. PTHrP has distinct temporospatial patterns of expression in the periosteum, one hot spot being the metaphyseal periosteum in growing animals. PTHrP is also strongly expressed in a number of fibrous insertion sites. In the tibia these include the insertions of the medial collateral ligament (MCL) and the semimembranosus (SM). In young animals, the MCL and SM sites display a combination of underlying osteoblastic and osteoclastic activities that may be associated with the migration of these entheses during linear growth. Unloading the MCL and SM by tail suspension or surgical transection leads to a marked decrease in PTHrP/lacZ expression and a rapid disappearance of the subjacent osteoblastic population. We have not been able to identify PTHrP-lacZ in any internal bone cell population in the PTHrP-lacZ knockin mouse in either a CD-1 or C57Bl/6 genetic background. In conclusion, we have identified PTHrP expression in surface structures that connect skeletal elements to each other and to surrounding muscle but not in intrinsic internal bone cell populations. In these surface sites, mechanical force seems to be an important regulator of PTHrP expression. In selected sites and/or at specific times, PTHrP may influence the recruitment and/or activities of underlying bone cell populations.  相似文献   

2.
Parathyroid hormone-related peptide (PTHrP) and insulin-like growth factor I (IGF-I) are both involved in the regulation of bone and cartilage metabolisms and their interaction has been reported in osteoblasts. To investigate the interaction of PTHrP and IGF-I during fracture healing, the expression of mRNA for PTHrP and IGF-I, and receptors for PTH/PTHrP and IGF were examined during rat femoral fracture healing using an in situ hybridization method and an immunohistochemistry method, respectively. During intramembranous ossification, PTHrP mRNA, IGF-I mRNA and IGF receptors were detected in preosteoblasts, differentiated osteoblasts and osteocytes in the newly formed trabecular bone. PTH/PTHrP receptors were markedly detected in osteoblasts and osteocytes, but only barely so in preosteoblasts. During cartilaginous callus formation, PTHrP mRNA was expressed by mesenchymal cells and proliferating chondrocytes. PTH/PTHrP receptors were detected in proliferating chondrocytes and early hypertrophic chondrocytes. IGF-I mRNA and IGF receptor were co-expressed by mesenchymal cells, proliferating chondrocytes, and early hypertrophic chondrocytes. At the endochondral ossification front, osteoblasts were positive for PTHrP and IGF-I mRNA as well as their receptors. These results suggest that IGF-I is involved in cell proliferation or differentiation in mesenchymal cells, periosteal cells, osteoblasts and chondrocytes in an autocrine and/or paracrine fashion. Furthermore, PTHrP may be involved in primary callus formation presumably co-operating with IGF-I in osteoblasts and osteocytes, and by regulating chondrocyte differentiation in endochondral ossification.  相似文献   

3.
Bone morphogenetic protein-7, or BMP-7 (OP-1), is highly expressed in the perichondrium of embryonic long bones and is thought to play a role in endochondral ossification. Previously we have shown that BMP-7 inhibits terminal chondrocyte differentiation; that is, chondrocyte hypertrophy and mineralization in cultured explants of embryonic mouse metatarsals. However, the mechanism of this inhibition and the target cells of BMP-7 are still unknown. In this study we show that BMP-7 inhibits terminal chondrocyte differentiation indirectly, via an interaction with the periarticular region of the explants. This region also expresses parathyroid hormone-related peptide (PTHrP). PTHrP regulates terminal chondrocyte differentiation by inhibiting hypertrophic differentiation of prehypertrophic chondrocytes. The differentiating center in turn regulates PTHrP expression via a feedback loop involving Indian hedgehog (Ihh), which is expressed in the prehypertrophic chondrocytes. Ihh is thought to act on perichondrial cells, which in turn start to express an as yet unknown mediator that stimulates PTHrP expression in the periarticular region. It has been suggested that this factor belongs to the BMP-family. We investigated whether the inhibition of terminal chondrocyte differentiation by BMP-7 was due to upregulation of the PTHrP-Ihh feedback loop and whether BMP-7 was the unknown factor in the loop. Here we show that exogenous BMP-7 did not upregulate the mRNA expression of PTHrP, Ihh, or the PTH/PTHrP receptor in cultured wild-type embryonic metatarsals. Furthermore, BMP-7 could still inhibit terminal chondrocyte differentiation in the metatarsals of PTHrP-deficient (PTHrP-/-) mouse embryos. These data indicate that the BMP-7-mediated inhibition of terminal chondrocyte differentiation in vitro is independent of the PTHrP-Ihh feedback loop. We concluded that BMP-7 modulates terminal chondrocyte differentiation and cartilage mineralization of fetal bone explants in vitro via as yet unknown inhibitory factor(s) produced in the periarticular region.  相似文献   

4.
Periosteal tissue is a source of growth factors and of osteochondral progenitor cells which makes it suitable for implantation in chondral defects as known in autologous chondrocyte implantation. The aim of this study was to determine the interaction between periosteal tissue and articular chondrocytes with respect to catabolic effectors such as matrix metalloproteinases (MMPs) and IL‐6. Human articular chondrocytes were cultured for up to 28 days as micromass pellets in coculture either with physical contact to periosteal explants or allowing paracrine interactions only. Expression, secretion, and activation of MMPs and IL‐6 were analyzed in chondrocytes, periosteum, and culture supernatants. Both coculture conditions influence gene expression levels of MMPs and IL‐6 in a time‐, culture‐, and tissue‐dependent manner. Coculturing of periosteum with chondrocytes promotes gene expression and secretion of IL‐6. In periosteum, physical contact inhibits MMP‐2 and MMP‐13 gene expression while paracrine coculture induces expression of IL‐6, MMP‐2, ‐7, and ‐13. Pro‐MMP‐2, ‐7, and ‐13 were detected in supernatants of all culture regimens whereas pro‐MMP‐9 was secreted from periosteum only. As a balanced amount of MMP activity is likely required to achieve sufficient integration of the regenerate tissue with the surrounding healthy cartilage, an exceeding expression of proteinases might result in degradation, hypertrophy or rejection of the graft. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1576–1585, 2010  相似文献   

5.
Ectopic expression of Smurf2 in chondrocytes and perichondrial cells accelerated endochondral ossification by stimulating chondrocyte maturation and osteoblast development through upregulation of β‐catenin in Col2a1‐Smurf2 embryos. The mechanism underlying Smurf2‐mediated morphological changes during embryonic development may provide new mechanistic insights and potential targets for prevention and treatment of human osteoarthritis. Introduction : Our recent finding that adult Col2a1‐Smurf2 mice have an osteoarthritis‐like phenotype in knee joints prompted us to examine the role of Smurf2 in the regulation of chondrocyte maturation and osteoblast differentiation during embryonic endochondral ossification. Materials and Methods : We analyzed gene expression and morphological changes in developing limbs by immunofluorescence, immunohistochemistry, Western blot, skeletal preparation, and histology. A series of markers for chondrocyte maturation and osteoblast differentiation in developing limbs were examined by in situ hybridization. Results : Ectopic overexpression of Smurf2 driven by the Col2a1 promoter was detected in chondrocytes and in the perichondrium/periosteum of 16.5 dpc transgenic limbs. Ectopic Smurf2 expression in cells of the chondrogenic lineage inhibited chondrocyte differentiation and stimulated maturation; ectopic Smurf2 in cells of the osteoblastic lineage stimulated osteoblast differentiation. Mechanistically, this could be caused by a dramatic increase in the expression of β‐catenin protein levels in the chondrocytes and perichondrial/periosteal cells of the Col2a1‐Smurf2 limbs. Conclusions : Ectopic expression of Smurf2 driven by the Col2a1 promoter accelerated the process of endochondral ossification including chondrocyte maturation and osteoblast differentiation through upregulation of β‐catenin, suggesting a possible mechanism for development of osteoarthritis seen in these mice.  相似文献   

6.
OBJECTIVE: Clinical cartilage repair with transplantation of cultured chondrocytes, the first described technique introduced in 1994, includes a periosteal membrane but today cells are also implanted without the periosteal combination. The aim of this study was to see if the periosteum had more than a biomechanical function and if the periosteum had a biological effect on the seeded cells tested in an agarose system in which the clonal growth in agarose and the external growth stimulation could be analysed. METHODS: Four different experiments were used to study the growth of human chondrocytes in agarose and the periosteal influence. Human chondrocytes were isolated and transferred to either primary or secondary agarose culture. After 4 weeks, the total number of clones >50 microm was counted. Cocultures of chondrocytes and periosteal tissue, cultures of chondrocytes with conditioned medium from chondrocytes, periosteal cells and fibroblast were used to study a potential stimulatory effect on growth and different cytokines and growth factors were analysed. RESULTS: It was found that the human chondrocytes had different growth properties in agarose with the formation of four different types of clones: a homogenous clone without matrix production, a homogenous clone with matrix production, a differentiated clone with matrix production and finally a differentiated clone without matrix production. The periosteum exerted a paracrine effect on cultured chondrocytes in agarose resulting in a higher degree of cloning. The chondrocytes produced significant amounts of interleukin (IL)-6, IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor (TGF)-beta. The periosteum produced significant amounts of IL-6, IL-8 and TGF-beta. Cocultures of chondrocytes and periosteum demonstrated a potentiation of IL-6 and IL-8 release but not of TGF-beta and GM-CSF. CONCLUSION: Articular chondrocytes are able to form clones of different properties in agarose and the periosteum has a capacity of stimulating chondrocyte clonal growth and differentiation and secretes significant amounts of IL-6, IL-8, GM-CSF and TGF-beta. It may be that the repair of cartilage defects with seeded chondrocytes could benefit from the combination with a periosteal graft. The production of TGF-beta by implanted chondrocytes could influence the chondrogenic cells in the periosteum to start a periosteal chondrogenesis and together with the matrix from implanted chondrocyte production, a repair of cartilaginous appearance may develop; a dual chondrogenic response is possible.  相似文献   

7.
Parathyroid hormone-related protein (PTHrP) is widely expressed in the fibrous outer layer of the periosteum (PO), and the PTH/PTHrP type I receptor (PTHR1) is expressed in the inner PO cambial layer. The cambial layer gives rise to the PO osteoblasts (OBs) and osteoclasts (OCs) that model/remodel the cortical bone surface during development as well as during fracture healing. PTHrP has been implicated in the regulation of PO modeling during development, but nothing is known as regards a role of PTHrP in this location during fracture healing.We propose that PTHrP in the fibrous layer of the PO may be a key regulatory factor in remodeling bone formation during fracture repair. We first assessed whether PTHrP expression in the fibrous PO is associated with PO osteoblast induction in the subjacent cambial PO using a tibial fracture model in PTHrP-lacZ mice. Our results revealed that both PTHrP expression and osteoblast induction in PO were induced 3 days post-fracture. We then investigated a potential functional role of PO PTHrP during fracture repair by performing tibial fracture surgery in 10-week-old CD1 control and PTHrP conditional knockout (PTHrP cKO) mice that lack PO PTHrP. We found that callus size and formation as well as woven bone mineralization in PTHrP cKO mice were impaired compared to that in CD1 mice. Concordant with these findings, functional enzyme staining revealed impaired OB formation and OC activity in the cKO mice.We conclude that deleting PO PTHrP impairs cartilaginous callus formation, maturation and ossification as well as remodeling during fracture healing. These data are the initial genetic evidence suggesting that PO PTHrP may induce osteoblastic activity and regulate fracture healing on the cortical bone surface.  相似文献   

8.
9.
Vessel invasion is an important step in cartilage replacement that leads to bone formation, and vascular endothelial growth factor (VEGF) has been implicated as a key player in this process. Although grafted periosteum undergoes endochondral ossification, little is known about the role of VEGF in this process. In the current study the authors investigated by immunohistochemical, histochemical, and ultrastructural techniques the localization of VEGF during bone formation in periosteal grafts. At day 14 after grafting the tibias of Japanese white rabbits, periosteal cells in the grafted tissue had differentiated into chondrocytes to form cartilage. Some chondrocytes were immunopositive for VEGF expression, and subsequent vessel invasion occurred predominantly in these VEGF-positive areas. At day 45, the cartilage invaded by blood vessels had been replaced by newly formed bone. These findings suggest that VEGF is associated with the process of blood vessel invasion into cartilage before bone replacement in endochondral ossification from grafted periosteum.  相似文献   

10.
The skeletal system is an important target for lead toxicity. One of the impacts of lead in the skeleton, the inhibition of axial bone development, is likely due to its effect on the normal progression of chondrocyte maturation that is central to the process of endochondral ossification. Since little is known about the effect of lead on chondrocyte function/maturation, its impact on (1) growth factor-induced proliferation, (2) expression of maturation-specific markers type X collagen and BMP-6, and (3) the activity of AP-1 and NF-kappaB was examined in chick growth plate and sternal chondrocyte models. Exposure to lead alone (1-30 microM) resulted in a dose-dependent inhibition of thymidine incorporation in growth plate chondrocytes. Lead also blunted the stimulation of thymidine incorporation by parathyroid hormone-related peptide (PTHrP) and transforming growth factor-beta1 (TGF-beta1), two critical regulators of chondrocyte maturation. Lead (1 and 10 microM), TGF-beta1 (3 ng/ml) and PTHrP (10(-7) M) all significantly inhibited the expression of type X collagen, a marker of chondrocyte terminal differentiation. However, when in combination, lead completely reversed the inhibition of type X collagen by PTHrP and TGF-beta1. The effect of lead on BMP-6. an inducer of terminal differentiation. was also examined. Independently, lead and TGF-beta1 were without effect on BMP-6 expression, but PTHrP significantly suppressed it. Comparatively, lead did not alter PTHrP-mediated suppression of BMP-6, but in combination with TGF-beta1. BMP-6 expression was increased 3-fold. To determine if lead effects on signaling might play a role in facilitating these events, the impact of lead on NF-kappaB and AP-1 signaling was assessed using luciferase reporter constructs in sternal chondrocytes. Lead had no effect on the AP-1 reporter, but it dose-dependently inhibited the NF-kappaB reporter. PTHrP, which signals through AP-1, did not activate the NF-kappaB reporter and did not affect inhibition of this reporter by lead. In contrast, PTHrP activation of the AP-1 reporter was dose-dependently enhanced by lead. These findings, which establish that chondrocytes are important targets for lead toxicity, suggest that the effects of lead on bone growth are derived from its impact on the modulation of chondrocyte maturation by growth factors and second messenger signaling responses.  相似文献   

11.
Parathyroid hormone-related peptide (PTHrP), which frequently causes the humoral hypercalcemia of malignancy syndrome, is an autocrine/paracrine regulator of chondrocyte proliferation and differentiation that acts through the PTH/PTHrP receptor (PTH1R). PTHrP is generated in response to Indian hedgehog (Ihh), which mediates its actions through the membrane receptor patched, but interacts also with hedgehog-interacting protein (Hip). Mice lacking PTHrP show accelerated chondrocyte differentiation, and thus premature ossification of those bones that are formed through an endochondral process, and similar but more-severe abnormalities are observed in PTH1R-ablated animals. The mirror image of these skeletal findings, i.e., a severe delay in chondrocyte differentiation and endochondral ossification, is observed in transgenic mice that overexpress PTHrP under the control of the α1(II) procollagen promoter. Severe abnormalities in chondrocyte proliferation and differentiation are also observed in two genetic disorders in humans that are most likely caused by mutations in the PTH1R. Heterozygous PTH1R mutations that lead to constitutively activity were identified in Jansen metaphyseal chondrodysplasia, and homozygous or compound heterozygous mutations that lead to less-active or completely inactive receptors were identified in patients with Blomstrand lethal chondrodysplasia. Based on the growth plate abnormalities observed in these human disorders and in mice with abnormal expression of either PTHrP or the PTH1R, it appears plausible that impaired expression of PTHrP and/or its receptor contributes to the growth abnormalities in children with end-stage renal disease. In fact, mild-to-moderate renal failure leads in animals to a reduction in PTH1R expression in growth plates and impaired growth, but it remains uncertain whether this contributes to altered chondrocyte growth and differentiation. Received: 18 March 1999 / Revised: 21 December 1999 / Accepted: 29 December 1999  相似文献   

12.
13.
Endochondral ossification is a carefully coordinated developmental process that converts the cartilaginous model of the embryonic skeleton to bone with accompanying long bone growth. To identify genes that regulate this process we performed a complementary DNA (cDNA) subtractive hybridization of fetal bovine proliferative chondrocyte cDNA from epiphyseal cartilage cDNA. The subtracted product was used to screen a fetal bovine cartilage cDNA library. Ten percent of the clones identified encoded the bovine orthologue of the human ribosomal protein "QM." Northern and western blot analysis confirmed that QM was highly expressed by cells isolated from epiphyseal cartilage as opposed to proliferative chondrocytes. In contrast, no detectable difference in the expression of mRNA for the ribosomal protein S11 was detected. Immunohistochemical analysis of fetal bovine limb sections revealed that QM was not expressed by the majority of the epiphyseal chondrocytes but only by chondrocytes in close proximity to capillaries that had invaded the epiphyseal cartilage. Strongest QM expression was seen in osteoblasts in the diaphyseal region of the bone adjoining the growth plate, within the periosteum covering the growth plate and within secondary centers of ossification. Hypertrophic chondrocytes within the growth plate adjoining the periosteum also were positive for QM as were chondrocytes in the perichondrium adjoining the periosteum. In vitro investigation of the expression of QM revealed higher QM expression in nonmineralizing osteoblast and pericyte cultures as compared with mineralizing cultures. The in vivo and in vitro expression pattern of QM suggests that this protein may have a role in cell differentiation before mineralization.  相似文献   

14.
Growth plate chondrocytes integrate multiple signals during normal development. The type I BMP receptor ALK2 is expressed in cartilage and expression of constitutively active (CA) ALK2 and other activated type I BMP receptors results in maturation-independent expression of Ihh in chondrocytes in vitro and in vivo. The findings suggest that BMP signaling modulates the Ihh/PTHrP signaling pathway that regulates the rate of chondrocyte differentiation. INTRODUCTION: Bone morphogenetic proteins (BMPs) have an important role in vertebrate limb development. The expression of the BMP type I receptors BMPR-IA (ALK3) and BMPR-IB (ALK6) have been more completely characterized in skeletal development than ALK2. METHODS: ALK2 expression was examined in vitro in isolated chick chondrocytes and osteoblasts and in vivo in the developing chick limb bud. The effect of overexpression of CA ALK2 and the other type I BMP receptors on the expression of genes involved in chondrocyte maturation was determined. RESULTS: ALK2 was expressed in isolated chick osteoblasts and chondrocytes and specifically mediated BMP signaling. In the developing chick limb bud, ALK2 was highly expressed in mesenchymal soft tissues. In skeletal elements, expression was higher in less mature chondrocytes than in chondrocytes undergoing terminal differentiation. CA ALK2 misexpression in vitro enhanced chondrocyte maturation and induced Ihh. Surprisingly, although parathyroid hormone-related peptide (PTHrP) strongly inhibited CA ALK2 mediated chondrocyte differentiation, Ihh expression was minimally decreased. CA ALK2 viral infection in stage 19-23 limbs resulted in cartilage expansion with joint fusion. Enhanced periarticular expression of PTHrP and delayed maturation of the cartilage elements were observed. In the cartilage element, CA ALK2 misexpression precisely colocalized with the expression with Ihh. These findings were most evident in partially infected limbs where normal morphology was maintained. In contrast, BMP-6 had a normal pattern of differentiation-related expression. CA BMPR-IA and CA BMPR-IB overexpression similarly induced Ihh and PTHrP. CONCLUSIONS: The findings show that BMP signaling induces Ihh. Although the colocalization of the activated type I receptors and Ihh suggests a direct BMP-mediated signaling event, other indirect mechanisms may also be involved. Thus, while BMPs act directly on chondrocytes to induce maturation, this effect is counterbalanced in vivo by induction of the Ihh/PTHrP signaling loop. The findings suggest that BMPs are integrated into the Ihh/PTHrP signaling loop and that a fine balance of BMP signaling is essential for normal chondrocyte maturation and skeletal development.  相似文献   

15.
The WNT/β-catenin signaling pathway is a critical regulator of chondrocyte and osteoblast differentiation during multiple phases of cartilage and bone development. Although the importance of β-catenin signaling during the process of endochondral bone development has been previously appreciated using a variety of genetic models that manipulate β-catenin in skeletal progenitors and osteoblasts, genetic evidence demonstrating a specific role for β-catenin in committed growth-plate chondrocytes has been less robust. To identify the specific role of cartilage-derived β-catenin in regulating cartilage and bone development, we studied chondrocyte-specific gain- and loss-of-function genetic mouse models using the tamoxifen-inducible Col2Cre(ERT2) transgene in combination with β-catenin(fx(exon3)/wt) or β-catenin(fx/fx) floxed alleles, respectively. From these genetic models and biochemical data, three significant and novel findings were uncovered. First, cartilage-specific β-catenin signaling promotes chondrocyte maturation, possibly involving a bone morphogenic protein 2 (BMP2)-mediated mechanism. Second, cartilage-specific β-catenin facilitates primary and secondary ossification center formation via the induction of chondrocyte hypertrophy, possibly through enhanced matrix metalloproteinase (MMP) expression at sites of cartilage degradation, and potentially by enhancing Indian hedgehog (IHH) signaling activity to recruit vascular tissues. Finally, cartilage-specific β-catenin signaling promotes perichondrial bone formation possibly via a mechanism in which BMP2 and IHH paracrine signals synergize to accelerate perichondrial osteoblastic differentiation. The work presented here supports the concept that the cartilage-derived β-catenin signal is a central mediator for major events during endochondral bone formation, including chondrocyte maturation, primary and secondary ossification center development, vascularization, and perichondrial bone formation.  相似文献   

16.
Synthesis of cartilage by chondrocytes is an obligatory step for endochondral ossification. Global deletion of the Runx2 gene results in complete failure of the ossification process, but the underlying cellular and molecular mechanisms are not fully known. Here, we elucidated Runx2 regulatory control distinctive to chondrocyte and cartilage tissue by generating Runx2 exon 8 floxed mice. Deletion of Runx2 gene in chondrocytes caused failure of endochondral ossification and lethality at birth. The limbs of Runx2ΔE8/ΔE8 mice were devoid of mature chondrocytes, vasculature, and marrow. We demonstrate that the C‐terminus of Runx2 drives its biological activity. Importantly, nuclear import and DNA binding functions of Runx2 are insufficient for chondrogenesis. Molecular studies revealed that despite normal levels of Sox9 and PTHrP, chondrocyte differentiation and cartilage growth are disrupted in Runx2ΔE8/ΔE8 mice. Loss of Runx2 in chondrocytes also impaired osteoprotegerin‐receptor activator of NF‐κB ligand (OPG‐RANKL) signaling and chondroclast development. Dwarfism observed in Runx2 mutants was associated with the near absence of proliferative zone in the growth plates. Finally, we show Runx2 directly regulates a unique set of cell cycle genes, Gpr132, Sfn, c‐Myb, and Cyclin A1, to control proliferative capacity of chondrocyte. Thus, Runx2 is obligatory for both proliferation and differentiation of chondrocytes. © 2014 American Society for Bone and Mineral Research.  相似文献   

17.
Pigment epithelium-derived factor (PEDF) is a potent anti-angiogenic factor found in a wide range of fetal and adult tissues, where it is thought to play a role in the regulation of angiogenesis during development. The temporal expression of PEDF during endochondral bone formation has not previously been reported. In this study, we analysed the expression pattern of PEDF in growing mouse hindlimbs from newborn day one through to maturation at week 9, using immunohistochemistry and in situ hybridization. PEDF expression was demonstrated in chondrocytes within the resting, proliferative and upper hypertrophic zones of the epiphyseal growth plate. The pattern of expression was consistent throughout the developmental stages of the mouse. In addition, PEDF was expressed by osteoblasts lining the bone spicules in the ossification zone of metaphyseal bone, as well as by osteoblasts lining cortical periosteum. These novel results demonstrate that PEDF is developmentally expressed in both cartilage and bone cells during endochondral bone formation, and strongly suggest that it may play a regulatory role in the processes of chondrocyte and osteoblast differentiation, endochondral ossification, and bone remodelling during growth and development of long bones.  相似文献   

18.
OBJECTIVE: To determine the influence of osteoarthritic (OA) phenotype of subchondral osteoblasts on the phenotype of human chondrocytes. METHODS: Human chondrocytes were isolated from OA cartilage and cultured in alginate beads for 4 or 10 days in the absence or in the presence of osteoblasts in monolayer. The osteoblasts were either isolated from non-sclerotic (N) or sclerotic (SC) zones of human subchondral bone. Before co-culture, osteoblasts were incubated for 72 h with or without 1.7 ng/ml interleukin (IL)-1beta, 100 ng/ml IL-6 with its soluble receptor (50 ng/ml) or 10 ng/ml oncostatin M. SOX9, type I, II and X collagen (COL1, COL2, COL10), osteoblasts-stimulating factor (OSF)-1, bone alkaline phosphatase (ALP), parathyroid hormone related peptide (PTHrP) and its receptor (PTH-R) messenger RNA (mRNA) levels in chondrocytes were quantified by real-time polymerase chain reaction. RESULTS: In comparison with chondrocytes cultured alone in alginate beads, chondrocytes after 4 days in co-culture with N or SC osteoblasts expressed significantly less SOX9 and COL2 mRNA. The decrease of SOX9 and COL2 gene expression was significantly more pronounced in the presence of SC than in the presence of N osteoblasts (P<0.001). OSF-1 mRNA level in chondrocyte was increased by both N and SC osteoblasts, but to a larger extent by SC osteoblasts (P<0.001). PTHrP expression in chondrocytes was 21-fold increased by N osteoblasts but four-fold inhibited by SC osteoblasts. PTHrP secretion was also increased by N but reduced by SC osteoblasts. SC, but not N osteoblasts, induced a significant decrease of PTH-R gene expression in chondrocyte. In our experimental conditions, chondrocytes did not express COL1, COL10 or ALP, even after 10 days of co-culture with osteoblasts. CONCLUSIONS: In co-culture, SC subchondral osteoblasts decrease SOX9, COL2, PTHrP and PTH-R gene expression by chondrocytes but increase that of OSF-1. These findings suggest that SC osteoblasts could initiate chondrocyte phenotype shift towards hypertrophic differentiation and subsequently further matrix mineralization.  相似文献   

19.
《BONE》2013,57(2):304-311
Mechanical loading has been widely considered to be a crucial regulatory factor for growth plate development, but the exact mechanisms of this regulation are still not completely understood. In the growth plate, parathyroid hormone-related protein (PTHrP) regulates chondrocyte differentiation and longitudinal growth. Cyclic mechanical strain has been demonstrated to influence growth plate chondrocyte differentiation and metabolism, whereas the relationship between cyclic mechanical strain and PTHrP expression is not clear. The objective of this study was to investigate whether short-term cyclic tensile strain regulates PTHrP expression in postnatal growth plate chondrocytes in vitro and to explore whether the organization of cytoskeletal F-actin microfilaments is involved in this process. To this end, we obtained growth plate chondrocytes from 2-week-old Sprague–Dawley rats and sorted prehypertrophic and hypertrophic chondrocytes using immunomagnetic beads coated with anti-CD200 antibody. The sorted chondrocytes were subjected to cyclic tensile strain of varying magnitude and duration at a frequency of 0.5 Hz. We found that cyclic strain regulates PTHrP expression in a magnitude- and time-dependent manner. Incubation of chondrocytes with cytochalasin D, an actin microfilament-disrupting reagent, blocked the induction of PTHrP expression in response to strain. The results suggest that short-term cyclic tensile strain induces PTHrP expression in postnatal growth plate prehypertrophic and hypertrophic chondrocytes and that PTHrP expression by these chondrocytes may subsequently affect growth plate development. The results also support the idea that the organization of cytoskeletal F-actin microfilaments plays an important role in mechanotransduction.  相似文献   

20.
Chondrogenesis can occur during a bone repair process, which is related to several growth factors. Transforming growth factor beta 1 (TGF-beta 1) downregulates the expression of type II collagen by chondrocytes in vitro, but injection of TGF-beta 1 into the periosteum in vivo increases type II collagen mRNA levels and initiates chondrogenesis. We examined the effect of TGF-beta 1 on collagen gene expression in a bovine periosteum-derived cell culture system to evaluate its direct effect on the periosteum. Cultured cells expressed alkaline phosphatase and collagen pro alpha 1(I) and pro alpha 1(II) mRNAs. A low level of type II collagen synthesis was demonstrated by immunoprecipitation. TGF-beta 1 had no effect on periosteal cell proliferation. Expression of collagen pro alpha 1(I) mRNA did not change with TGF-beta 1 treatment, but alkaline phosphatase mRNA showed a dose-dependent decrease. Expression of collagen pro alpha 1(II) mRNA was stimulated 2.7-fold by TGF-beta 1. TGF-beta 1 also caused a 2.6-fold increase in type II collagen synthesis by immunoprecipitation. These findings indicate that TGF-beta 1 is an enhancer of the expression of the chondrocyte phenotype of the periosteal cells and suggest that TGF-beta 1 is important in initiating and promoting cartilage formation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号