首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
1. In a crustacean neuromuscular preparation, the walking leg opener muscle of the freshwater crayfish Procambarus clarkii, application of serotonin (1 microM) produces presynaptic depolarization and long-lasting facilitation of excitatory postsynaptic potentials (EPSPs). The frequency of spontaneously released transmitter quanta also increases. Facilitation of evoked EPSPs declines after serotonin application in two phases. 2. Serotonin-induced facilitation was examined using simultaneous pre- and postsynaptic intracellular microelectrode recording. A presynaptic microelectrode recorded action potentials and membrane potential of a presynaptic axonal branch, and one or more postsynaptic microelectrodes recorded EPSPs in muscle fibers innervated by the excitatory motor axon. Components of the phosphatidylinositol second messenger system and pharmacologic agents affecting this system were injected through the presynaptic electrode, and changes in synaptic transmission were measured. 3. Presynaptic injection of inositol 1,4,5-triphosphate (IP3) causes presynaptic depolarization, increases the frequency of spontaneously released transmitter quanta, and promotes a relatively short-lasting facilitation of evoked EPSPs. These actions are consistent with elevation of intracellular Ca2+ and resemble the early phase of serotonin-induced facilitation. 4. Application of a phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), that activates protein kinase C (C-kinase), produces a long-lasting, low-level facilitation of evoked EPSPs. Application of another phorbol ester, phorbol-12-monoacetate (PTMA), which does not activate C-kinase has no effect. 5. Presynaptic injection of RA 233, a phospholipase C (PLP-C) inhibitor, blocks all aspects of serotonin-induced facilitation. This compound was found to have no general deleterious effects on synaptic transmission and does not block other forms of synaptic facilitation in this preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Two experimental approaches have been utilized to test the possibility that morphologically mixed synaptic terminals of the eighth nerve fibers mediate both electrotonic and chemical excitation of the goldfish Mauthner cell. First, the spatial distributions of electrotonic and chemical postsynaptic potentials, evoked by stimulation of the eighth nerve, have been determined with intracellular recordings from the Mauthner cell soma and several locations along the lateral dendrite. In some instances, both synaptic components were maximal at distal dendritic recording sites. In that region, it appears that the only presynaptic terminals with morphological characteristics consistent with excitatory chemical transmission are the large myelinated club endings, which actually establish mixed synapses with the lateral dendrite. Second, we have analyzed the effects of postsynaptic Co2+ injections on these synaptic responses. With high iontophoretic currents, there was a rapid uncoupling of the electrotonic component. However, with smaller current intensities, uncoupling is accompanied, or preceded, by a transient reduction in the later chemically mediated postsynaptic potentials. This latter effect on chemical transmission is only observed if the postsynaptic potentials are associated with electrotonic synaptic inputs. We speculate that Co2+ diffuses across the gap junctions and into the presynaptic terminals, acting there to reduce evoked transmitter release.The results of these two experimental approaches support the hypothesis that mixed synapses on the lateral dendrite of the Mauthner cell do actually mediate transmission by both chemical and electrical modes.  相似文献   

4.
The contact with the postsynaptic target induces structural and functional modifications in the serotonergic cell C1 of Helix pomatia. In previous studies we have found that the presence of a non-physiological target down-regulates the number of presynaptic varicosities formed by cultured C1 neurons and has a strong inhibitory effect on the action potential-evoked Ca(2+) influx and neurotransmitter release at C1 terminals. Since a large body of experimental evidence implicates the synapsins in the development and functional maturation of synaptic connections, we have investigated whether the injection of exogenous synapsin I into the presynaptic neuron C1 could affect the inhibitory effect of the wrong target on neurotransmitter release. C1 neurons were cultured with the wrong target neuron C3 for three to five days and then injected with either dephosphorylated or Ca(2+)/calmodulin-dependent protein kinase II-phosphorylated Cy3-labeled synapsin I. The subcellular distribution of exogenous synapsin I, followed by fluorescence videomicroscopy, revealed that only synapsin I phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II diffused in the cytoplasm and reached the terminal arborizations of the axon, while the dephosphorylated form did not diffuse beyond the cell body. Evoked neurotransmitter release was measured during C1 stimulation using a freshly dissociated neuron B2 (sniffer) micromanipulated in close contact with the terminals of C1. A three-fold increase in the amplitude of the sniffer depolarization with respect to the pre-injection amplitude (190+/-29% increase, n=10, P<0.006) was found 5 min after injection of Ca(2+)/calmodulin-dependent protein kinase II-phosphorylated synapsin I that lasted for about 30 min. No significant change was observed after injection of buffer or dephosphorylated synapsin I.These data indicate that the presence of synapsin I induces a fast increase in neurotransmitter release that overcomes the inhibitory effect of the non-physiological target and suggest that the expression of synapsins may play a role in the modulation of synaptic strength and neural connectivity.  相似文献   

5.
Release of transmitter was evoked at neuromuscular junctions of the crayfish opener muscle by passage of current through an intracellular electrode impaling a branch of the motor axon close to a muscle fiber. Membrane-potential changes in the presynaptic axon branch were monitored, together with postsynaptic potentials. Depolarization of impaled secondary axonal branches by more than 10 mV led to an increase in asynchronous transmitter release. The release was facilitated by prolonged (50-500 ms) depolarizations and it decayed rapidly when depolarization was terminated. Ca2+ was essential for facilitated release; however, no indication of a Ca spike was found at the recording site. Input-output curves for the synapse were obtained by applying depolarizing pulses of varying amplitude to the axon branch. Transmitter output was strongly influenced by both amplitude and duration of the applied depolarization. During normal synaptic transmission, propagated Na+-dependent action potentials were recorded in the secondary axonal branches but there was no evidence for a calcium-dependent component for these action potentials. Evoked release was dependent on Ca2+ and was steeply dependent on the amplitude of the action potential, which could be made variable in size by application of tetrodotoxin (TTX). Prolonged depolarization of axonal branches resulted in enhancement of transmitter release evoked by an action potential. The enhancement occurred in spite of a simultaneous reduction of the amplitude of the action potential. Morphological features of the terminals were investigated after injection of lucifer yellow into the axon. An electrical model incorporating the morphological features suggests that membrane-potential changes set up in the main axon reach the nearest terminals with 30-40% attenuation, while events originating in the terminals would be severely attenuated in the main axon. Comparison of the crayfish synapse with other frequently studied synapses shows both similarities and differences, suggesting that it is not possible to apply findings made in one synapse to all others.  相似文献   

6.
Regulation of transmitter release by synapsin II in mouse motor terminals   总被引:1,自引:1,他引:1  
We investigated quantal release and ultrastructure in the neuromuscular junctions of synapsin II knockout (Syn II KO) mice. Synaptic responses were recorded focally from the diaphragm synapses during electrical stimulation of the phrenic nerve. We found that synapsin II affects transmitter release in a Ca2+-dependent manner. At reduced extracellular Ca2+ (0.5 m m ), Syn II KO mice demonstrated a significant increase in evoked and spontaneous quantal release, while at the physiological Ca2+ concentration (2 m m ), quantal release in Syn II KO synapses was unaffected. Protein kinase inhibitor H7 (100 μ m ) suppressed quantal release significantly stronger in Syn II KO synapses than in wild type (WT), indicating that Syn II KO synapses may compensate for the lack of synapsin II via a phosphorylation-dependent pathway. Electron microscopy analysis demonstrated that the lack of synapsin II results in an approximately 40% decrease in the density of synaptic vesicles in the reserve pool, while the number of vesicles docked to the presynaptic membrane remained unchanged. Synaptic depression in Syn II KO synapses was slightly increased, which is consistent with the depleted vesicle store in these synapses. At reduced Ca2+ frequency facilitation of synchronous release was significantly increased in Syn II KO, while facilitation of asynchronous release was unaffected. Thus, at the reduced Ca2+ concentration, synapsin II suppressed transmitter release and facilitation. These results demonstrate that synapsin II can regulate vesicle clustering, transmitter release, and facilitation.  相似文献   

7.
In central neurons, the summation of inputs from presynaptic cells combined with the unreliability of synaptic transmission produces incessant variations of the membrane potential termed synaptic noise (SN). These fluctuations, which depend on both the unpredictable timing of afferent activities and quantal variations of postsynaptic potentials, have defied conventional analysis. We show here that, when applied to SN recorded from the Mauthner (M) cell of teleosts, a simple method of nonlinear analysis reveals previously undetected features of this signal including hidden periodic components. The phase relationship between these components is compatible with the notion that the temporal organization of events comprising this noise is deterministic rather than random and that it is generated by presynaptic interneurons behaving as coupled periodic oscillators. Furthermore a model of the presynaptic network shows how SN is shaped both by activities in incoming inputs and by the distribution of their synaptic weights expressed as mean quantal contents of the activated synapses. In confirmation we found experimentally that long-term tetanic potentiation (LTP), which selectively increases some of these synaptic weights, permits oscillating temporal patterns to be transmitted more effectively to the postsynaptic cell. Thus the probabilistic nature of transmitter release, which governs the strength of synapses, may be critical for the transfer of complex timing information within neuronal assemblies.  相似文献   

8.
Synaptic transmission at the neuromuscular junction of the excitatory axon supplying the crayfish opener muscle was examined before and after induction of long-term facilitation (LTF) by a 10-min period of stimulation at 20 Hz. Induction of LTF led to a period of enhanced synaptic transmission, which often persisted for many hours. The enhancement was entirely presynaptic in origin, since quantal unit size and time course were not altered, and quantal content of transmission (m) was increased. LTF was not associated with any persistent changes in action potential or presynaptic membrane potential recorded in the terminal region of the excitatory axon. The small muscle fibers of the walking-leg opener muscle were almost isopotential, and all quantal events could be recorded with an intracellular microelectrode. In addition, at low frequencies of stimulation, m was small. Thus it was possible to apply a binomial model of transmitter release to events recorded from individual muscle fibers and to calculate values for n (number of responding units involved in transmission) and p (probability of transmission for the population of responding units) before and after LTF. In the majority of preparations analyzed (6/10), amplitude histograms of evoked synaptic potentials could be described by a binomial distribution with a small n and moderately high p. LTF produced a significant increase in n, while p was slightly reduced. The results can be explained by a model in which the binomial parameter n represents the number of active synapses and parameter p the mean probability of release at a synapse. Provided that a pool of initially inactive synapses exists, one can postulate that LTF involves recruitment of synapses to the active state.  相似文献   

9.
Probabilistic determination of synaptic strength   总被引:5,自引:0,他引:5  
This work was carried on to analyze the presynaptic components of synaptic efficacy, which is designated by the term of synaptic strength. To assess the relations between synaptic strength and innervation density, the properties of unitary Cl(-)-dependent inhibitory postsynaptic potentials (IPSPs) evoked in the potentials (IPSPs) evoked in the goldfish Mauthner (M-) cell by single impulses in individual presynaptic cells, including quantal release parameters, were compared with the histological features of the same neurons, determined from their reconstructions after intracellular injection with horseradish peroxidase (HRP). Because the M-cell is a stereotyped target neuron, comparison of the synaptic strength from different experiments was accomplished by using as a quantitative measure of this parameter the mean unitary IPSP amplitude normalized with respect to the reversal potential for Cl- (i.e., the driving force). In 108 experiments at low stimulus frequency, the majority of the normalized responses (63%) were grouped in a rather narrow range, varying about fourfold, or from 1.5 to 6% of the driving force, with results from stained (n = 46) and unstained (n = 62) cells being the same. In contrast, for the same restricted set of responses, the number of presynaptic terminals (histological n) encompassed a larger range, varying from 3 to 52. Impulses in neurons with quite different complements of terminal boutons could evoke similarly sized, normalized IPSPs, and these two parameters were poorly correlated, with there being, at most, a tendency for the responses to increase with histological n for small values of the latter. Quantal fluctuations in IPSP amplitudes were analyzed according to a binomial model having three parameters, p, which is the probability of release, n, which is the number of releasing units and was previously shown to equal the number of presynaptic boutons or active sites, and q, or the quantal size. The normalized quantal size varied randomly, with a mean value of 0.51% (SD = 0.20) and was relatively independent of n. In contrast, the distribution of p, which ranged from 0.17 to 0.74 (mean = 0.40, SD = 0.155), was skewed to the right; this parameter tended to decrease as a function of increasing n. The normalized unitary inhibitory conductance (g'IPSP) underlying an IPSP is equal to the product of npg'q, where g'q is the normalized quantal conductance.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The effects of the two toxic proteins Pardaxin I and II isolated from the gland secretion of the flatfish Pardachirus marmoratus on frog neuromuscular transmission have been investigated and compared to those of the gland secretion. Pardaxin I and II showed pre- but not postsynaptic neurotoxic effects. They increased the frequency of the spontaneous release of transmitter quanta in a dose-dependent and temperature-influenced way up to more than 100 times control values. At the same time the quantal content of the evoked end-plate potentials was greatly elevated. Pardaxin I was about 5 times more effective than Pardaxin II, and both were roughly in the same range of efficacy as the original gland secretion (w/v). The glycosteroids isolated from the same gland secretion were relatively ineffective in promoting neurotransmitter release; however, at high doses they had postsynaptic effects, as shown by a diminution of the amplitude of the evoked end-plate potentials. They did not reinforce the effect of the Pardaxins. At higher doses both the Pardaxins and the gland secretion induced depolarization of postsynaptic membranes, muscle cell contractions which could not be blocked by (+)-tubocurarine or by tetrodotoxin, and eventually also physical disruption of muscle cells. No effects on nerve conductance were observed. Pore-forming activity of the Pardaxins has already been demonstrated. It is suggested that their presynaptic effects are a result of a possible affinity to the nerve terminals, of their hydrophobicity and mainly of this pore-forming activity. These toxins might be valuable tools in neuroscience research.  相似文献   

11.
Synaptic transmission at the sensory neuron-motor neuron synapses of Aplysia, like transmission at many synapses of both vertebrates and invertebrates, is increased after a short burst of high-frequency stimulation (HFS), a phenomenon known as posttetanic potentiation (PTP). PTP is generally attributable to an increase in transmitter release from presynaptic neurons. We investigated whether changes in the readily releasable pool of transmitter (RRP) contribute to the potentiation that follows HFS. We compared the changes in excitatory postsynaptic potentials (EPSPs) evoked with action potentials to changes in the RRP as estimated from the asynchronous transmitter release elicited by a hypertonic solution. The changes in the EPSP were correlated with changes in the RRP, but the changes matched quantitatively only at connections whose initial synaptic strength was greater than the median for all experiments. At weaker connections, the increase in the RRP was insufficient to account for PTP. Weaker connections initially released a smaller fraction of the RRP with each EPSP than stronger ones, and this fraction increased at weaker connections after HFS. Moreover, the initial transmitter release in response to the hypertonic solution was accelerated after HFS, indicating that the increase in the efficacy of release was not restricted to excitation-secretion coupling. Modulation of the RRP and of the efficacy of release thus both contribute to the enhancement of transmitter release by HFS.  相似文献   

12.
1. A study was made of the onset of transmission and the characteristics of transmitter release from regenerating nerve terminals in frog muscle fibres.

2. Soon after transmission had been restored, some junctions were found which responded to nerve stimulation with only subthreshold end-plate potentials.

3. The evoked transmitter release had a non-linear dependence on the external calcium concentration, like that seen at normal junctions.

4. The synaptic delay was only slightly longer than normal, and the amplitudes of single quantum potentials evoked by nerve stimulation seemed to have a normal distribution.

5. The mean amplitude of the spontaneous miniature end-plate potentials was often substantially smaller than the mean amplitude of the evoked quantal potentials at a given end-plate. Some of these small spontaneous potentials were due to transmitter release from the axon terminal. Possible explanations for this discrepancy in size of spontaneous and evoked potentials are discussed. Two to three weeks after reinnervation began, the amplitude of the spontaneous miniature end-plate potentials returned to normal.

  相似文献   

13.
The amplitude of excitatory postsynaptic potentials and currents increases with membrane potential hyperpolarization. This has been attributed to an increase in the driving force when the membrane potential deviates from the equilibrium potential of the respective ions. Here we report that in a subset of neocortical and hippocampal synapses, postsynaptic hyperpolarization affects traditional measures of transmitter release: the number of failures, coefficient of variation of response amplitudes, and quantal content, suggesting increased presynaptic release. The result is compatible with the hypothesis of Byzov on the existence of electrical (or "ephaptic") linking in purely chemical synapses. The linking, although negligible at neuromuscular junctions, could be functionally significant in influencing transmitter release at synapses with high resistance along the synaptic cleft. Our findings necessitate reconsideration of classical amplitude-voltage relations for such synapses. Thus, synaptic strength may be enhanced by hyperpolarization of the postsynaptic membrane potential. The positive ephaptic feedback could account for "all-or-none" excitatory postsynaptic potentials at some cortical synapses, large evoked and spontaneous multiquantal events and a high efficacy of large "perforated" synapses whose number increases following behavioural learning or the induction of long-term potentiation.  相似文献   

14.
1. The relation between presynaptic depolarization and transmitter release was examined at a synapse between a Müller axon and a lateral interneurone in the spinal cord of the lamprey. Two micro-electrodes, one for passing current and the other for recording the resulting voltage change, were placed in the presynaptic axon; a single electrode for recording the post-synaptic potential produced by release of transmitter was placed in the post-synaptic cell. 2. When action potentials were blocked with tetrodotoxin, brief depolarizing pulses in the presynaptic fibre were as effective as the action potential had been in producing transmitter release. 3. The release process had an apparent threshold depolarization of 40-50 mV and saturated at presynaptic depolarizations of the order of 100 mV. Increasing the duration of the presynaptic pulse increased the maximum level of release. 4. Displacing the presynaptic voltage recording electrode from the position of synaptic contact toward the current passing electrode increased the apparent depolarization required to produce a given level of transmitter release. This shift in the input-output relation was consistent in magnitude with the voltage attenuation between the presynaptic recording electrode and the synapse expected from the space constant of the fibre. 5. The effect of conditioning hyperpolarization and depolarization of the presynaptic fibre on subsequent transmitter release by brief depolarizing pulses was examined. No effect was observed when the presynaptic recording electrode was in the region of synaptic contact. When the presynaptic electrode was not so positioned, conditioning effects were observed which depended on electode position and could be attributed to changes in the space constant of the presynaptic fibre. No conditioning effects were observed on transmitter release by the action potential.  相似文献   

15.
Synapsins as mediators of BDNF-enhanced neurotransmitter release   总被引:18,自引:0,他引:18  
We examined enhancement of synaptic transmission by neurotrophins at the presynaptic level. In a synaptosomal preparation, brain-derived neurotrophic factor (BDNF) increased mitogen-activated protein (MAP) kinase-dependent synapsin I phosphorylation and acutely facilitated evoked glutamate release. PD98059, used to inhibit MAP kinase activity, markedly decreased synapsin I phosphorylation and concomitantly reduced neurotransmitter release. The stimulation of glutamate release by BDNF was strongly attenuated in mice lacking synapsin I and/or synapsin II. These results indicate a causal link of synapsin phosphorylation via BDNF, TrkB receptors and MAP kinase with downstream facilitation of neurotransmitter release.  相似文献   

16.
1. The magnitude and kinetics of inhibitory postsynaptic currents (IPSCs) evoked in the goldfish Mauthner (M-) cell by intracellular stimulation of identified presynaptic interneurons (unitary responses) and by activation of the recurrent collateral network were determined with single-and double electrode voltage-clamp techniques. 2. The peak magnitude of the inhibitory conductance changes were 5610 +/- 4800 nS (mean +/- SD; n = 13) for the collateral response, and 144 +/- 44 nS (n = 7) for the unitary IPSCs. These synaptic conductances, which are due to the opening of Cl- channels, were independent of the degree of Cl- -loading of the M-cell. 3. The peak amplitude of the collateral inhibitory postsynaptic potential (IPSP) was a constant fraction (0.52 +/- 0.06) of the driving force, which was determined from current-voltage plots for both types of IPSCs and ranged from 10 to 37 mV. These findings confirm indirect measurements from previous current-clamp studies and validate the normalization procedure used to previously calculate synaptic conductances from IPSP amplitudes, a method that therefore may be applicable to other central neurons. 4. At the resting membrane potential, the rise time of the unitary IPSCs was 0.34 +/- 0.07 ms (n = 18), whereas their decay was exponential, with a time constant of 5.7 +/- 1.1 ms (n = 16). 5. Iontophoretic and intramuscular applications of the glycine antagonist strychnine reduced or blocked M-cell inhibitory responses, without altering the excitability of the presynaptic neurons, or the driving force. 6. Amplitude fluctuations of unitary IPSPs recorded during partial blockade by strychnine were analyzed according to a binomial model of quantal transmitter release. In one experimental series, comparison of the binomial parameters before and after applying the antagonist indicated that only quantal size, q, was reduced, whereas n, the number of available release units, and p, the probability of release, were unaffected by strychnine. In a second series, the individual presynaptic cells were injected with horseradish peroxidase (HRP), and it was found that the correlation between n and the number of stained presynaptic boutons and, therefore, of active zones, was maintained in the presence of the drug. No evidence was found for silent synapses in these conditions. 7. The quantal conductance, gq, was estimated from the binomially derived quantal size, in millivolts, and the voltage-clamp measurements of the IPSP driving force and M-cell input conductance. gq averaged 21.5 nS in control conditions and 12.3 nS in the presence of strychnine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The effects of the convulsant drug 4-Cl phenol on synaptic transmission were studied in the opener muscle of the crayfish walking leg. 4-Cl phenol was found to increase the amplitude of the excitatory postsynaptic potential without affecting the resting potential or input resistance of the muscle fiber. The drug did not change the frequency of spontaneous miniature postsynaptic potentials in K+-depolarized fibers. The postsynaptic voltage response to bath-applied glutamate (the excitatory transmitter compound) was decreased while the Cl(-) -conductance increase related to the action of bath-applied gamma-aminobutyric acid (the inhibitory transmitter) was not affected. In the light of previous results obtained on crayfish axons it is concluded that convulsant phenols induce an increase in the evoked release of transmitter by increasing the duration of the presynaptic depolarization through a block of voltage-dependent potassium channels.  相似文献   

18.
We have previously suggested that presynaptic M(2)-muscarinic receptors (M(2)R) are involved in the control of the time course of evoked acetylcholine release in the frog neuromuscular junction. The availability of knockout mice lacking functional M(2)R (M(2)-KO) enabled us to address this issue in a more direct way. Using the phrenic diaphragm preparation, we show that in wild-type (WT) mice experimental manipulations known to affect Ca(2+) entry and removal, greatly affected the amount of acetylcholine released (quantal content). However, the time course of release remained unaltered under all these experimental treatments. On the other hand, in the M(2)-KO mice, similar experimental treatments affected both the quantal content and the time course of release. In general, a larger quantal content was accompanied by a longer duration of release. Similarly, the rise time of the postsynaptic current produced by axon stimulation was sensitive to changes in [Ca(2+)](o) or [Mg(2+)](o) in M(2)-KO mice but not in WT mice. Measurements of Ca(2+) currents revealed that the shorter rise time of the postsynaptic current seen in high [Mg(2+)](o) in M(2)-KO mice was not produced by a shorter wave of the presynaptic Ca(2+) current. These results support our earlier findings and provide direct evidence for the major role that presynaptic M(2)-muscarinic receptors play in the control of the time course of evoked acetylcholine release under physiological conditions.  相似文献   

19.
Small tissue fragments excised from the electric organ of Torpedo marmorata were treated with diamide, a penetrating thiol oxidizing agent, until synaptic transmission was blocked. At this stage, we found an unexpected number of exo-endocytotic images in the presynaptic plasmalemma. Omega-shaped profiles, some of them coated, were seen in thin sections of fixed tissue and pits opened in the P-face of the presynaptic membrane in freeze-fracture replicas from rapidly-frozen preparations. Diamide-treated specimens were frozen at 1 ms time intervals before, during and after a single electrical stimulus. This stimulation did not result in a further increase in the density of presynaptic pits, not in any change affecting the density or size distribution of intramembrane particles. This result is in contrast with what is observed in untreated specimens where transmission of a nerve impulse is accompanied by a momentary rise in the number of large particles. The density of synaptic vesicles--especially that of a subpopulation of small size vesicles--transiently increased within the first 2 h of diamide treatment. During the first stages of intoxication, diamide prolonged the time course of postsynaptic potentials--both spontaneous and evoked--probably by altering the gating properties of receptors (acetyl-cholinesterase activity was not impaired). Later on, all evoked responses were blocked. The spontaneous transmitter release greatly increased, first in the form of quantal miniature potentials. These then subsided whereas a class of very small potentials was generated at a high frequency. Also under the action of diamide, calcium progressively accumulated in the tissue but the number of synaptic vesicles containing calcium deposits was reduced. It is concluded that diamide causes a marked increase in the number of exo-endocytotic images in the presynaptic membrane, suppresses quantal but not subquantal release, and interferes with calcium sequestration in and extrusion from terminals.  相似文献   

20.
D W Cheung 《Neuroscience》1990,37(1):127-134
To determine how transmitter release is related to presynaptic nerve activities, pre- and postsynaptic electrical events of the vas deferens in the guinea-pig were recorded with a suction electrode. Stimulation of the hypogastric nerve elicited excitatory junction currents and nerve action potentials. Intermittence of excitatory junction currents was observed. In some instances, this was related to the absence of nerve action potentials, suggesting failure of impulse propagation into the nerve terminals. Facilitation of both the nerve action potentials and the excitatory junction currents was also observed. Internal perfusion of the recording electrode with tetrodotoxin blocked the nerve impulse, and the polarity of the excitatory junction current became positive. Similar effects on the polarity of the excitatory junction current were observed with alpha, beta-methylene ATP. Perfusion of the suction pipette with 4-aminopyridine or tetraethylammonium increased the amplitude of the excitatory junction currents and prolonged the nerve action potential duration. These experiments show that: (1) transmission failure in some cases can be related to conduction block into the terminal region: (2) facilitation of excitatory junction currents may be related to facilitation of the nerve action potentials; (3) enhancement of transmitter release by potassium channel blockers may be related to prolongation of the duration of the nerve action potential. It is concluded that transmitter release is intimately related to presynaptic nerve activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号