首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melatonin confers cardioprotective effect against myocardial ischemia/reperfusion (MI/R) injury by reducing oxidative stress. Activation of silent information regulator 1 (SIRT1) signaling also reduces MI/R injury. We hypothesize that melatonin may protect against MI/R injury by activating SIRT1 signaling. This study investigated the protective effect of melatonin treatment on MI/R heart and elucidated its potential mechanisms. Rats were exposed to melatonin treatment in the presence or the absence of the melatonin receptor antagonist luzindole or SIRT1 inhibitor EX527 and then subjected to MI/R operation. Melatonin conferred a cardioprotective effect by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase release, upregulating SIRT1, Bcl‐2 expression and downregulating Bax, caspase‐3 and cleaved caspase‐3 expression. Melatonin treatment also resulted in reduced myocardium superoxide generation, gp91phox expression, malondialdehyde level, and increased myocardium superoxide dismutase (SOD) level, which indicate that the MI/R‐induced oxidative stress was significantly attenuated. However, these protective effects were blocked by EX527 or luzindole, indicating that SIRT1 signaling and melatonin receptor may be specifically involved in these effects. In summary, our results demonstrate that melatonin treatment attenuates MI/R injury by reducing oxidative stress damage via activation of SIRT1 signaling in a receptor‐dependent manner.  相似文献   

2.
Optic atrophy 1 (OPA1)‐related mitochondrial fusion and mitophagy are vital to sustain mitochondrial homeostasis under stress conditions. However, no study has confirmed whether OPA1‐related mitochondrial fusion/mitophagy is activated by melatonin and, consequently, attenuates cardiomyocyte death and mitochondrial stress in the setting of cardiac ischemia‐reperfusion (I/R) injury. Our results indicated that OPA1, mitochondrial fusion, and mitophagy were significantly repressed by I/R injury, accompanied by infarction area expansion, heart dysfunction, myocardial inflammation, and cardiomyocyte oxidative stress. However, melatonin treatment maintained myocardial function and cardiomyocyte viability, and these effects were highly dependent on OPA1‐related mitochondrial fusion/mitophagy. At the molecular level, OPA1‐related mitochondrial fusion/mitophagy, which was normalized by melatonin, substantially rectified the excessive mitochondrial fission, promoted mitochondria energy metabolism, sustained mitochondrial function, and blocked cardiomyocyte caspase‐9‐involved mitochondrial apoptosis. However, genetic approaches with a cardiac‐specific knockout of OPA1 abolished the beneficial effects of melatonin on cardiomyocyte survival and mitochondrial homeostasis in vivo and in vitro. Furthermore, we demonstrated that melatonin affected OPA1 stabilization via the AMPK signaling pathway and that blockade of AMPK repressed OPA1 expression and compromised the cardioprotective action of melatonin. Overall, our results confirm that OPA1‐related mitochondrial fusion/mitophagy is actually modulated by melatonin in the setting of cardiac I/R injury. Moreover, manipulation of the AMPK‐OPA1‐mitochondrial fusion/mitophagy axis via melatonin may be a novel therapeutic approach to reduce cardiac I/R injury.  相似文献   

3.
Myocardial contractile dysfunction is associated with an increase in mitochondrial fission in patients with diabetes. However, whether mitochondrial fission directly promotes diabetes‐induced cardiac dysfunction is still unknown. Melatonin exerts a substantial influence on the regulation of mitochondrial fission/fusion. This study investigated whether melatonin protects against diabetes‐induced cardiac dysfunction via regulation of mitochondrial fission/fusion and explored its underlying mechanisms. Here, we show that melatonin prevented diabetes‐induced cardiac dysfunction by inhibiting dynamin‐related protein 1 (Drp1)‐mediated mitochondrial fission. Melatonin treatment decreased Drp1 expression, inhibited mitochondrial fragmentation, suppressed oxidative stress, reduced cardiomyocyte apoptosis, improved mitochondrial function and cardiac function in streptozotocin (STZ )‐induced diabetic mice, but not in SIRT 1?/? diabetic mice. In high glucose‐exposed H9c2 cells, melatonin treatment increased the expression of SIRT 1 and PGC ‐1α and inhibited Drp1‐mediated mitochondrial fission and mitochondria‐derived superoxide production. In contrast, SIRT 1 or PGC ‐1α siRNA knockdown blunted the inhibitory effects of melatonin on Drp1 expression and mitochondrial fission. These data indicated that melatonin exerted its cardioprotective effects by reducing Drp1‐mediated mitochondrial fission in a SIRT 1/PGC ‐1α‐dependent manner. Moreover, chromatin immunoprecipitation analysis revealed that PGC ‐1α directly regulated the expression of Drp1 by binding to its promoter. Inhibition of mitochondrial fission with Drp1 inhibitor mdivi‐1 suppressed oxidative stress, alleviated mitochondrial dysfunction and cardiac dysfunction in diabetic mice. These findings show that melatonin attenuates the development of diabetes‐induced cardiac dysfunction by preventing mitochondrial fission through SIRT 1‐PGC 1α pathway, which negatively regulates the expression of Drp1 directly. Inhibition of mitochondrial fission may be a potential target for delaying cardiac complications in patients with diabetes.  相似文献   

4.
Targeting mitochondrial quality control with melatonin has been found promising for attenuating diabetic cardiomyopathy (DCM), although the underlying mechanisms remain largely undefined. Activation of SIRT6 and melatonin membrane receptors exerts cardioprotective effects while little is known about their roles during DCM. Using high‐fat diet‐streptozotocin‐induced diabetic rat model, we found that prolonged diabetes significantly decreased nocturnal circulatory melatonin and heart melatonin levels, reduced the expressions of cardiac melatonin membrane receptors, and decreased myocardial SIRT6 and AMPK‐PGC‐1α‐AKT signaling. 16 weeks of melatonin treatment inhibited the progression of DCM and the following myocardial ischemia‐reperfusion (MI/R) injury by reducing mitochondrial fission, enhancing mitochondrial biogenesis and mitophagy via re‐activating SIRT6 and AMPK‐PGC‐1α‐AKT signaling. After the induction of diabetes, adeno‐associated virus carrying SIRT6‐specific small hairpin RNA or luzindole was delivered to the animals. We showed that SIRT6 knockdown or antagonizing melatonin receptors abolished the protective effects of melatonin against mitochondrial dysfunction as evidenced by aggravated mitochondrial fission and reduced mitochondrial biogenesis and mitophagy. Additionally, SIRT6 shRNA or luzindole inhibited melatonin‐induced AMPK‐PGC‐1α‐AKT activation as well as its cardioprotective actions. Collectively, we demonstrated that long‐term melatonin treatment attenuated the progression of DCM and reduced myocardial vulnerability to MI/R injury through preserving mitochondrial quality control. Melatonin membrane receptor‐mediated SIRT6‐AMPK‐PGC‐1α‐AKT axis played a key role in this process. Targeting SIRT6 with melatonin treatment may be a promising strategy for attenuating DCM and reducing myocardial vulnerability to ischemia‐reperfusion injury in diabetic patients.  相似文献   

5.
Mesenchymal stem cells (MSCs) represent an attractive source for stem cell‐based regenerative therapy, but they are vulnerable to oxidative stress‐induced premature senescence in pathological conditions. We previously reported antioxidant and antiarthritic effects of melatonin on MSCs against proinflammatory cytokines. In this study, we hypothesized that melatonin could protect MSCs from premature senescence induced by hydrogen peroxide (H2O2) via the silent information regulator type 1 (SIRT1)‐dependent pathway. In response to H2O2 at a sublethal concentration of 200 μm , human bone marrow‐derived MSCs (BM‐MSCs) underwent growth arrest and cellular senescence. Treatment with melatonin before H2O2 exposure cannot significantly prevent premature senescence; however, treatment with melatonin subsequent to H2O2 exposure successfully reversed the senescent phenotypes of BM‐MSCs in a dose‐dependent manner. This result was made evident by improved cell proliferation, decreased senescence‐associated β‐galactosidase activity, and the improved entry of proliferating cells into the S phase. In addition, treatment with 100 μm melatonin restored the osteogenic differentiation potential of BM‐MSCs that was inhibited by H2O2‐induced premature senescence. We also found that melatonin attenuated the H2O2‐stimulated phosphorylation of p38 mitogen‐activated protein kinase, decreased expression of the senescence‐associated protein p16INK4α, and increased SIRT1. Further molecular experiments revealed that luzindole, a nonselective antagonist of melatonin receptors, blocked melatonin‐mediated antisenescence effects. Inhibition of SIRT1 by sirtinol counteracted the protective effects of melatonin, suggesting that melatonin reversed the senescence in cells through the SIRT1‐dependent pathway. Together, these findings lay new ground for understanding oxidative stress‐induced premature senescence and open perspectives for therapeutic applications of melatonin in stem cell‐based regenerative medicine.  相似文献   

6.
Oxaliplatin, an organoplatinum compound, is used in the treatment of colorectal cancer, but its clinical use can be limited due to the development of peripheral neuropathy. Whilst mitochondrial dysfunction has been implicated as a major pathomechanism for oxaliplatin‐induced neurotoxicity, the prevention of autophagy may also aggravate neuronal cell death. Melatonin, a well‐known mitoprotectant and autophagy inducer, was used to examine its neuroprotective role in oxaliplatin‐induced peripheral neuropathy (OIPN). Melatonin prevented the loss of mitochondrial membrane potential (Ψm) and promoted neuritogenesis in oxaliplatin‐challenged neuro‐2a cells. It did not interfere with the cytotoxic activity of oxaliplatin in human colon cancer cell line, HT‐29. Melatonin treatment significantly alleviated oxaliplatin‐induced pain behavior and neuropathic deficits in rats. It also ameliorated nitro‐oxidative stress mediated by oxaliplatin, thus prevented nitrosylation of proteins and loss of antioxidant enzymes, and therefore, it improved mitochondrial electron transport chain function and maintained cellular bioenergetics by improving the ATP levels. The protective effects of melatonin were attributed to preventing oxaliplatin‐induced neuronal apoptosis by increasing the autophagy pathway (via LC3A/3B) in peripheral nerves and dorsal root ganglion (DRG). Hence, it preserved the epidermal nerve fiber density in oxaliplatin‐induced neuropathic rats. Taken together, we provide detailed molecular mechanisms for the neuroprotective effect of melatonin and suggest it has translational potential for oxaliplatin‐induced neuropathy.  相似文献   

7.
Mitochondrial dysfunction and oxidative stress are involved in the pathogenesis of Parkinson's disease (PD). Mitochondrial morphology is dynamic and precisely regulated by the mitochondrial fission and fusion machinery. Aberrant mitochondrial fragmentation controlled by the mitochondrial fission protein, dynamin‐related protein 1 (Drp1), may result in cell death. Our previous results showed that melatonin protected neurons by inhibiting oxidative stress in a 1‐methyl‐4‐phenylpyridinium (MPP+)‐induced PD model. However, the effect of melatonin on mitochondrial dynamics remains uncharacterized. Herein, we investigated the effect of melatonin and the role of Drp1 on MPP+‐induced mitochondrial fission in rat primary cortical neurons. We found that MPP+ induced a rapid increase in the ratio of GSSG:total glutathione (a marker of oxidative stress) and mitochondrial fragmentation, Drp1 upregulation within 4 hours, and finally resulted in neuron loss 48 hours after the treatment. Neurons overexpressing wild‐type Drp1 promoted mitochondrial and nuclear fragmentation; however, neurons overexpressing dominant‐negative Drp1K38A or cotreated with melatonin exhibited significantly reduced MPP+‐induced mitochondrial fragmentation and neuron death. Moreover, melatonin cotreatment prevented an MPP+‐induced high ratio of GSSG and mitochondrial Drp1 upregulation. The prevention of mitochondrial fission by melatonin was not found in neurons transfected with wild‐type Drp1. These results provide a new insight that the neuroprotective effect of melatonin against MPP+ toxicity is mediated by inhibiting the oxidative stress and Drp1‐mediated mitochondrial fragmentation.  相似文献   

8.
Sirtuins are a family of highly evolutionarily conserved nicotinamide adenine nucleotide‐dependent histone deacetylases. Sirtuin‐3 (SIRT3) is a member of the sirtuin family that is localized primarily to the mitochondria and protects against oxidative stress‐related diseases, including myocardial ischemia/reperfusion (MI/R) injury. Melatonin has a favorable effect in ameliorating MI/R injury. We hypothesized that melatonin protects against MI/R injury by activating the SIRT3 signaling pathway. In this study, mice were pretreated with or without a selective SIRT3 inhibitor and then subjected to MI/R operation. Melatonin was administered intraperitoneally (20 mg/kg) 10 minutes before reperfusion. Melatonin treatment improved postischemic cardiac contractile function, decreased infarct size, diminished lactate dehydrogenase release, reduced the apoptotic index, and ameliorated oxidative damage. Notably, MI/R induced a significant decrease in myocardial SIRT3 expression and activity, whereas the melatonin treatment upregulated SIRT3 expression and activity, and thus decreased the acetylation of superoxide dismutase 2 (SOD2). In addition, melatonin increased Bcl‐2 expression and decreased Bax, Caspase‐3, and cleaved Caspase‐3 levels in response to MI/R. However, the cardioprotective effects of melatonin were largely abolished by the selective SIRT3 inhibitor 3‐(1H‐1,2,3‐triazol‐4‐yl)pyridine (3‐TYP), suggesting that SIRT3 plays an essential role in mediating the cardioprotective effects of melatonin. In vitro studies confirmed that melatonin also protected H9c2 cells against simulated ischemia/reperfusion injury (SIR) by attenuating oxidative stress and apoptosis, while SIRT3‐targeted siRNA diminished these effects. Taken together, our results demonstrate for the first time that melatonin treatment ameliorates MI/R injury by reducing oxidative stress and apoptosis via activating the SIRT3 signaling pathway.  相似文献   

9.
Mesenchymal stem cells (MSCs)‐based therapy provides a promising therapy for the ischemic heart disease (IHD). However, engrafted MSCs are subjected to acute cell death in the ischemic microenvironment, characterized by excessive inflammation and oxidative stress in the host's infarcted myocardium. Melatonin, an indole, which is produced by many organs including pineal gland, has been shown to protect bone marrow MSCs against apoptosis although the mechanism of action remains elusive. Using a murine model of myocardial infarction (MI), this study was designed to evaluate the impact of melatonin on adipose‐derived mesenchymal stem cells (AD‐MSCs)‐based therapy for MI and the underlying mechanism involved with a focus on silent information regulator 1(SIRT1) signaling. Our results demonstrated that melatonin promoted functional survival of AD‐MSCs in infarcted heart and provoked a synergetic effect with AD‐MSCs to restore heart function. This in vivo effect of melatonin was associated with alleviated inflammation, apoptosis, and oxidative stress in infarcted heart. In vitro studies revealed that melatonin exert cytoprotective effects on AD‐MSCs against hypoxia/serum deprivation (H/SD) injury via attenuating inflammation, apoptosis, and oxidative stress. Mechanistically, melatonin enhanced SIRT1 signaling, which was accompanied with the increased expression of anti‐apoptotic protein Bcl2, and decreased the expression of Ac‐FoxO1, Ac‐p53, Ac‐NF‐ΚB, and Bax. Taken together, our findings indicated that melatonin facilitated AD‐MSCs‐based therapy in MI, possibly through promoting survival of AD‐MSCs via SIRT1 signaling. Our data support the promise of melatonin as a novel strategy to improve MSC‐based therapy for IHD, possibly through SIRT1 signaling evocation.  相似文献   

10.
11.
Stress hyperglycemia is commonly observed in patients suffering from ischemic heart disease. It not only worsens cardiovascular prognosis but also attenuates the efficacies of various cardioprotective agents. This study aimed to investigate the protective effect of melatonin against myocardial ischemia‐reperfusion (MI/R) injury in acute hyperglycemic state with a focus on Notch1/Hes1/Akt signaling and intracellular thioredoxin (Trx) system. Sprague Dawley rats were subjected to MI/R surgery and high‐glucose (HG, 500 g/L) infusion (4 mL/kg/h) to induce temporary hyperglycemia. Rats were treated with or without melatonin (10 mg/kg/d) during the operation. Furthermore, HG (33 mmol/L)‐incubated H9c2 cardiomyoblasts were treated in the presence or absence of luzindole (a competitive melatonin receptor antagonist), DAPT (a γ‐secretase inhibitor), LY294002 (a PI3‐kinase/Akt inhibitor), or thioredoxin‐interacting protein (Txnip) adenoviral vectors. We found that acute hyperglycemia aggravated MI/R injury by suppressing Notch1/Hes1/Akt signaling and intracellular Trx activity. Melatonin treatment effectively ameliorated MI/R injury by reducing infarct size, myocardial apoptosis, and oxidative stress. Moreover, melatonin also markedly enhanced Notch1/Hes1/Akt signaling and rescued intracellular Trx system by upregulating Notch1, N1ICD, Hes1, and p‐Akt expressions, increasing Trx activity, and downregulating Txnip expression. However, these effects were blunted by luzindole, DAPT, or LY294002. Additionally, Txnip overexpression not only decreased Trx activity, but also attenuated the cytoprotective effect of melatonin. We conclude that impaired Notch1 signaling aggravates MI/R injury in acute hyperglycemic state. Melatonin rescues Trx system by reducing Txnip expression via Notch1/Hes1/Akt signaling in a membrane receptor‐dependent manner. Its role as a prophylactic/therapeutic drug deserves further clinical study.  相似文献   

12.
Mechanical trauma (MT ) causes myocardial injury and cardiac dysfunction. However, the underlying mechanism remains largely unclear. This study investigated the role of mitochondrial dynamics in post‐traumatic cardiac dysfunction and the protective effects of melatonin. Adult male Sprague Dawley rats were subjected to 5‐minute rotations (200 revolutions at a rate of 40 rpm) to induce MT model. Melatonin was administrated intraperitoneally 5 minute after MT . Mitochondrial morphology, myocardial injury, and cardiac function were determined in vivo. There was smaller size of mitochondria and increased number of mitochondria per μm2 in the hearts after MT when the secondary myocardial injury was induced. Melatonin treatment at the dose of 30 mg/kg reduced serine 616 phosphorylation of Drp1 and inhibited mitochondrial Drp1 translocation and mitochondrial fission in the hearts of rats subjected to MT , which contributed to the reduction of myocardial injury and the improvement of cardiac function. In vitro, H9c2 cells cultured in 20% traumatic plasma (TP ) for 12 hour showed enhanced mitochondrial fission, mitochondrial membrane potential (?Ψm) loss, mitochondrial cytochrome c release, and decreased mitochondrial complex I‐IV activities. Pretreatment with melatonin (100 μmol/L) efficiently inhibited TP ‐induced mitochondrial fission, ?Ψm loss, cytochrome c release, and improved mitochondrial function. Melatonin's protective effects were attributed to its role in suppressing plasma TNF ‐α overproduction, which was responsible for Drp1‐mediated mitochondrial fission. Taken together, our results demonstrate for the first time that abnormal mitochondrial dynamics is involved in post‐traumatic cardiac dysfunction. Melatonin has significant pharmacological potential in protecting against MT ‐induced cardiac dysfunction by preventing excessive mitochondrial fission.  相似文献   

13.
Cadmium (Cd) is a persistent environmental toxin and occupational pollutant that is considered to be a potential risk factor in the development of neurodegenerative diseases. Abnormal mitochondrial dynamics are increasingly implicated in mitochondrial damage in various neurological pathologies. The aim of this study was to investigate whether the disturbance of mitochondrial dynamics contributed to Cd‐induced neurotoxicity and whether melatonin has any neuroprotective properties. After cortical neurons were exposed to 10 μM cadmium chloride (CdCl2) for various periods (0, 3, 6, 12, and 24 hr), the morphology of their mitochondria significantly changed from the normal tubular networks into punctuated structures within 3 hr. Following this pronounced mitochondrial fragmentation, Cd treatment led to signs of mitochondrial dysfunction, including excess reactive oxygen species (ROS) production, decreased ATP content, and mitochondrial membrane potential (?Ψm) loss. However, 1 mM melatonin pretreatment efficiently attenuated the Cd‐induced mitochondrial fragmentation, which improved the turnover of mitochondrial function. In the brain tissues of rats that were intraperitoneally given 1 mg/kg CdCl2 for 7 days, melatonin also ameliorated excessive mitochondrial fragmentation and mitochondrial damage in vivo. Melatonin's protective effects were attributed to its roles in preventing cytosolic calcium ([Ca2+]i) overload, which blocked the recruitment of Drp1 from the cytoplasm to the mitochondria. Taken together, our results are the first to demonstrate that abnormal mitochondrial dynamics is involved in cadmium‐induced neurotoxicity. Melatonin has significant pharmacological potential in protecting against the neurotoxicity of Cd by blocking the disbalance of mitochondrial fusion and fission.  相似文献   

14.
Melatonin has a number of beneficial metabolic actions and reduced levels of melatonin may contribute to type 2 diabetes. The present study investigated the metabolic pathways involved in the effects of melatonin on mitochondrial function and insulin resistance in rat skeletal muscle. The effect of melatonin was tested both in vitro in isolated rats skeletal muscle cells and in vivo using pinealectomized rats (PNX). Insulin resistance was induced in vitro by treating primary rat skeletal muscle cells with palmitic acid for 24 hr. Insulin‐stimulated glucose uptake was reduced by palmitic acid followed by decreased phosphorylation of AKT which was prevented my melatonin. Palmitic acid reduced mitochondrial respiration, genes involved in mitochondrial biogenesis and the levels of tricarboxylic acid cycle intermediates whereas melatonin counteracted all these parameters in insulin‐resistant cells. Melatonin treatment increases CAMKII and p‐CREB but had no effect on p‐AMPK. Silencing of CREB protein by siRNA reduced mitochondrial respiration mimicking the effect of palmitic acid and prevented melatonin‐induced increase in p‐AKT in palmitic acid‐treated cells. PNX rats exhibited mild glucose intolerance, decreased energy expenditure and decreased p‐AKT, mitochondrial respiration, and p‐CREB and PGC‐1 alpha levels in skeletal muscle which were restored by melatonin treatment in PNX rats. In summary, we showed that melatonin could prevent mitochondrial dysfunction and insulin resistance via activation of CREB‐PGC‐1 alpha pathway. Thus, the present work shows that melatonin play an important role in skeletal muscle mitochondrial function which could explain some of the beneficial effects of melatonin in insulin resistance states.  相似文献   

15.
Sepsis is a systemic inflammatory response to infection that causes severe neurological complications. Previous studies have suggested that melatonin is protective during sepsis. Additionally, silent information regulator 1 (SIRT1) was reported to be beneficial in sepsis. However, the role of SIRT1 signaling in the protective effect of melatonin against septic encephalopathy remains unclear. This study aimed to investigate the role of SIRT1 in the protective effect of melatonin. EX527, a SIRT1 inhibitor, was used to reveal the role of SIRT1 in melatonin's action. Cecal ligation and puncture or sham operation was performed in male C57BL/6J mice. Melatonin was administrated intraperitoneally (30 mg/kg). The survival rate of mice was recorded for the 7‐day period following the sham or CLP operation. The blood–brain barrier (BBB) integrity, brain water content, levels of inflammatory cytokines (TNF‐α, IL‐1β, and HMGB1), and the level of oxidative stress (superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA)) and apoptosis were assessed. The expression of SIRT1, Ac‐FoxO1, Ac‐p53, Ac‐NF‐κB, Bcl‐2, and Bax was detected by Western blot. The results suggested that melatonin improved survival rate, attenuated brain edema and neuronal apoptosis, and preserved BBB integrity. Melatonin decreased the production of TNF‐α, IL‐1β, and HMGB1. Melatonin increased the activity of SOD and CAT and decreased the MDA production. Additionally, melatonin upregulated the expression of SIRT1 and Bcl‐2 and downregulated the expression of Ac‐FoxO1, Ac‐p53, Ac‐NF‐κB, and Bax. However, the protective effects of melatonin were abolished by EX527. In conclusion, our results demonstrate that melatonin attenuates sepsis‐induced brain injury via SIRT1 signaling activation.  相似文献   

16.
The cardiac microvascular system, which is primarily composed of monolayer endothelial cells, is the site of blood supply and nutrient exchange to cardiomyocytes. However, microvascular ischemia/reperfusion injury (IRI) following percutaneous coronary intervention is a woefully neglected topic, and few strategies are available to reverse such pathologies. Here, we studied the effects of melatonin on microcirculation IRI and elucidated the underlying mechanism. Melatonin markedly reduced infarcted area, improved cardiac function, restored blood flow, and lower microcirculation perfusion defects. Histological analysis showed that cardiac microcirculation endothelial cells (CMEC) in melatonin‐treated mice had an unbroken endothelial barrier, increased endothelial nitric oxide synthase expression, unobstructed lumen, reduced inflammatory cell infiltration, and less endothelial damage. In contrast, AMP‐activated protein kinase α (AMPKα) deficiency abolished the beneficial effects of melatonin on microvasculature. In vitro, IRI activated dynamin‐related protein 1 (Drp1)‐dependent mitochondrial fission, which subsequently induced voltage‐dependent anion channel 1 (VDAC1) oligomerization, hexokinase 2 (HK2) liberation, mitochondrial permeability transition pore (mPTP) opening, PINK1/Parkin upregulation, and ultimately mitophagy‐mediated CMEC death. However, melatonin strengthened CMEC survival via activation of AMPKα, followed by p‐Drp1S616 downregulation and p‐Drp1S37 upregulation, which blunted Drp1‐dependent mitochondrial fission. Suppression of mitochondrial fission by melatonin recovered VDAC1‐HK2 interaction that prevented mPTP opening and PINK1/Parkin activation, eventually blocking mitophagy‐mediated cellular death. In summary, this study confirmed that melatonin protects cardiac microvasculature against IRI. The underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission‐VDAC1‐HK2‐mPTP‐mitophagy axis via activation of AMPKα.  相似文献   

17.
Abstract: Although melatonin treatment following trauma‐hemorrhage or ischemic reperfusion prevents organs from dysfunction and injury, the precise mechanism remains unknown. This study tested whether melatonin prevents liver injury following trauma‐hemorrhage involved the protein kinase B (Akt)‐dependent heme oxygenase (HO)‐1 pathway. After a 5‐cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure approximately 40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, melatonin (2 mg/kg), or melatonin plus phosphoinositide 3‐kinase (PI3K) inhibitor wortmannin (1 mg/kg). At 2 hr after trauma‐hemorrhage, the liver tissue myeloperoxidase activity, malondialdehyde, adenosine triphosphate, serum alanine aminotransferase, and aspartate aminotransferase levels were significantly increased compared with sham‐operated control. Trauma‐hemorrhage resulted in a significant decrease in the Akt activation in comparison with the shams (relative density, 0.526 ± 0.031 versus 1.012 ± 0.066). Administration of melatonin following trauma‐hemorrhage normalized liver Akt phosphorylation (0.993 ± 0.061), further increased mammalian target of rapamycin (mTOR) activation (5.263 ± 0.338 versus 2.556 ± 0.225) and HO‐1 expression (5.285 ± 0.325 versus 2.546 ± 0.262), and reduced cleaved caspase‐3 levels (2.155 ± 0.297 versus 5.166 ± 0.309). Coadministration of wortmannin abolished the melatonin‐mediated attenuation of the shock‐induced liver injury markers. Our results collectively suggest that melatonin prevents hemorrhagic shock‐induced liver injury in rats through an Akt‐dependent HO‐1 pathway.  相似文献   

18.
Fine particulate matter (PM2.5) exposure is correlated with the risk of developing cardiac fibrosis. Melatonin is a major secretory product of the pineal gland that has been reported to prevent fibrosis. However, whether melatonin affects the adverse health effects of PM2.5 exposure has not been investigated. Thus, this study was aimed to investigate the protective effect of melatonin against PM2.5‐accelerated cardiac fibrosis. The echocardiography revealed that PM2.5 had impaired both systolic and diastolic cardiac function in ApoE?/? mice. Histopathological analysis demonstrated that PM2.5 induced cardiomyocyte hypertrophy and fibrosis, particularly perivascular fibrosis, while the melatonin administration was effective in alleviating PM2.5‐induced cardiac dysfunction and fibrosis in mice. Results of electron microscopy and confocal scanning laser microscope confirmed that melatonin had restorative effects against impaired mitochondrial ultrastructure and augmented mitochondrial ROS generation in PM2.5‐treated group. Further investigation revealed melatonin administration could significantly reverse the PM2.5‐induced phenotypic modulation of cardiac fibroblasts into myofibroblasts. For the first time, our study found that melatonin effectively alleviates PM2.5‐induced cardiac dysfunction and fibrosis via inhibiting mitochondrial oxidative injury and regulating SIRT3‐mediated SOD2 deacetylation. Our findings indicate that melatonin could be a therapy medicine for prevention and treatment of air pollution‐associated cardiac diseases.  相似文献   

19.
Hypoxia is a crucial factor in tumor aggressiveness and resistance to therapy, especially in glioblastoma. Our previous results have shown that melatonin exerts antimigratory and anti‐invasive action in glioblastoma cells under normoxia. However, the effect of melatonin on migration and invasion of glioblastoma cells under hypoxic condition remains poorly understood. Here, we show that melatonin strongly reduced hypoxia‐mediated invasion and migration of U251 and U87 glioblastoma cells. In addition, we found that melatonin significantly blocked HIF‐1α protein expression and suppressed the expression of downstream target genes, matrix metalloproteinase 2 (MMP‐2) and vascular endothelial growth factor (VEGF). Furthermore, melatonin destabilized hypoxia‐induced HIF‐1α protein via its antioxidant activity against ROS produced by glioblastoma cells in response to hypoxia. Along with this, HIF‐1α silencing by small interfering RNA markedly inhibited glioblastoma cell migration and invasion, and this appeared to be associated with MMP‐2 and VEGF under hypoxia. Taken together, our findings suggest that melatonin suppresses hypoxia‐induced glioblastoma cell migration and invasion via inhibition of HIF‐1α. Considering the fact that overexpression of the HIF‐1α protein is often detected in glioblastoma multiforme, melatonin may prove to be a potent therapeutic agent for this tumor.  相似文献   

20.
Retinopathy of prematurity (ROP) is a retinopathy characterized by retinal neovascularization (RNV) occurring in preterm infants treated with high concentrations of oxygen and may lead to blindness in severe cases. Currently, anti‐VEGF therapy is a major treatment for ROP, but it is costly and may cause serious complications. The previous study has demonstrated that melatonin exerted neuroprotective effect against retinal ganglion cell death induced by hypoxia in neonatal rats. However, whether melatonin is anti‐angiogenic and neuroglial protective in the progression of ROP remains unknown. Thus, this study was to investigate the effect of melatonin on RNV and neuroglia in the retina of oxygen‐induced retinopathy (OIR) mice. The results showed a reduction in retinal vascular leakage in OIR mice after melatonin treatment. Besides, the size of retinal neovascular and avascular areas, the number of preretinal neovascular cell nuclei, and the number of proliferative vascular endothelial cells within the neovascular area were significantly decreased in mice treated with melatonin. After oxygen‐induced injury, the density of astrocytes was decreased, accompanied by morphologic and functional changes of astrocytes. Besides, retinal microglia were also activated. Meanwhile, the levels of inflammatory factors were elevated. However, these pathologic processes were all hindered by melatonin treatment. Furthermore, HIF‐1α‐VEGF pathway was activated in the retina of OIR mice, yet was suppressed in melatonin‐treated OIR mice retinas. In conclusion, melatonin prevented pathologic neovascularization, protected neuroglial cells, and exerts anti‐inflammation effect via inhibition of HIF‐1α‐VEGF pathway in OIR retinas, suggesting that melatonin could be a promising therapeutic agent for ROP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号