首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apolipoprotein D (apoD), a member of the lipocalin family of transporter proteins binds a number of small lipophilic molecules including arachidonic acid and cholesterol. Recent studies showed a protective function of mammalian apoD as well as its insect and plant homologs against oxidative stress. In this study we investigated the effect of direct addition of exogenous human apoD protein purified from breast cystic fluid to rat hippocampal slice cultures after excitotoxic injury induced by the glutamate analog kainate. ApoD at a concentration of 10 μg/ml partially prevented loss of MAP2 immunostaining and LDH release from injured hippocampal neurons after kainate injury. ApoD also attenuated the increase in oxidative products of arachidonic acid and cholesterol, F2-isoprostanes and 7-ketocholesterol, respectively, after kainate treatment. In view of the molecular structure of apoD which consists of an eight stranded β barrel that forms a binding pocket for a number of small hydrophobic molecules, we propose that apoD promotes its neuroprotective effects by binding to arachidonic acid and cholesterol thus preventing their oxidation to neurotoxic products such as 4-hydroxynonenal (4-HNE) and 7-ketocholesterol.  相似文献   

2.
Liang LP  Beaudoin ME  Fritz MJ  Fulton R  Patel M 《Neuroscience》2007,147(4):1114-1118
Aging is a significant risk factor for developing epilepsy. The mechanisms underlying age-related increase in seizure susceptibility and resultant injury remain unknown. Oxidative stress is an important mechanism that contributes to diverse age-related disorders. Whether age-related increased seizure susceptibility is accompanied by increased oxidative stress remains unknown. The goal of this study was to determine if aging per se increases the susceptibility of rats to kainate-induced behavioral seizures and oxidative stress. Adult (3-4 month-old) and aging (18-19 month-old) Sprague-Dawley rats were administered a single low dose of kainate (5 mg/kg, s.c.) or saline. Behavioral seizures were monitored in all four groups for a period for a period of approximately 6 h. Oxidative stress (8-hydroxy-2'deoxyguanosine/2-deoxyguanosine; 8OHdG/2dG) was assessed 24 h following kainate injection. Stereological assessment of cell counts was performed in hippocampal tissue 7 days following kainate injection. In adult rats, administration of the low dose of kainate did not produce significant behavioral seizures, oxidative stress or cell loss. However, aging rats exhibited intense behavioral seizures consistent with status epilepticus following the low dose of kainate. In aging rats, kainate produced a significant increase in oxidative DNA damage (8OHdG/2dG) and neuronal loss in cornu ammonis regions 3 and 1 (CA3 and CA1), but not dentate gyrus compared with both age-matched controls and adult kainate-treated rats. These data suggest that the process of aging per se increases kainate-induced seizure susceptibility, oxidative stress and hippocampal pyramidal cell loss.  相似文献   

3.
Wang XS  Ong WY  Connor JR 《Neuroscience》2003,120(1):21-29
The present investigation was carried out to elucidate the effect of the antimalarial drug quinacrine on levels of expression of the non-heme iron transporter, divalent metal transporter-1 (DMT1) and iron, in the hippocampus of rats after kainate treatment. The untreated hippocampus was lightly stained for DMT1, while an increase in DMT1 staining in astrocytes in the degenerating cornu ammonis (CA) fields, after kainate lesions. The increased DMT1 immunoreactivity was correlated with increased levels of Fe3+ and Fe2+ staining in the CA fields, as demonstrated by iron histochemistry (Perl's and Turnbull's blue stain for Fe3+ and Fe2+). The increases in DMT1 and iron staining were significantly attenuated by quinacrine. Rats injected with kainate and daily i.p. injections of quinacrine (5 mg/kg) for 7 days or 2 weeks showed significantly lower levels of DMT1 immunoreactivity and iron staining, compared with rats injected with kainate and saline. These results show that DMT1 expression is closely linked to iron levels, and provide further support for a crucial role that DMT1 plays in iron accumulation in the degenerating hippocampus.  相似文献   

4.
Increase in levels of oxysterols or cholesterol oxidation products have been detected in brain areas undergoing neuroinflammation after excitotoxic injury, and the present study was carried out to elucidate possible effects of these products on exocytosis in rat pheochromocytoma-12 (PC12) cells. An increase in vesicle fusion with the cell membrane indicating exocytosis was observed by total internal reflection microscopy (TIRFM), and confirmed by capacitance measurements, after addition of 7 ketocholesterol, 24 hydroxycholesterol or cholesterol 5, 6 beta epoxide. 7 ketocholesterol induced exocytosis was attenuated by pretreatment with a disruptor of cholesterol-rich domains or “lipid rafts”, methyl-β-cyclodextrin (MβCD) as demonstrated by capacitance and amperometry measurements of neurotransmitter release. Moreover, treatment of cells with thapsigargin to deplete intracellular calcium, or treatment of cells with lanthanum chloride to block calcium channels resulted in attenuation of 7 ketocholesterol induced exocytosis. Fura-2 imaging showed that 7 ketocholesterol induced rapid and sustained increases in intracellular calcium concentration, and that this effect was attenuated in cells that were pre-treated with MβCD, thapsigargin or lanthanum chloride. Together, the results suggest that neurotransmitter release triggered by 7 ketocholesterol is dependent on the integrity of cholesterol rich lipid domains on cellular membranes and a rise in intracellular calcium, either through release from internal stores or influx via calcium channels. Increased cholesterol oxidation product concentrations in brain areas undergoing neuroinflammation may enhance exocytosis and neurotransmitter release, thereby aggravating excitotoxicity.  相似文献   

5.
Won SJ  Ko HW  Kim EY  Park EC  Huh K  Jung NP  Choi I  Oh YK  Shin HC  Gwag BJ 《Neuroscience》1999,94(1):83-91
Administration of the excitotoxin kainate produces seizure activity and selective neuronal death in various brain areas. We examined the degeneration pattern of hippocampal neurons following systemic injections of kainate in the hamster and the rat. As reported, treatment with kainate resulted in severe neuronal loss in the hilus and CA3 in the rat. While the hilar neurons were also highly vulnerable to kainate in the hamster, neurons in the CA1 area, but not CA3, were highly sensitive to kainate. In both animals, immunoreactivity to anti-p50 nuclear factor kappa B antibody was increased in nuclei of the hilar neurons within 4 h following administration of kainate. Kainate treatment also increased the nuclear factor kappa B immunoreactivity in hamster CA1 neurons and rat CA3 neurons 24 h later. Neurons showing intense nuclear factor kappa B signal were stained with acid fuchsin. Kainate also increased DNA binding activity of p50 and p65 nuclear factor kappa B in the nuclear extract of the hippocampal formation as analysed by electrophoretic mobility shift assay in the hamster, suggesting that activation of nuclear factor kappa B may contribute to kainate-induced hippocampal degeneration. Administration of 100 nmol dizocilpine maleate 3 h prior to kainate attenuated kainate-induced activation of nuclear factor kappa B and neuronal death in CA1 in the hamster. The present study provides evidence that the differential vulnerability of neurons in the rat and the hamster hippocampus to kainate is partly mediated by mechanisms involving N-methyl-D-aspartate-dependent activation of nuclear factor kappa B.  相似文献   

6.
Early oxidative DNA damage is regarded to be an initiator of neuronal apoptotic cell death after cerebral ischemia. Although evidence suggests that HGF has the ability to protect cells from oxidative stress, it remains unclear as to how HGF suppresses oxidative DNA damage after cerebral ischemia. Apurinic/apyrimidinic endonuclease/redox factor-1 (APE/Ref-1) is a multifunctional protein in the DNA base repair pathway that is responsible for repairing apurinic/apyrimidinic sites in DNA after oxidation. We demonstrated that both the immunoreactivity and the number of APE/Ref-1-positive cells in the hippocampal CA1 region were decreased after transient forebrain ischemia and that treatment with HGF suppressed this reduction. The expression of Cu/ZnSOD and MnSOD in the hippocampal CA1 region did not change after ischemia, regardless of treatment with or not with HGF. The activity of NADPH oxidase was increased mainly in glia-like cells in the hippocampal CA1 region after ischemia, and this increase was attenuated by HGF treatment. These results suggest that the protective effects of HGF against cerebral ischemia-induced cell death in the hippocampal CA1 region are related to the improvement of neuronal APE/Ref-1 expression and the inhibition of NADPH oxidase activity in glia-like cells.  相似文献   

7.
ABSTRACT: BACKGROUND: Recurrent/moderate (R/M) hypoglycemia is common in type 1 diabetes. Although mild or moderate hypoglycemia is not life-threatening, if recurrent, it may cause cognitive impairment. In the present study, we sought to determine whether R/M hypoglycemia leads to neuronal death, dendritic injury, or cognitive impairment. METHODS: The experiments were conducted in normal and in diabetic rats. Rats were subjected to moderate hypoglycemia by insulin without anesthesia. Oxidative stress was evaluated by 4-Hydroxy-2-nonenal immunostaining and neuronal death was determined by Fluoro-Jade B staining 7 days after R/M hypoglycemia. To test whether oxidative injury caused by NADPH oxidase activation, an NADPH oxidase inhibitor, apocynin, was used. Cognitive function was assessed by Barnes maze and open field tests at 6 weeks after R/M hypoglycemia. RESULTS: The present study found that oxidative injury was detected in the dendritic area of the hippocampus after R/M hypoglycemia. Sparse neuronal death was found in the cortex, but no neuronal death was detected in the hippocampus. Significant cognitive impairment and thinning of the CA1 dendritic region was detected 6 weeks after hypoglycemia. Oxidative injury, cognitive impairment, and hippocampal thinning after R/M hypoglycemia were more severe in diabetic rats than in non-diabetic rats. Oxidative damage in the hippocampal CA1 dendritic area and microglial activation were reduced by the NADPH oxidase inhibitor, apocynin. CONCLUSION: The present study suggests that oxidative injury of the hippocampal CA1 dendritic region by R/M hypoglycemia is associated with chronic cognitive impairment in diabetic patients. The present study further suggests that NADPH oxidase inhibition may prevent R/M hypoglycemia-induced hippocampal dendritic injury.  相似文献   

8.
Mitochondrial superoxide production in kainate-induced hippocampal damage   总被引:15,自引:0,他引:15  
Liang LP  Ho YS  Patel M 《Neuroscience》2000,101(3):563-570
The objective of this study was to determine the role of mitochondrial superoxide radical-mediated oxidative damage in seizure-induced neuronal death. Using aconitase inactivation as an index of superoxide production, we found that systemic administration of kainate in rats increased mitochondrial superoxide production in the hippocampus at times preceding neuronal death. 8-Hydroxy-2-deoxyguanosine, an oxidative lesion of DNA, was also increased in the rat hippocampus following kainate administration. Manganese(III) tetrakis(4-benzoic acid)porphyrin, a catalytic antioxidant, inhibited kainate-induced mitochondrial superoxide production, 8-hydroxy-2-deoxyguanosine formation and neuronal loss in the rat hippocampus. Kainate-induced increases of mitochondrial superoxide production and hippocampal neuronal loss were attenuated in transgenic mice overexpressing mitochondrial superoxide dismutase-2.We propose that these results demonstrate a role for mitochondrial superoxide production in hippocampal pathology produced by kainate seizures.  相似文献   

9.
It is well known that head trauma induces the cognitive dysfunction resulted from hippocampal damage. In the present study, we aimed to demonstrate the effect of melatonin on hippocampal damage and spatial memory deficits in 7-day-old rat pups subjected to contusion injury. Melatonin was injected intraperitoneally at the doses of 5 or 20 mg/kg of body weight immediately after induction of traumatic injury. Hippocampal damage was examined by cresyl violet staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Spatial memory performance was assessed in the Morris water maze. Melatonin significantly attenuated trauma-induced neuronal death in hippocampal CA1, CA3 regions and dentate gyrus, and improved spatial memory deficits, which was equally effective at doses of 5-20 mg/kg. The present results suggest that melatonin is a highly promising agent for preventing the unfavorable outcomes of traumatic brain injury in young children.  相似文献   

10.
Our previous study showed an increase in total cholesterol level of the hippocampus after kainate-induced injury, but whether this is further metabolized to neurosteroids is not known. The first step in neurosteroid biosynthesis is the conversion of cholesterol to pregnenolone by the enzyme cytochrome P450 side chain cleavage (P450scc). This study was carried out to elucidate the expression of this enzyme in the kainate-lesioned rat hippocampus. A net decrease in P450scc protein was detected in hippocampal homogenates by Western blots at 2 weeks post-kainate injection (time of peak cholesterol concentration after kainate injury). Immunohistochemistry showed decreased labeling of the enzyme in neurons, but increased expression in a small number of astrocytes. The level of pregnenolone was also analyzed using a newly developed gas chromatography–mass spectrometry (GC–MS) method, optimized for the rat hippocampus. A non-significant tendency to a decrease in pregnenolone level was detected 2 weeks post-lesion. This is in contrast to a large increase in oxysterols in the lesioned hippocampus at this time (He et al. 2006). Together, they indicate that increased cholesterol in the kainate lesioned hippocampus is mostly metabolized to oxysterols, and not neurosteroids. Wan-Jie Chia and Andrew M. Jenner contributed equally to this work.  相似文献   

11.
Tolerance to normally neurotoxic insults can be induced by prior a preconditioning exposure to a sublethal insult. Kainate toxicity can be attenuated by prior exposure to very low concentrations of kainate both in vivo and in vitro. Using organotypic hippocampal slice cultures from rats we have shown that 5 microM kainate induces a selective lesion in the CA3 region and this can be significantly attenuated by 1 microM kainate administered 1-5 days earlier. The time window for this effect was affected by the length of time in culture, and preconditioning was blocked by NBQX but not the selective AMPA receptor antagonist GYKI53655. These data demonstrate a role for kainate receptors in preconditioning for the first time and show that organotypic cultures can be used as a model to investigate long-term preconditioning mechanisms.  相似文献   

12.
NF-κB is found in many neuronal cell types in different states of activity. This study aimed to define which conditions induce constitutive NF-κB activity in cultured hippocampal neurons using activity-specific antibody staining. In co-culture with astroglia, hippocampal neurons were devoid of activated NF-κB. In these co-cultures, NF-κB could not be activated via kainate or glutamate. In contrast, separating neurons from the glial compartment resulted in a time-dependent increase of activated neuronal NF-κB. In this line, activation of NF-κB by kainate or glutamate is very effective in freshly separated cultures, but inhibited when the cultures are reassembled after stimulation. These findings suggests that a neuronal-glial interaction may regulate gene expression via NF-κB. Received: 14 June 1999 / Accepted: 8 September 1999  相似文献   

13.
It is known that the brain tissue is extremely sensitive to ischemia-reperfusion (IR) injury and therefore, brain ischemia and consecutive reperfusion result in neural damage and apoptosis. The proinflammatory cytokines such as tumor necrosis factor alfa (TNF-α) and interleukin-1 beta (IL-1β) are produced during neurological disorders including cerebral ischemia. On the other hand, nerve growth factor (NGF), which is essential for the differentiation, survival and functions of neuronal cells in the central nervous system, regulate neuronal development through cell survival and cell death signaling. In the present study, we aimed to investigate the effect of selenium (Se) on prefrontal cortex and hippocampal damage in rats subjected to cerebral IR injury. Selenium was injected intraperitoneally at the doses of 0.625 mg/(kg day) after induction of IR injury. Prefrontal cortex and hippocampal damage was examined by cresyl-violet staining. Apostain and caspase-3 immune staining were used to detect apoptosis. TNF-α, IL-1β and NGF levels were also evaluated. Histopathological evaluation showed that treatment with selenium after ischemia significantly attenuated IR-induced neuronal death in prefrontal cortex and hippocampal CA1 regions of rats. Apoptotic cells stained with apostain and caspase-3 were significantly decreased in treatment group when compared with the IR group. Additionally, treatment with selenium decreased the TNF-α and IL-1β levels and increased the NGF levels in prefrontal cortex and hippocampal tissue of animals subjected to IR. The present results suggest that selenium is potentially a beneficial agent in treating IR-induced brain injury in rats.  相似文献   

14.
Following kainate (KA)-induced epilepsy, rat hippocampal neurons strongly express immediate early gene (IEG) products, i.e., c-FOS and c-JUN, and neural stress protein, HSP72. Prolonged expression of c-JUN and c-FOS 48 hr after cerebral ischemia has been underwent delayed neuronal death. However, it is not yet clear whether IEGs actually assume the essential roles in the cell death process or simply as a by-product due to external stimuli because of the prolonged expression of c-FOS, more than one week, on intact CA2 neurons of the hippocampus in a KA-induced epilepsy model. This study investigated the relationships between prolonged expression of c-JUN and hippocampal neuronal apoptosis in a KA-induced epilepsy model. Epileptic seizure was induced in rats by a single microinjection of KA (1 microgram/microL) into the left amygdala. Characteristic seizures and hippocampal neuronal injury were developed. The expression of c-JUN was evaluated by immunohistochemistry, and neuronal apoptosis by in situ end labeling. The seizures were associated with c-JUN expression in the hippocampal neurons, of which the level showed a positive correlation with that of apoptosis. Losses of hippocampal neurons, especially in the CA3 region, were partly caused by apoptotic cell death via a c-JUN-mediated signaling pathway. This is thought to be an important component in the pathogenesis of hippocampal neuronal injury via KA-induced epilepsy.  相似文献   

15.
催产素减轻新生大鼠海马神经元缺氧缺血性损伤   总被引:1,自引:1,他引:0       下载免费PDF全文
目的:探讨催产素(oxytocin)对新生大鼠缺氧缺血性损伤后海马CA1区神经元的作用及机制。方法:采用氧糖剥夺(OGD)制备体外缺氧缺血模型,取8只7~10日龄新生大鼠的急性分离脑片(6~8片/只)随机分为4组,即对照组、OGD 20 min组、OGD 40 min组和OGD+oxytocin组,进行TO-PRO-3染色实验观察催产素对神经元的作用。另取20只新生大鼠脑片随机分为4组,分别是OGD组、OGD+oxytocin组、OGD+d VOT(催产素受体阻断剂)+oxytocin组和OGD+bicuculline(GABAA受体阻断剂)+oxytocin组,用全细胞膜片钳记录不同药物作用下海马神经元缺氧去极化的出现时间。结果:TO-PRO-3染色结果显示海马CA1区神经元死亡数量随着氧糖剥夺时间延长而增加,催产素能显著减少OGD所致的死亡神经元数目(P0.05)。全细胞膜片钳记录结果显示,催产素可使缺氧去极化时间显著延长;d VOT及bicuculline可以消除这种效应。结论:催产素能减轻新生大鼠海马CA1区神经元缺氧缺血性损伤,其机制可能是通过结合催产素受体,增强抑制性神经传递,从而产生神经保护作用。  相似文献   

16.
Cholesterol oxides have a wide range of cytotoxic effects on vascular cells. Therefore, 7-ketocholesterol, 7 beta-hydroxycholesterol, 19-hydroxycholesterol, cholesterol 5 alpha, 6 alpha-epoxide, and 25-hydroxycholesterol, identified in various foodstuffs and human tissues, were chosen to compare and characterize the mode of cell death they induce, apoptosis or necrosis, on bovine aortic endothelial cells. The toxic potency differed from one compound to another, and 7 beta-hydroxycholesterol and 7-ketocholesterol exhibited the most potent effects. Cytotoxicity was accompanied by a decreased number of adherent cells, an increased number of non-adherent cells, and an enhanced permeability to propidium iodide. By electron and fluorescence microscopy performed after staining with Hoechst 33342, apoptotic cells with fragmented and condensed nuclei were identified mainly among non-adherent cells. By flow cytometry, cells with a lower DNA content than cells in the G0/G1 phase were apparent, giving a characteristic sub-G1 peak. Quantification of apoptosis evaluated either by the proportion of apoptotic cells identified by fluorescence microscopy after staining with Hoechst 33342 or by the percentage of cells present in the sub-G1 peak indicated that the ability of cholesterol oxides in inducing apoptosis was in the following order: 7 beta-hydroxycholesterol > 7-ketocholesterol > 19-hydroxycholesterol > cholesterol 5 alpha, 6 alpha-epoxide > 25-hydroxycholesterol. By using electrophoresis on agarose gel, typical internucleosomal DNA fragmentations were detected; they were no longer observed when bovine aortic endothelial cells were simultaneously incubated with 0.5 mmol/L zinc chloride, known to inhibit Ca2+/Mg2+-dependent endonucleases. None of the cholesterol-oxide-induced apoptotic features described above were noted with cholesterol. It is concluded that cholesterol oxides constitute a new class of cholesterol derivatives that can induce cell death by apoptosis in cultured endothelial cells.  相似文献   

17.
Venero JL  Revuelta M  Machado A  Cano J 《Neuroscience》1999,94(4):1071-1081
We have performed a detailed time-course analysis of cell death in the hippocampal formation, basal forebrain and amygdala following a single intraseptal injection of kainate in adult rats. Acetylcholinesterase histochemistry revealed a profound loss of staining in the medial septum but not in the diagonal band, and cholinergic fiber density was highly reduced in the hippocampus and amygdala at 10 days postinjection. Terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphatebiotin nick end labeling (TUNEL) histochemistry was performed for precise location of apoptotic cells. Both the medial septum and amygdala exhibited numerous TUNEL-positive nuclei after the intraseptal injection of kainate, while the lateral septum exhibited a lower but significant incidence in terms of apoptotic cells. In the medial septum, the presence of apoptotic cells was at a location displaying acetylcholinesterase staining. TUNEL histochemistry revealed a time-dependent sequential apoptotic cell death in hippocampal pyramidal cells. During the first two days postinjection, apoptosis in the hippocampus was only evident in the CA3 region. At five days postinjection, the entire CA4 region became apoptotic. At 10 days postinjection, the whole extent of the CA1 pyramidal cell layer exhibited numerous TUNEL-positive nuclei. The time-course of kainate-induced apoptosis in Ammons's horn correlated with the disappearance of hippocampal pyramidal neurons as detected by Nissl staining, which is suggestive of a prominent apoptotic death for these cells. The temporal delayed distant damage to CA4 and CA1 hippocampal subfields after a single intraseptal kainate injection is not seen in other models employing kainate and may be a valuable tool for exploring the cellular mechanisms leading to cell death in conditions of status epilepticus.  相似文献   

18.
Oxidative stress is believed to contribute to neuronal damage induced by cerebral ischemia/reperfusion (I/R) injury. The present study was undertaken to evaluate the possible antioxidant neuroprotective effect of genistein against neuronal death in hippocampal CA1 neurons following transient global cerebral ischemia in the rat. Transient global cerebral ischemia was induced in male Sprague-Dawley rats by four-vessel-occlusion for 10min. At various times of reperfusion, the histopathological changes and the levels of mitochondria-generated reactive oxygen species (ROS), malondialdehyde (MDA), cytosolic cytochrome c and caspase-3 activity in hippocampus were measured. We found extensive neuronal death in the CA1 region at day 5 after I/R. The ischemic changes were preceded by increases in ROS generation and MDA concentration and followed by increased cytosolic cytochrome c, and subsequently caspase-3 activation and apoptosis. Treatment with genistein (15mg/kg, i.p.) significantly attenuated ischemia-induced neuronal death. Genistein administration also decreased ROS generation, MDA concentration and the apoptotic indices. These results suggest that genistein protects neurons from transient global cerebral I/R injury in rat hippocampus by attenuating oxidative stress, lipid peroxidation and the signaling cascade leading to apoptotic cell death.  相似文献   

19.
 The anti-excitotoxic efficacy of the pineal hormone melatonin was investigated in kainate-injured brains of rats. Kainate (a glutamate-receptor agonist, 2.5 nmol in 1 μl) was directly injected to unilateral striatum. Melatonin (10 mg/kg) was administrated intraperitoneally 1 h before and 1, 3, and 5 h after intrastriatal kainate injection in adult Sprague-Dawley rats. Three days after kainate injection, a significant neuronal damage was found, as determined by Nissl staining and the TUNEL method, not only in the injected striatum, but also in the ipsilateral neighboring cortex. The kainate-induced cortical apoptotic neuronal death was significantly attenuated by treatment with melatonin compared with the vehicle control group. However, no detectable changes were observed in the contralateral side of the brain in either vehicle- or melatonin-treated rats. Moreover, the biochemical results indicated that kainate can indeed induce oxidative stress, such as a decrease in the content of total glutathione (GSH), oxidized glutathione (GSSG), and an increase in the ratio of GSSG/GSH in the striatum and cortex compared with the contralateral brain regions. In the kainate-injected striatum, melatonin did not reduce the oxidative stress, but in the neighborhood of injected area-cortex, kainate-induced oxidative stress was significantly reduced by melatonin. Enhancement of glutathione-peroxidase activity was induced by intrastriatal kainate injection, not only in the cortical area of control and melatonin-treated rats, but also in striatum of control rats. However, a large elevation was found in the melatonin-treated cortex. Taking the morphological and biochemical data together, the present results suggest that melatonin functions as an antioxidant by upregulating the glutathione antioxidative defense system, thereby reducing neuronal death caused by excitotoxicity and preventing the kainate-induced damage from spreading to adjacent brain regions. Received: 16 December 1997 / Accepted: 30 July 1998  相似文献   

20.
DNA repair is one of the most essential systems for maintaining the inherited nucleotide sequence of genomic DNA over time. Repair of DNA damage would be particularly important in neurons, because these cells are among the longest-living cells in the body. MSH2 is one of the proteins which are involved in the recognition and repair of a specific type of DNA damage that is characterized by pair mismatches. We studied the distribution of MSH2 in rat brain by immunohistochemical analysis. We found the level of MSH2 expression in rat brain to be clearly heterogeneous. The highest intensity of staining was found in the pyramidal neurons of the hippocampus and in the entorhinal and frontoparietal cortices. Positive cells were observed in the substantia nigra pars compacta, in cerebellar granular and Purkinje cells, and in the motor neurons of the spinal cord. We investigated the possible modulation of MSH2 expression after injection of kainate. Systemic administration of kainate induces various behavioural alterations and a typical pattern of neuropathology, with cell death in the hippocampal pyramidal neurons of the CA3/CA4 fields. Kainate injection also resulted in a marked, dose-dependent increase of MSH2 immunoreactivity in the hippocampal neurons of the CA3/CA4 fields. The effect was specific, since no changes in immunoreactivity were detected in the dentate gyrus nor in other brain areas. In summary, our data suggest that a mismatch DNA repair system, of which MSH2 protein is a representative component, is heterogeneously expressed in the rat brain and specifically induced by an experimental paradigm of excitotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号