首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the hippocampus, antibody raised against vasoactive intestinal polypeptide (VIP) labeled perikarya and processes of non-pyramidal neurons whereas these structures remained unlabeled in pyramidal cells and granule cells. In the present study, VIP-immunostaining was used to investigate the fine structure and synaptic connections of identified non-pyramidal neurons and of imrnunoreactive axon terminals in the CA1 region of the rat hippocampus by means of electron microscopic immunocytochemistry.From a number of cells studied, two VIP-like imrnunoreactive non-pyramidal neurons in the regio superior were selected for an electron microscopic analysis of serial thin sections. These cells were different with regard to the location of their cell bodies and the orientation of their dendrites. One cell was located in the stratum lacunosum-moleculare with dendritic processes oriented parallel to the hippocampal fissure. The second neuron was found in the inner one-third of the stratum radiatum. The dendrites of this cell ran nearly parallel to the ascending apical dendrites of the pyramidal cells. Both cells had a round or ovoid perikaryon and an infolded nucleus. The aspinous dendrites of both neurons were densely covered with synaptic boutons. These terminals were small, filled with spherical vesicles and established asymmetric synaptic contacts. No variations in the fine structure of the presynaptic boutons were found along the course of the labeled dendrites through the various hippocampal layers, although different afferents are known to terminate in these layers.Vasoactive intestinal polypeptide-like immunopositive axon terminals course through all layers of the hippocampus. In the stratum pyramidale they established symmetric synaptic contacts with the perikarya of pyramidal cells. In the stratum radiatum they made symmetric contacts with the shafts of apical dendrites of pyramidal cells but never contacted dendritic spines.The symmetric contacts with pyramidal cell perikarya suggest an involvement of the VIP-like immunoreactive axon terminals in pyramidal cell inhibition.  相似文献   

2.
Neurons were studied in the striate cortex of the cat following intracellular recording and iontophoresis of horseradish peroxidase. The three selected neurons were identified as large basket cells on the basis that (i) the horizontal extent of their axonal arborization was three times or more than the extent of the dendritic arborization; (ii) some of their varicose terminal segments surrounded the perikarya of other neurons. The large elongated perikarya of the first two basket cells were located around the border of layers III and IV. The radially-elongated dendritic field, composed of beaded dendrites without spines, had a long axis of 300-350 microns, extending into layers III and IV, and a short axis of 200 microns. Only the axon, however, was recovered from the third basket cell. The lateral spread of the axons of the first two basket cells was 900 microns or more in layer III and, for the third cell, was over 1500 microns in the antero-posterior dimension, a value indicating that the latter neuron probably fulfills the first criterion above. The axon collaterals of all three cells often branched at approximately 90 degrees to the parent axon. The first two cells also had axon collaterals which descended to layers IV and V and had less extensive lateral spreads. The axons of all three cells formed clusters of boutons which could extend up a radial column of their target cells. Electron microscopic examination of the second basket cell showed a large lobulated nucleus and a high density of mitochondria in both the perikarya and dendrites. The soma and dendrites were densely covered by synaptic terminals. The axons of the second and third cells were myelinated up to the terminal segments. A total of 177 postsynaptic elements was analysed, involving 66 boutons of the second cell and 89 boutons of the third cell. The terminals contained pleomorphic vesicles and established symmetrical synapses with their postsynaptic targets. The basket cell axons formed synapses principally on pyramidal cell perikarya (approximately 33% of synapses), spines (20% of synapses) and the apical and basal dendrites of pyramidal cells (24% of synapses). Also contacted were the perikarya and dendrites of non-pyramidal cells, an axon, and an axon initial segment. A single pyramidal cell may receive input on its soma, apical and basal dendrites and spines from the same large basket cell.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Summary Morphological characteristics of non-pyramidal neurons in the guinea pig hippocampus (regions CA1 and CA3) were analyzed by a correlated light and electron microscopic approach. Following Golgi impregnation, the cells were first studied under the light microscope and classified according to the location of their cell bodies and the distribution of their dendrites in the different hippocampal layers. Next, the Golgi impregnated non-pyramidal neurons were gold-toned and deimpregnated, allowing an electron microscopic analysis of the identified structures.With regard to cell body location and dendritic pattern, non-pyramidal cells are a rather heterogeneous group of neurons. Their perikarya were found in all hippocampal layers and their dendrites had a less regular orientation when compared to pyramidal neurons and granule cells. Two basic types, i.e., vertical and horizontal non-pyramidal neurons are described. Many cells were of an intermediate type with dendrites extending in all directions. Non-pyramidal cell dendrites were mostly devoid of spines but exhibited numerous varicosities. Non-pyramidal cell axons could sometimes be seen extending towards the pyramidall cell layer.A surprising uniformity was observed when the impregnated, identified non-pyramidal neurons were studied in the electron microscope. Their perikarya exhibited a well-developed endoplasmic reticulum and indented nuclei. Both the cell bodies and the varicose dendrites were densely covered with synaptic boutons which mainly formed asymmetric synaptic contacts. Only occasionally were symmetric synaptic contacts observed. Non-pyramidal cell dendrites extending into the stratum lucidum of CA3 were found to be contacted by the giant boutons of mossy fiber axons. In addition to synaptic contacts, the dendrites of gold-toned non-pyramidal neurons formed gap junctions with neigh-boring dendrites.The results are discussed in relation to recent immunocytochemical studies which have shown non-pyramidal neurons in the hippocampus to contain gamma-aminobutyric acid and/or various neuropeptides.In partial fulfilment of the requirements for the degree of Dr. med. at the Johann Wolfgang Goethe University, Frankfurt/Main  相似文献   

4.
Summary The ultrastructure of the centromedian nucleus of the monkey thalamus was analysed qualitatively and quantitatively and projection neurons, local circuit neurons, and synaptic bouton populations identified. Projection neurons were mostly medium-sized, with oval-fusiform or polygonal perikarya, few primary dendrites, and frequent somatic spines; local circuit neurons were smaller. Four basic types of synaptic boutons were distinguished: (1) Small- to medium-sized boutons containing round vesicles (SR) and forming asymmetric contacts, identified as corticothalamic terminals. (2) Heterogeneous medium-sized boutons with asymmetric contacts and round vesicles, similar to the so-called large round (LR) boutons, which were in part of cortical origin. (3) Heterogeneous GAD-positive small- to medium-sized boutons, containing pleomorphic vesicles and forming symmetric contacts (F1 type), which included pallidothalamic terminals. (4) Presynaptic profiles represented by GAD-positive vesicle-containing dendrites of local circuit neurons. Complex synaptic arrangements, serial synapses and triads with LR and SR boutons engaging all parts of projection neuron dendrites and somata, were seen consistently, whereas classical glomeruli were infrequent. LR and SR boutons also established synapses on dendrites of local circuit neurons. F1 boutons established synapses on projection neuron somata, dendrites and initial axon segments. Compared to other previously studied motor-related thalamic nuclei, differences in synaptic coverage between proximal and distal projection neuron dendrites were less pronounced, and the density of synapses formed by local circuit dendrites on projection neuron dendrites was lower. Thus, compared to other thalamic nuclei, the overlap of different inputs was higher on monkey centromedian cells, and centromedian inhibitory circuits displayed a different organization.  相似文献   

5.
Summary This study describes non-granule cells in the fascia dentata of rhesus monkeys and baboons. Their cell bodies are located in the molecular layer and at the hilar border of the granular layer. They are called basket cells since their axons give rise to collaterals that branch in the close vicinity of the parent cell body and form symmetric synapses with dendrites and cell bodies of granule cells. These neurons are further classified with regard to the shape and location of their cell bodies and the orientation of their dendrites. Basket cells in the molecular layer are mainly bipolar with dendrites oriented perpendicular to the granular layer. These dendrites are densely innervated by presynaptic boutons forming asymmetric synapses. We have rarely observed molecular layer basket cells with dendrites traversing the granular layer and invading the hilus. We thus conclude that these cells are mainly activated by extrinsic afferents terminating in the molecular layer. Basket cells at the hilar border display pyramidal, fusiform or multipolar cell bodies that give rise to apical dendrites traversing the molecular layer and basal dendrites invading the hilar region. Large boutons establish asymmetric synapses with identified basal dendrites of these neurons. The dendrites of all types of basket cell are smooth, i.e. they had few or no spines. Many of them display varicosities. Cell counts in Cresyl Violet-stained sections revealed a ratio of basket cells to granule cells of 1:500. Essentially, the types of basket cell in the monkey fascia dentata are similar to those described previously for the rat. This contrasts sharply to our recent findings for pyramidal neurons and granule cells of the monkey hippocampus which showed an increased complexity and variability when compared with rodents. These data do not support the hypothesis that only local circuit neurons evolve in phylogeny.  相似文献   

6.
Pyramidal cells of regio inferior in slice cultures of the rat hippocampus were impaled and intracellularly stained with horseradish peroxidase. A correlated light- and electron-microscopic analysis was then performed to study the properties of these neurons under culture conditions with particular emphasis on input synapses onto these cells. Like pyramidal cells in situ, CA3 pyramidal neurons in slice cultures had a triangular cell body with an apical stem dendrite emerging from it. Several basal dendrites and the axon arose from the basal pole of the cell body. The peripheral thin branches of both apical and basal dendrites were covered with small spines, whereas proximal thick dendritic segments and portions of the cell body exhibited large spines or excrescences. The axon gave off numerous fine varicose collaterals which projected to stratum radiatum of CA1 (Schaffer collaterals), to the alveus and to the hilar region. In one case a collateral could be followed to stratum moleculare of the fascia dentata. Electron-microscopic analysis of the injected pyramidal neurons revealed that their cell bodies, dendritic shafts and spines formed synaptic contacts with presynaptic terminals. Mossy fiber endings were identified by their large size and their numerous clear synaptic vesicles with some dense-core vesicles intermingled, and were observed to form synaptic contacts on the large spines or excrescences. Since extrinsic afferents degenerate in slice cultures, the numerous synaptic boutons on the identified pyramidal neurons probably arise from axons of intrinsic neurons that have sprouted in response to deafferentation. This assumption is supported by the finding that collaterals of the injected neurons formed abundant synaptic contacts on dendritic shafts and spines of other cells. These results suggest that, although pyramidal cells under culture conditions retain a remarkable number of their normal characteristics, considerable synaptic reorganization does take place.  相似文献   

7.
Neurons in the hippocampus, amygdala and entorhinal cortex which project to the nucleus accumbens were labelled retrogradely following injection of horseradish peroxidase. The injections were targetted on the medial part of the nucleus accumbens, but some injection sites included the whole nucleus. Projection neurons in all three areas were found to be spiny, and from the entorhinal cortex and ventral subiculum of the hippocampus they were pyramidal neurons.Somatostatin (S281–12)-immunoreactive neurons were found in all parts of the three limbic areas examined. They were found to have various morphologies, but in the electron microscope all had the ultrastructural characteristics of interneurons. In the hippocampus the stratum lacunosum was found to contain the most immunoreactive fibres while most cells lay in the stratum oriens. In the amygdala the densest staining for both cells and fibres was in the central nucleus. In the entorhinal cortex somatostatin-immunoreactive fibres and cells seemed to have no preferential distribution.Examination of somatostatin-immunoreactive profiles in the electron microscope revealed that the majority of synaptic contacts were made with dendrites, many of which were spine-bearing.In the light microscope somatostatin-immunoreactive fibres could be seen to lie near the somata and proximal dendrites of neurons that projected to the nucleus accumbens. In the electron microscope it was found that somatostatin-immunoreactive boutons were in symmetrical synaptic contact with the somata and proximal dendrites of neurons in the ventral subiculum, entorhinal cortex and amygdala which project to the nucleus accumbens.  相似文献   

8.
Summary Mossy fibres, i.e. the axons of dentate granule cells, terminate with characteristic giant boutons on large spines or excrescences of the pyramidal cells in regio inferior of the hippocampus. In addition to pyramidal cells there are several types of non-pyramidal neuron which extend their dendrites into the termination zone of mossy fibres. By using the combined Golgi-electron microscope technique mossy fibre terminals were found, which established asymmetric synaptic contacts with both spines of pyramidal cells and smooth dendrites of identified (Golgi-stained) pyramidal basket cells in the CA3 region of the guinea-pig hippocampus. The observed synaptic connection with pyramidal basket cells suggests an involvement of the mossy fibre system in feed-forward inhibition of the hippocampal pyramidal neurons.  相似文献   

9.
In the present study, we investigated the distribution of voltage-gated Na(+) channels (VGSCs) in the normal and epileptic hippocampus of gerbils (a genetic epilepsy model) in order to confirm the relationship between VGSC and seizure activity in these animals. There was no difference of VGSC I immunoreactivity in the hippocampus between seizure-resistant (SR) and seizure sensitive (SS) gerbils. VGSC II immunoreactivity was rarely detected in the perikarya of principal neurons and interneurons in the SR gerbil hippocampus. However, in the SS gerbil hippocampus, VGSC II immunoreactivity was densely observed in the somata of interneurons located in the stratum radiatum and stratum lacunosum-moleculare. Double immunofluorescent study showed immunoreactivity for calretinin (approximately 80% in VGSC II-positive neurons) or calbindin D-28k (approximately 20% in VGSC II-positive neurons) in VGSC II-immunoreactive neurons. VGSC II-immunoreactive neurons did not show parvalbumin immunoreactivity. These findings suggest that seizure activity in SS gerbils may be related to the selective hyperactivation of interneurons in stratum lacunosum-moleculare via the up-regulation of VGSC II expression, which leads to the disinhibition of CA1 pyramidal cells.  相似文献   

10.
gamma-Aminobutyric acid (GABA)-like immunoreactive (GABA-LI) neurons were found throughout the mediolateral and rostrocaudal axis of the dorsal cortex. They were horizontal, vertical and multipolar cells, mainly distributed in layers 1 and 3. GABA-LI boutons were diffusely distributed in layers 1 and 3, as well as forming basket-like images around layer 2 pyramidal perikarya. Double labelling experiments indicate that GABA-LI cells are an origin of and a target for rostrocaudal intrinsic projections within the dorsal cortex.  相似文献   

11.
本实验采用免疫组织化学方法研究了13~38 周人胎儿海马本部及下托含Calbindin-D28k 神经元的分布和发育。结果表明:在13~14 周时,许多含Calbindin-D28k 锥体细胞可见于CA1 区锥体细胞层中部及深部,随着胎龄增大,CA1 区含Cal-bindin-D28k 锥体细胞的数量及密度逐渐下降,最终消失,并且这种下降及消失首先从含Calbindin-D28k 锥体细胞区浅部开始,然后向深部推进;在13~28 周期间,CA2 和CA3 区也有许多含Calbindin-D28k 锥体细胞,但至32 周以及其后,CA3 和CA2 区则不见含Calbindin-D28k 锥体细胞,仅在CA2 与CA1 交界区见到少量弱染的含Calbindin-D28k 锥体细胞。此外,在28~38 周期间,CA3 和CA2 区锥体细胞层周围可见许多含Calbindin-D28k 的苔藓纤维,其密度随胎龄增大而增加。14~38 周期间,许多含Calbindin-D28k 的锥体细胞也出现于下托锥体细胞层全层及前下托锥体细胞层浅部(细胞岛区)及中部。这些区域含Cal-bindin-D28k 锥体细胞的数量及染色强度在14~24 周期间逐渐增  相似文献   

12.
The synaptic connections of a specific type of identified cortical interneuron, the axo-axonic cell, were studied using Golgi methods. In the light-microscope axo-axonic cells were demonstrated in certain layers of the primary and secondary visual cortex of rat, cat and monkey, in the motor cortex of cat and in the subiculum and pyriform cortex of rat. The dendrites originating from the oval soma were oriented radially in a lower and upper spray within a cylinder about 100–150 μm wide. Electronmicroscopy of Golgi impregnated, gold-toned axo-axonic cells showed predominantly but not exclusively asymmetrical synaptic contacts on their dendrites and spines, few synaptic contacts on the perikarya some of which were asymmetrical, and no synaptic contacts on the axon initial segment. The axon usually arborized within the vicinity of the cell's own dendritic field in an area 100–200 μm in diameter. In the kitten motor cortex the axon of a neuron in layer III descended to layer VI, providing a columnar arborization.The axon formed specialized, 10–50 μm long terminal segments invariably oriented parallel with the axon initial segment of pyramidal cells. All 85 identified symmetrical-type synaptic contacts, deriving from 31 specialized terminal segments, were found exclusively on the axon initial segment of pyramidal neurons. Rare, lone boutons of axo-axonic cells also made synaptic contact only with axon initial segments, confirming the exclusive target specificity of these cells. In identified gold-toned boutons, flattened pleomorphic vesicles were present. Electron-microscopy showed that axons ending in specialized terminal segments may originate from myelinated fibres, indicating that Golgi impregnation has revealed only part of the axon. Counting of axon terminal segments, each of which was in contact with the axon initial segment of a pyramidal neuron, revealed 166 pyramidal neurons receiving input from a partially reconstructed axo-axonic cell in the motor cortex of the kitten, and 67 from another cell in the visual cortex of the cat. The convergence of five axo-axonic cells onto one pyramidal cell was demonstrated in the striate cortex of the cat by counting all synaptic contacts on three initial segments. Cells from a one-month-old kitten were compared with those of the adult. The axon of the developing neurons was more diverse, having many growth cones and filopodia which made no specialized membrane contacts. However, the developing specific terminal segments formed synapses only with axon initial segments.It is concluded that the presence of axo-axonic cells in all the species and cortical areas we have examined suggests their association with the structural design of pyramidal cells, wherever the latter occur, and with their participation in the information processing of pyramidal cells. Axo-axonic cells are uniquely endowed with the means of simultaneously influencing the action potential at the site of origin in groups of pyramidal cells. This strategic location may enable them to synchronise the activity of pyramidal neurons, either through inhibitory gating or through changing the threshold of pyramidal cells to certain inputs.  相似文献   

13.
Summary This study describes the morphological differentiation of nonpyramidal neurons in areas CA1 and CA3 of the rat hippocampus as seen after Golgi-impregnation. Representative neurons were gold-toned and processed for an electron microscopic study of identified cells. We analyzed the postnatal stages P0 (day of birth), P5, P10 and P20. The results can be summarized as follows: 1. On the day of birth nonpyramidal neurons display relatively large cell bodies with short, clumsy dendrites. Great variability of the shape of the cell body and of the orientation of dendrites was observed when compared with the more stereotyped pyramidal neurons. Electron microscopy of identified nonpyramidal neurons revealed small infoldings of the nuclear membrane and immature synapses on the short dendritic shafts of these cells. 2. Developing nonpyramidal neurons from P0 and P5 display growth cones, filopodia, preterminal growth buds, and irregular varicose swellings along the dendrites. 3. Further postnatal development of nonpyramidal neurons is mainly characterized by an increase in dendritic length, paralled by a decrease in growth cones and preterminal growth buds. By means of the electron microscope an increase in the number of mature input synapses on the gold-toned dendritic shafts of identified nonpyramidal neurons was observed. 4. There is a significant developmental difference between nonpyramidal neurons in CA1 and CA3 that was most obvious on P5. Nonpyramidal neurons in CA3 appear more mature, displaying longer dendrites that sometimes traverse through several hippocampal layers. In contrast, the dendrites of nonpyramidal neurons in CA1 are still restricted to the layer of the parent cell body. The earlier differentiation of nonpyramidal neurons in CA3 may result from the earlier formation of neurons in CA3 than in CA1. Longer dendrites of nonpyramidal neurons in CA3, together with an earlier arrival of afferent fibers in this region, suggest that nonpyramidal neurons in CA3 are integrated into inhibitory hippocampal circuits earlier than their counterparts in CA1. 5. On P20, hippocampal nonpyramidal neurons showed all structural characteristics as observed in adult animals both at light and electron microscopic levels. It is concluded that the structural maturation of hippocampal nonpyramidal cells is completed by that postnatal age.In partial fulfilment of the requirements for the degree of Dr. med. at the University of Frankfurt/Main  相似文献   

14.
We examined the cellular and subcellular localization of agmatine in the hippocampal CA1 region by immunocytochemistry. By light microscopy, agmatine-like immunoreactivity (agmatine-LI) was found primarily in the perikarya and dendritic profiles of pyramidal cells and in punctate processes preponderantly in stratum radiatum. Electron microscopy revealed that agmatine-LI was cytoplasmic and concentrated in ‘clusters' associated with mitochondria and tubular vesicles. In stratum radiatum, agmatine-LI was primarily in axons and axon terminals associated with small, synaptic vesicles. The terminals almost exclusively formed asymmetric synapses on the spines of dendrites, many of which originated from pyramidal cells. Some agmatine-LI also was present in shafts and spines of pyramidal cell dendrites and in astrocytic processes. The results demonstrate that agmatine in the hippocampus is found primarily in terminals forming excitatory (asymmetric) synapses on pyramidal cells, some of which contain agmatine-LI. These findings further implicate agmatine as an endogenous neurotransmitter which may be co-stored with -glutamate and may act in part in the rat hippocampus as a blocker of the N-methyl- -aspartate receptor and nitric oxide synthase.  相似文献   

15.
Summary Following large lesions of the cat visual cortex, the distribution of degenerating terminal boutons in the Clare-Bishop area was studied electron microscopically. Degenerating boutons were found throughout the cortical layers but mostly in layer III (51% of the total number of degenerating boutons) and layer V (24%). A smaller number of boutons were found in layers II (12%) and IV (9%), and very few in layers VI (3%) and I (1%). No degenerating terminals were observed in the upper two-thirds of layer I. Seventy-six per cent of the total degenerating boutons terminated on dendritic spines, 22% on dendritic shafts, and 2% on somata. Some degenerating boutons made synaptic contacts with somata and dendrites of nonpyramidal neurons. For example, one degenerating bouton was observed in contact with an apical dendrite of a fusiform cell. Three examples of dendritic spines, with which degenerating boutons made synaptic contacts, were found to belong to spinous stellate cells. No degenerating boutons were observed making synaptic contacts with profiles that could conclusively be traced to pyramidal cell somata.  相似文献   

16.
Beaded dendrites of alpha-motoneurons intracellularly labelled with horseradish peroxidase (HRP) were studied ultrastructurally in eight adult cats. For comparison, adjacent unlabelled beaded dendrites of unknown origin were also included in the study. Electron microscopy revealed no signs of degeneration or poor fixation according to common criteria. With the exception of the HRP-reaction product no difference in structure was observed between labelled and unlabelled beaded dendrites. Both the beads and their interconnecting segments were postsynaptic to boutons of normal appearance containing spherical (S-type boutons) or flattened vesicles (F-type boutons). The values for synaptic covering and synaptic packing density of the beaded dendritic regions, which usually were located in the periphery of the dendritic trees, were clearly lower than values obtained previously for cell bodies and proximal dendrites of alpha-motoneurons.  相似文献   

17.
Immunocytochemical and electron microscopic methods were used to examine neurons in regio superior of rat hippocampus displaying cholecystokinin octapeptide-like immunoreactivity. Cholecystokinin-immunoreactive synaptic terminals and somata are found in all layers of regio superior but are most numerous in stratum pyramidale. The vast majority of terminals form symmetric synaptic contacts onto the somata and proximal dendrites of hippocampal pyramidal cells and onto smaller dendrites which may also arise from pyramidal cells. A very small number of Cholecystokinin-immunoreactive terminals form synapses that appear asymmetric and contact dendritic shafts or spines. The somata of some pyramidal cells receive symmetric synapses from Cholecystokinin-immunoreactive terminals that are joined by cytoplasmic bridges to form parts of pericellular baskets. These and adjacent pyramidal cell somata are also contacted by terminals that are not immunoreactive for cholecystokinin. No cholecystokinin-positive terminals contacted the initial segments of pyramidal cell axons. Cholecystokinin-immunoreactive cells are found in all layers of regio superior. Their somata receive a few symmetric synapses, most of which are formed by terminals not immunoreactive for cholecystokinin. Their dendrites receive a greater number of both symmetric and asymmetric contacts, some of which are immunoreactive for cholecystokinin.We conclude the following: (1) The localization of cholecystokinin immunoreactivity in synaptic terminals contacting the somata and dendrites of hippocampal pyramidal cells is consistent with the suggestion that cholecystokinin acts as a neurotransmitter at these sites and at sites in other parts of the cerebral cortex. (2) Results from the present and previous studies suggest that cholecystokinin-like immunoreactivity may co-exist with γ-aminobutyrate in some non-pyramidal neurons of regio superior. (3) Cholecystokinin-immunoreactive terminals arise mainly from non-pyramidal cells intrinsic to the hippocampus, one class of which appears to be a type of basket cell.  相似文献   

18.
A local GABA-system is known to have a mediatory function between several afferents and the principal cells of the hippocampus. This study examines the distribution and fine structure of kappa opioid receptor-immunoreactive elements in the CA1 subfield and reveals some new aspects concerning the structural basis of opioid-GABA interaction in the rat hippocampal formation. Kappa receptors were visualized immunocytochemically with a previously produced and characterized monoclonal antibody, the mAb KA8 (Maderspach, K., Németh, K., Simon, J., Benyhe, S., Szûcs, M., Wollemann, M., 1991. A monoclonal antibody recognizing kappa-, but not mu- and delta-opioid receptors. J. Neurochem. 56, 1897–1904). The antibody selectively recognizes the kappa opioid receptor with preference to the kappa2 subtype. Neuronal cell bodies, proximal dendrites and occasionally glial processes surrounding neuronal perikarya were labelled in the CA1 area. The immunopositive cells were present mainly in the stratum oriens, followed by the stratum pyramidale in a rostrocaudally increasing number. Their shape was fusiform, or multipolar. Occasionally kappa receptor-immunoreactive boutons surrounding weakly immunopositive somata were also observed. Electron microscopy of immunopositive neurons showed that the DAB labelling was intensive in the perinuclear cytoplasm. The widths and electron densities of the postsynaptic densities of some axosomatic synapses were remarkably increased. Similar increase of postsynaptic densities were observable at some axodendritic and axospinous synapses. On the basis of their location and fine structural properties the labelled cells are suggested to be GABAergic inhibitory interneurons, probably belonging to the somatostatinergic sub-population. The axons of these inhibitory interneurons are known to arborize in the stratum lacunosum-moleculare where the entorhinal afferents terminate. A modulatory effect of opioids on the entorhinal input, mediated by somatostatinergic interneurons is suggested  相似文献   

19.
Summary Gap junctions were identified for the first time on chemically defined neurons in the central nervous system. Gap junctions were thus demonstrated on GABAergic neurons containing the calcium-binding protein parvalbumin (PV) in the rat hippocampus. Thin and semithin (0.5 m thick) sections were cut alternately and consecutively from osmium-fixed tissue which was embedded in epoxy resin and usable for conventional electron microscopic studies. The semithin sections were processed for postembedding immunocytochemistry using an anti-PV serum. Structures corresponding to the PV-immunoreactive (PV-I) profiles on the semithin sections were easily identified on electron micrographs from the adjacent thin sections. Using this technique gap junctions were found (1) between PV-I dendrites, (2) between PV-I dendrites and PV-I somata and (3) between PV-I dendrites and small processes whose origin could not be identified. Despite a systematic search, we did not find gap junction between PV-negative processes.  相似文献   

20.
Beaded dendrites of 1α-motoneurons intracellularly labelled with horseradish peroxidase (HRP) were studied ultrastructurally in eight adult cats. For comparison, adjacent unlabelled beaded dendrites of unknown origin were also included in the study. Electron microscopy revealed no signs of degeneration or poor fixation according to common criteria. With the exception of the HRP-reaction product no difference in structure was observed between labelled and unlabelled beaded dendrites. Both the beads and their interconnecting segments were postsynaptic to boutons of normal appearance containing spherical (S-type boutons) or flattened vesicles (F-type boutons). The values for synaptic covering and synaptic packing density of the beaded dendritic regions, which usually were located in the periphery of the dendritic trees, were clearly lower than values obtained previously for cell bodies and proximal dendrites of a-motoneurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号