首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional MT1 and MT2 melatonin receptors in mammals   总被引:10,自引:0,他引:10  
Melatonin, dubbed the hormone of darkness, is known to regulate a wide variety of physiological processes in mammals. This review describes well-defined functional responses mediated through activation of high-affinity MT1 and MT2 proteinteoupled receptors viewed as potential targets for drug discovery. MT1 melatonin receptors modulate neuronal firing, arterial vasoconstriction, cell proliferation in cancer cells, and reproductive and metabolic functions. Ativation of MT2 melatonin receptors phase shift circadian rhythms of neuronal firing in the suprachiasmatic nucleus, inhibit dopamine release in retina, induce vasodilation and inhibition of leukocyte rolling in arterial beds, and enhance immune responses. The melatonin-mediated responses elicited by activation of MT1 and MT2 native melatonin receptors are dependent on circadian time, duration and mode of exposure to endogenous or exogenous melatonin, and functional receptor sensitivity. Together, these studies underscore the importance of carefully linking each melatonin receptor type to specific functional responses in target tissues to facilitate the design and development of novel therapeutic agent.  相似文献   

2.
Melatonin, a neurohormone that binds to two G protein-coupled receptors MT1 and MT2, is involved in pain regulation, but the distinct role of each receptor has yet to be defined. We characterized the nociceptive responses of mice with genetic inactivation of melatonin MT1 (MT1−/−), or MT2 (MT2−/−), or both MT1/MT2 (MT1−/−/MT2−/−) receptors in the hot plate test (HPT), and the formalin test (FT). In HPT and FT, MT1−/− display no differences compared to their wild-type littermates (CTL), whereas both MT2−/− and MT1−/−/MT2−/− mice showed a reduced thermal sensitivity and a decreased tonic nocifensive behavior during phase 2 of the FT in the light phase. The MT2 partial agonist UCM924 induced an antinociceptive effect in MT1−/− but not in MT2−/− and MT1−/−/MT2−/− mice. Also, the competitive opioid antagonist naloxone had no effects in CTL, whereas it induced a decrease of nociceptive thresholds in MT2−/− mice. Our results show that the genetic inactivation of melatonin MT2, but not MT1 receptors, produces a distinct effect on nociceptive threshold, suggesting that the melatonin MT2 receptor subtype is selectively involved in the regulation of pain responses.  相似文献   

3.
Abstract: 5‐Methoxycarbonylamino‐N‐acetyltryptamine (MCA‐NAT) has been initially described as a ligand at non MT1, non MT2 melatonin binding site (MT3) selective versus MT1 and MT2, two membrane melatonin receptors. MCA‐NAT activity has been reported by others in different models, in vivo, particularly in the intra‐ocular pressure (IOP) models in rabbits and monkeys. Its activity was systematically linked to either MT3 or to a new, yet unknown, melatonin receptor. In this article, the melatonin receptor pharmacology of MCA‐NAT is described. MCA‐NAT has micromolar range affinities at the melatonin receptors MT1 and MT2, while in functional studies, MCA‐NAT proved to be a powerful MT1/MT2 partial agonist in the sub‐micromolar range. These data strongly suggest that MCA‐NAT actions might be mediated by these receptors in vivo. Finally, as described by others, we show that MCA‐NAT is unable to elicit any type of receptor‐like functional responses from Chinese hamster ovary cells over‐expressing quinone reductase 2, the MT3.  相似文献   

4.
G protein-coupled receptors (GPCRs) transmit extracellular signals into cells by activating G protein- and β-arrestin-dependent pathways. Extracellular signal-regulated kinases (ERKs) play a central role in integrating these different linear inputs coming from a variety of GPCRs to regulate cellular functions. Here, we investigated human melatonin MT1 and MT2 receptors signaling through the ERK1/2 cascade by employing different biochemical techniques together with pharmacological inhibitors and siRNA molecules. We show that ERK1/2 activation by both receptors is exclusively G protein-dependent, without any participation of β-arrestin1/2 in HEK293 cells. ERK1/2 activation by MT1 is only mediated though Gi/o proteins, while MT2 is dependent on the cooperative activation of Gi/o and Gq/11 proteins. In the absence of Gq/11 proteins, however, MT2-induced ERK1/2 activation switches to a β-arrestin1/2-dependent mode. The signaling cascade downstream of G proteins is the same for both receptors and involves activation of the PI3K/PKCζ/c-Raf/MEK/ERK cascade. The differential G protein dependency of MT1- and MT2-mediated ERK activation was confirmed at the level of EGR1 and FOS gene expression, two ERK1/2 target genes. Gi/o/Gq/11 cooperativity was also observed in Neuroscreen-1 cells expressing endogenous MT2, whereas in the mouse retina, where MT2 is engaged into MT1/MT2 heterodimers, ERK1/2 signaling is exclusively Gi/o-dependent. Collectively, our data reveal differential signaling modes of MT1 and MT2 in terms of ERK1/2 activation, with an unexpected Gi/o/Gq/11 cooperativity exclusively for MT2. The plasticity of ERK activation by MT2 is highlighted by the switch to a β-arrestin1/2-dependent mode in the absence of Gq/11 proteins and by the switch to a Gi/o mode when engaged into MT1/MT2 heterodimers, revealing a new mechanism underlying tissue-specific responses to melatonin.  相似文献   

5.
Abstract: This study explored the role of the melatonin receptors in methamphetamine (METH)‐induced locomotor sensitization during the light and dark phases in C3H/HeN mice with genetic deletion of the MT1 and/or MT2 melatonin receptors. Six daily treatments with METH (1.2 mg/kg, i.p.) in a novel environment during the light phase led to the development of locomotor sensitization in wild‐type (WT), MT1KO and MT2KO mice. Following four full days of abstinence, METH challenge (1.2 mg/kg, i.p.) triggered the expression of locomotor sensitization in METH‐pretreated but not in vehicle (VEH)‐pretreated mice. In MT1/MT2KO mice, the development of sensitization during the light phase was significantly reduced and the expression of sensitization was completely abrogated upon METH challenge. During the dark phase the development of locomotor sensitization in METH‐pretreated WT, MT1KO and MT2KO mice was statistically different from VEH‐treated controls. However, WT and MT2KO, but not MT1KO mice receiving repeated VEH pretreatments during the dark phase expressed a sensitized response to METH challenge that is of an identical magnitude to that observed upon 6 days of METH pretreatment. We conclude that exposure to a novel environment during the dark phase, but not during the light phase, facilitated the expression of sensitization to a METH challenge in a manner dependent on MT1 melatonin receptor activation by endogenous melatonin. We suggest that MT1 and MT2 melatonin receptors are potential targets for pharmacotherapeutic intervention in METH abusers.  相似文献   

6.
In mammals, the hormone melatonin is mainly produced by the pineal gland with nocturnal peak levels. Its peripheral and central actions rely either on its intrinsic antioxidant properties or on binding to melatonin MT1 and MT2 receptors, belonging to the G protein‐coupled receptor (GPCR) super‐family. Melatonin has been reported to be involved in many functions of the central nervous system such as circadian rhythm regulation, neurotransmission, synaptic plasticity, memory, sleep, and also in Alzheimer's disease and depression. However, little is known about the subcellular localization of melatonin receptors and the molecular aspects involved in neuronal functions of melatonin. Identification of protein complexes associated with GPCRs has been shown to be a valid approach to improve our understanding of their function. By combining proteomic and genomic approaches we built an interactome of MT1 and MT2 receptors, which comprises 378 individual proteins. Among the proteins interacting with MT1, but not with MT2, we identified several presynaptic proteins, suggesting a potential role of MT1 in neurotransmission. Presynaptic localization of MT1 receptors in the hypothalamus, striatum, and cortex was confirmed by subcellular fractionation experiments and immunofluorescence microscopy. MT1 physically interacts with the voltage‐gated calcium channel Cav2.2 and inhibits Cav2.2‐promoted Ca2+ entry in an agonist‐independent manner. In conclusion, we show that MT1 is part of the presynaptic protein network and negatively regulates Cav2.2 activity, providing a first hint for potential synaptic functions of MT1.  相似文献   

7.
Melatonin (MLT) exerts its physiological effects principally through two high‐affinity membrane receptors MT1 and MT2. Understanding the exact mechanism of MLT action necessitates the use of highly selective agonists/antagonists to stimulate/inhibit a given MLT receptor. The respective distribution of MT1 and MT2 within the CNS and elsewhere is controversial, and here we used a “knock‐in” strategy replacing MT1 or MT2 coding sequences with a LacZ reporter. The data show striking differences in the distribution of MT1 and MT2 receptors in the mouse brain: whereas the MT1 subtype was expressed in very few structures (notably including the suprachiasmatic nucleus and pars tuberalis), MT2 subtype receptors were identified within numerous brain regions including the olfactory bulb, forebrain, hippocampus, amygdala and superior colliculus. Co‐expression of the two subtypes was observed in very few structures, and even within these areas they were rarely present in the same individual cell. In conclusion, the expression and distribution of MT2 receptors are much more widespread than previously thought, and there is virtually no correspondence between MT1 and MT2 cellular expression. The precise phenotyping of cells/neurons containing MT1 or MT2 receptor subtypes opens new perspectives for the characterization of links between MLT brain targets, MLT actions and specific MLT receptor subtypes.  相似文献   

8.
Melatonin receptors play important roles in the regulation of circadian and seasonal rhythms, sleep, retinal functions, the immune system, depression, and type 2 diabetes development. Melatonin receptors are approved drug targets for insomnia, non‐24‐hour sleep‐wake disorders, and major depressive disorders. In mammals, two melatonin receptors (MTRs) exist, MT1 and MT2, belonging to the G protein‐coupled receptor (GPCR) superfamily. Similar to most other GPCRs, reliable antibodies recognizing melatonin receptors proved to be difficult to obtain. Here, we describe the development of the first monoclonal antibodies (mABs) for mouse MT1 and MT2. Purified antibodies were extensively characterized for specific reactivity with mouse, rat, and human MT1 and MT2 by Western blot, immunoprecipitation, immunofluorescence, and proximity ligation assay. Several mABs were specific for either mouse MT1 or MT2. None of the mABs cross‐reacted with rat MTRs, and some were able to react with human MTRs. The specificity of the selected mABs was validated by immunofluorescence microscopy in three established locations (retina, suprachiasmatic nuclei, pituitary gland) for MTR expression in mice using MTR‐KO mice as control. MT2 expression was not detected in mouse insulinoma MIN6 cells or pancreatic beta‐cells. Collectively, we report the first monoclonal antibodies recognizing recombinant and native mouse melatonin receptors that will be valuable tools for future studies.  相似文献   

9.
Highly specific radioligands and quantitative autoradiography reveal strikingly different neuroanatomical patterns for the mu, delta, and kappa opioid receptors of rat brain. The mu receptors are most densely localized in patches in the striatum, layers I and III of the cortex, the pyramidal cell layer of the hippocampal formation, specific nuclei of the thalamus, the pars reticulata of the substantia nigra, the interpeduncular nucleus, and the locus coeruleus. In contrast, delta receptors are highly confined, exhibiting selective localization in layers I, II, and VIa of the neocortex, a diffuse pattern in the striatum, and moderate concentration in the pars reticulata of the substantia nigra and in the interpeduncular nucleus. delta receptors are absent in most other brain structures. This distribution is unexpected in that the enkephalins, the putative endogenous ligands of the delta receptor, occur essentially throughout the brain. The kappa receptors of rat brain exhibit a third pattern distinct from that of the mu and delta receptors. kappa receptors occur at low density in patches in the striatum and at particularly high density in the nucleus accumbens, along the pyramidal and molecular layers of the hippocampus, in the granular cell layer of the dentate gyrus, specific midline nuclei of the thalamus, and hindbrain regions. kappa receptors appear to be uniformly distributed across regions in the neocortex with the exception of layer III, which revealed only trace levels of binding. An important conclusion of the present study is that delta receptors occur at high density only in the forebrain and in two midbrain structures, whereas mu and kappa receptors exhibit discrete patterns in most major brain regions.  相似文献   

10.
Melatonin (MLT) is widely used to treat sleep disorders although the underlying mechanism is still elusive. In mice, using wheel-running detection, we found that exogenous MLT could completely recover the period length prolonged by N-methyl-D-aspartate receptor (NMDAR) impairment due to the injection of the NMDAR antagonist MK-801, a preclinical model of psychosis. The analysis of the possible underlying mechanisms indicated that MLT could regulate the homeostatic state in the ventrolateral preoptic nucleus (VLPO) instead of the circadian process in the suprachiasmatic nucleus (SCN). In addition, our data showed that MK-801 decreased Ca2+-related CaMKII expression and CREB phosphorylation levels in the VLPO, and MLT could rescue these intracellular impairments but not NMDAR expression levels. Accordingly, Gcamp6 AAV virus was injected in-vivo to further monitor intracellular Ca2+ levels in the VLPO, and MLT demonstrated a unique ability to increase Ca2+ fluorescence compared with MK-801-injected mice. Additionally, using the selective melatonin MT2 receptor antagonist 4-phenyl-2-propionamidotetralin (4P-PDOT), we discovered that the pharmacological effects of MLT upon NMDAR impairments were mediated by melatonin MT2 receptors. Using electroencephalography/electromyography (EEG/EMG) recordings, we observed that the latency to the first nonrapid eye movement (NREM) sleep episode was delayed by MK-801, and MLT was able to recover this delay. In conclusion, exogenous MLT by acting upon melatonin MT2 receptors rescues sleep phase delayed by NMDAR impairment via increasing intracellular Ca2+ signaling in the VLPO, suggesting a regulatory role of the neurohormone on the homeostatic system.  相似文献   

11.
The tryptophan derivative melatonin is an evolutionary old molecule that is involved in a pleiotropy of physiological functions. In humans, age‐related decline of circulating melatonin levels and/or dysregulation of its circadian synthesis pattern have been associated with several disorders and disease states. Several molecular targets have been proposed for melatonin since its discovery, in 1959. Among them, melatonin MT1 and MT2 receptors are the best characterized melatonin targets, mediating melatonin effects in a variety of tissues. They belong to the superfamily of G protein‐coupled receptors. Two back‐to‐back articles published in the “Nature” Journal earlier this year present the first crystal structures of the human MT1 and MT2 in its inactive states. Here, we will briefly outline the discovery path of melatonin receptors until their structural elucidation and discuss how these new findings will guide future research toward a better understanding of their function and rational drug design.  相似文献   

12.
32P-labeled oligonucleotides derived from the coding region of rat dopamine D2 receptor cDNA were used as probes to localize cells in the rat brain that contain the mRNA coding for this receptor by using in situ hybridization histochemistry. The highest level of hybridization was found in the intermediate lobe of the pituitary gland. High mRNA content was observed in the anterior lobe of the pituitary gland, the nuclei caudate-putamen and accumbens, and the olfactory tubercle. Lower levels were seen in the substantia nigra pars compacta and the ventral tegmental area, as well as in the lateral mammillary body. In these areas the distribution was comparable to that of the dopamine D2 receptor binding sites as visualized by autoradiography using [3H]SDZ 205-502 as a ligand. However, in some areas such as the olfactory bulb, neocortex, hippocampus, superior colliculus, and cerebellum, D2 receptors have been visualized but no significant hybridization signal could be detected. The mRNA coding for these receptors in these areas could be contained in cells outside those brain regions, be different from the one recognized by our probes, or be present at levels below the detection limits of our procedure. The possibility of visualizing and quantifying the mRNA coding for dopamine D2 receptor at the microscopic level will yield more information about the in vivo regulation of the synthesis of these receptors and their alteration following selective lesions or drug treatments.  相似文献   

13.
Using a specific antiserum recently raised against [D-Ala2]deltorphin I (DADTI: Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2), a highly selective ligand for delta-opioid receptors, we have previously demonstrated the occurrence of positive immunostaining in several structures of mouse brain. We describe here the neuroanatomical distribution patterns of DADTI-immunoreactive neuronal bodies, axons, and tanycytes in rat brain. Positive neuronal somata were localized mainly in the ventral mesencephalon, including the ventral tegmental area and the pars compacta of the substantia nigra. A minor population of positive somata was found in the pars reticulata and pars lateralis of the substantia nigra, raphe nuclei, supramammillary nucleus, and retrorubral reticular nucleus. All these regions, except for the supramammillary nucleus, contain dopamine cell bodies. Intensely stained positive nerve fibers could be traced along the medial forebrain bundle. Dense positive terminals were seen in the neostriatum, nucleus accumbens shell, olfactory tubercle, septal areas, cingulate, and medial prefrontal cortex. Double-immunostaining study revealed that, in the substantia nigra, almost all (97.8%) DADTI-positive neurons colocalized with tyrosine hydroxylase (TH), and the doubly stained cells occupied about one-third (29.1%) of the total population of TH-positive neurons. Only a few DADTI/TH-positive cells also stained for 28-kDa calbindin D, although many neurons double-stained for 28-kDa calbindin D and TH. In contrast, the supramammillary nucleus contained a number of DADTI-positive cells, which nearly always stained positively for 28-kDa calbindin D but did not stain for TH. The association of DADTI-like immunoreactivity with certain dopaminergic pathways seems of particular interest. A small population of DADTI-immunostained tanycytes was present in the ventral part of the third ventricle wall.  相似文献   

14.
Although melatonin receptors are widely expressed in the mammalian central nervous system and peripheral tissues, there are limited data regarding the functions of melatonin in cerebellar Purkinje cells. Here, we identified a novel functional role of melatonin in modulating P‐type Ca2+ channels and action‐potential firing in rat Purkinje neurons. Melatonin at 0.1 μm reversibly decreased peak currents (IBa) by 32.9%. This effect was melatonin receptor 1 (MTR1) dependent and was associated with a hyperpolarizing shift in the voltage dependence of inactivation. Pertussis toxin pretreatment, intracellular application of QEHA peptide, and a selective antibody raised against the Gβ subunit prevented the inhibitory effects of melatonin. Pretreatment with phosphatidylinositol 3‐kinase (PI3K) inhibitors abolished the melatonin‐induced decrease in IBa. Surprisingly, melatonin responses were not regulated by Akt, a common downstream target of PI3K. Melatonin treatment significantly increased protein kinase C (PKC) activity 2.1‐fold. Antagonists of PKC, but not of protein kinase A, abolished the melatonin‐induced decrease in IBa. Melatonin application increased the membrane abundance of PKCδ, and PKCδ inhibition (either pharmacologically or genetically) abolished the melatonin‐induced IBa response. Functionally, melatonin increased spontaneous action‐potential firing by 53.0%; knockdown of MTR1 and blockade of P‐type channels abolished this effect. Thus, our results suggest that melatonin inhibits P‐type channels through MTR1 activation, which is coupled sequentially to the βγ subunits of Gi/o‐protein and to downstream PI3K‐dependent PKCδ signaling. This likely contributes to its physiological functions, including spontaneous firing of cerebellar Purkinje neurons.  相似文献   

15.
Melatonin (MLT) levels fluctuate according to the external light/dark cycle in both diurnal and nocturnal mammals. We previously demonstrated that melatonin MT2 receptor knockout (MT2−/−) mice show a decreased nonrapid eye movement sleep over 24 hours and increased wakefulness during the inactive (light) phase. Here, we investigated the role of MT2 receptors in physiological light/dark cycle fluctuations in the activity of dorsal raphe nucleus (DRN) serotonin (5-HT) neurons and anxiety- and depression-like behavior. We found that the 5-HT burst-firing activity was tonically reduced across the whole 24 hours in MT2−/− mice compared with MT2+/+ mice.  Importantly, the physiological changes in the spontaneous firing activity of DRN 5-HT neurons during the light/dark cycle were nullified in MT2−/− mice, with a higher DRN 5-HT neural firing activity during the light phase in MT2−/− than in MT2+/+ mice. The role of MT2 receptors over DRN 5-HT neurons was confirmed by acute pharmacological studies in which the selective MT2 receptors agonist UCM1014 dose dependently inhibited DRN 5-HT activity, mostly during the dark phase. Compared with MT2+/+, MT2−/− mice displayed an anxiety-like phenotype in the novelty-suppressed feeding and in the light/dark box tests; while anxiety levels in the light/dark box test were lower during the dark than during the light phase in MT2+/+ mice, the opposite was seen in MT2−/− mice. No differences between MT2+/+ and MT2−/− mice were observed for depression-like behavior in the forced swim and in the sucrose preference tests. These results suggest that MT2 receptor genetic inactivation impacts 5-HT neurotransmission and interferes with anxiety levels by perturbing the physiologic light/dark pattern.  相似文献   

16.
17.
Five or more dopamine receptor genes are expressed in brain. However, the pharmacological similarities of the encoded D1-D5 receptors have hindered studies of the localization and functions of the subtypes. To better understand the roles of the individual receptors, antibodies were raised against recombinant D1 and D2 proteins and were shown to bind to the receptor subtypes specifically in Western blot and immunoprecipitation studies. Each antibody reacted selectively with the respective receptor protein expressed both in cells transfected with the cDNAs and in brain. By immunocytochemistry, D1 and D2 had similar regional distributions in rat, monkey, and human brain, with the most intense staining in striatum, olfactory bulb, and substantia nigra. Within each region, however, the precise distributions of each subtype were distinct and often complementary. D1 and D2 were differentially enriched in striatal patch and matrix compartments, in selective layers of the olfactory bulb, and in either substantia nigra pars compacta or reticulata. Electron microscopy demonstrated that D1 and D2 also had highly selective subcellular distributions. In the rat neostriatum, the majority of D1 and D2 immunoreactivity was localized in postsynaptic sites in subsets of spiny dendrites and spine heads in rat neostriatum. Presynaptic D1 and D2 receptors were also observed, indicating both subtypes may regulate neurotransmitter release. D1 was also present in axon terminals in the substantia nigra. These results provide a morphological substrate for understanding the pre- and postsynaptic functions of the genetically defined D1 and D2 receptors in discrete neuronal circuits in mammalian brain.  相似文献   

18.
The distribution and properties of receptors for corticotropin-releasing factor (CRF) were analyzed in the brain of cynomolgus monkeys. Binding of [125I]tyrosine-labeled ovine CRF to frontal cortex and amygdala membrane-rich fractions was saturable, specific, and time- and temperature-dependent, reaching equilibrium in 30 min at 23 degrees C. Scatchard analysis of the binding data indicated one class of high-affinity sites with a Kd of 1 nM and a concentration of 125 fmol/mg (approximately equal to 30% of the receptor number in monkey anterior pituitary membranes). As in the rat pituitary and brain, CRF receptors in monkey cerebral cortex and amygdala were coupled to adenylate cyclase. Autoradiographic analysis of specific CRF binding in brain sections revealed that the receptors were widely distributed in the cerebral cortex and limbic system. Receptor density was highest in the pars tuberalis of the pituitary and throughout the cerebral cortex, specifically in the prefrontal, frontal, orbital, cingulate, insular, and temporal areas, and in the cerebellar cortex. A very high binding density was also present in the hippocampus, mainly in the dentate gyrus, and in the arcuate nucleus and nucleus tuberis lateralis. A high binding density was present in the amygdaloid complex and mamillary bodies, olfactory tubercle, and medial portion of the dorsomedial nucleus of the thalamus. A moderate binding density was found in the nucleus accumbens, claustrum, caudate-putamen, paraventricular and posterior lateral nuclei of the thalamus, inferior colliculus, and dorsal parabrachial nucleus. A low binding density was present in the superior colliculus, locus coeruleus, substantia gelatinosa, preoptic area, septal area, and bed nucleus of the stria terminalis. These data demonstrate that receptors for CRF are present within the primate brain at areas related to the central control of visceral function and behavior, suggesting that brain CRF may serve as a neurotransmitter in the coordination of endocrine and neural mechanisms involved in the response to stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号