首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida albicans persisters constitute a small subpopulation of biofilm cells and play a major role in recalcitrant chronic candidiasis; however, the mechanism underlying persister formation remains unclear. Persisters are often described as dormant, multidrug-tolerant, nongrowing cells. Persister cells are difficult to isolate and study not only due to their low levels in C. albicans biofilms but also due to their transient, reversible phenotype. In this study, we tried to induce persister formation by inducing C. albicans cells into a dormant state. C. albicans cells were pretreated with 5-fluorocytosine (planktonic cells, 0.8 μg ml−1; biofilm cells, 1 μg ml−1) for 6 h at 37°C, which inhibits nucleic acid and protein synthesis. Biofilms and planktonic cultures of eight C. albicans strains were surveyed for persisters after amphotericin B treatment (100 μg ml−1 for 24 h) and CFU assay. None of the planktonic cultures, with or without 5-fluorocytosine pretreatment, contained persisters. Persister cells were found in biofilms of all tested C. albicans strains, representing approximately 0.01 to 1.93% of the total population. However, the persister levels were not significantly increased in C. albicans biofilms pretreated with 5-fluorocytosine. These results suggest that inhibition of nucleic acid synthesis did not seem to increase the formation of amphotericin B-tolerant persisters in C. albicans biofilms.  相似文献   

2.
The development of adaptive resistance of Salmonella enterica serovar Enteritidis ATCC 4931 biofilms following exposure to benzalkonium chloride (BC) either continuously (1 microg ml(-1)) or intermittently (10 microg ml(-1) for 10 min daily) was examined. Biofilms adapted to BC over a 144-h period could survive a normally lethal BC challenge (500 microg ml(-1) for 10 min) and then regrow, as determined by increases in biofilm thickness, total biomass, and the ratio of the viable biomass to the nonviable biomass. Exposure of untreated control biofilms to the lethal BC challenge resulted in biofilm erosion and cell death. Proteins found to be up-regulated following BC adaptation were those involved in energy metabolism (TpiA and Eno), amino acid and protein biosynthesis (WrbA, TrxA, RplL, Tsf, Tuf, DsbA, and RpoZ), nutrient binding (FruB), adaptation (CspA), detoxification (Tpx, SodB, and a probable peroxidase), and degradation of 1,2-propanediol (PduJ and PduA). A putative universal stress protein (YnaF) was also found to be up-regulated. Proteins involved in proteolysis (DegQ), cell envelope formation (RfbH), adaptation (UspA), heat shock response (DnaK), and broad regulatory functions (Hns) were found to be down-regulated following adaptation. An overall increase in cellular protein biosynthesis was deduced from the significant up-regulation of ribosomal subunit proteins, translation elongation factors, and amino acid biosynthesis protein and down-regulation of serine endoprotease. The cold shock response, stress response, and detoxification are suggested to play roles in the adaptive resistance of Salmonella serovar Enteritidis biofilms to BC.  相似文献   

3.
Biofilm formation is a major virulence attribute of Candida pathogenicity which contributes to higher antifungal resistance. We investigated the roles of cell density and cellular aging on the relative antifungal susceptibility of planktonic, biofilm, and biofilm-derived planktonic modes of Candida. A reference and a wild-type strain of Candida albicans were used to evaluate the MICs of caspofungin (CAS), amphotericin B (AMB), nystatin (NYT), ketoconazole (KTC), and flucytosine (5FC). Standard, NCCLS, and European Committee on Antibiotic Susceptibility Testing methods were used for planktonic MIC determination. Candida biofilms were then developed on polystyrene wells, and MICs were determined with a standard 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide assay. Subsequently, antifungal susceptibility testing was performed for greater inoculum concentrations and 24- and 48-h-old cultures of planktonic Candida. Furthermore, Candida biofilm-derived planktonic cells (BDPC) were also subjected to antifungal susceptibility testing. The MICs for both C. albicans strains in the planktonic mode were low, although on increasing the inoculum concentration (up to 1 × 108 cells/ml), a variable MIC was noted. On the contrary, for Candida biofilms, the MICs of antifungals were 15- to >1,000-fold higher. Interestingly, the MICs for BDPC were lower and were similar to those for planktonic-mode cells, particularly those of CAS and AMB. Our data indicate that higher antifungal resistance of Candida biofilms is an intrinsic feature possibly related to the biofilm architecture rather than cellular density or cellular aging.  相似文献   

4.
The physicochemical responses of Delftia acidovorans biofilms exposed to the commonly used antimicrobial chlorhexidine (CHX) were examined in this study. A CHX-sensitive mutant (MIC, 1.0 μg ml−1) was derived from a CHX-tolerant (MIC, 15.0 μg ml−1) D. acidovorans parent strain using transposon mutagenesis. D. acidovorans mutant (MT51) and wild-type (WT15) strain biofilms were cultivated in flow cells and then treated with CHX at sub-MIC and inhibitory concentrations and examined by confocal laser scanning microscopy (CLSM), scanning transmission X-ray microscopy (STXM), and infrared (IR) spectroscopy. Specific morphological, structural, and chemical compositional differences between the CHX-treated and -untreated biofilms of both strains were observed. Apart from architectural differences, CLSM revealed a negative effect of CHX on biofilm thickness in the CHX-sensitive MT51 biofilms relative to those of the WT15 strain. STXM analyses showed that the WT15 biofilms contained two morphochemical cell variants, whereas only one type was detected in the MT51 biofilms. The cells in the MT51 biofilms bioaccumulated CHX to a similar extent as one of the cell types found in the WT15 biofilms, whereas the other cell type in the WT15 biofilms did not bioaccumulate CHX. STXM and IR spectral analyses revealed that CHX-sensitive MT51 cells accumulated the highest levels of CHX. Pretreating biofilms with EDTA promoted the accumulation of CHX in all cells. Thus, it is suggested that a subpopulation of cells that do not accumulate CHX appear to be responsible for greater CHX resistance in D. acidovorans WT15 biofilm in conjunction with the possible involvement of bacterial membrane stability.  相似文献   

5.
A perfused biofilm fermentor, which allows growth-rate control of adherent microbial populations, was used to assess whether the susceptibility of Candida albicans biofilms to antifungal agents is dependent on growth rate. Biofilms were generated under conditions of glucose limitation and were perfused with drugs at a high concentration (20 times the MIC). Amphotericin B produced a greater reduction in the number of daughter cells in biofilm eluates than ketoconazole, fluconazole, or flucytosine. Similar decreases in daughter cell counts were observed when biofilms growing at three different rates were perfused with amphotericin B. In a separate series of experiments, intact biofilms, resuspended biofilm cells, and newly formed daughter cells were removed from the fermentor and were exposed to a lower concentration of amphotericin B for 1 h. The susceptibility profiles over a range of growth rates were then compared with those obtained for planktonic cells grown at the same rates under glucose limitation in a chemostat. Intact biofilms were resistant to amphotericin B at all growth rates tested, whereas planktonic cells were resistant only at low growth rates (≤0.13 h−1). Cells resuspended from biofilms were less resistant than intact biofilm populations but more resistant than daughter cells; the susceptibilities of both these cell types were largely independent of growth rate. Our findings indicate that the amphotericin B resistance of C. albicans biofilms is not simply due to a low growth rate but depends on some other feature of the biofilm mode of growth.  相似文献   

6.
Multidrug-resistant carbapenemase-producing Klebsiella pneumoniae (KpC) strains are becoming a common cause of infections in health care centers. Furthermore, Klebsiella can develop multicellular biofilms, which lead to elevated adaptive antibiotic resistance. Here, we describe the antimicrobial and antibiofilm activities of synthetic peptides DJK-5, DJK-6, and 1018 against five KpC isolates. Using static microplate assays, it was observed that the concentration required to prevent biofilm formation by these clinical isolates was below the MIC for planktonic cells. More-sophisticated flow cell experiments confirmed the antibiofilm activity of the peptides against 2-day-old biofilms of different KpC isolates, and in some cases, the peptides induced significant biofilm cell death. Clinically relevant combinations of DJK-6 and β-lactam antibiotics, including the carbapenem meropenem, also prevented planktonic growth and biofilm formation of KpC strain1825971. Interestingly, peptide DJK-6 was able to enhance, at least 16-fold, the ability of meropenem to eradicate preformed biofilms formed by this strain. Using peptide DJK-6 to potentiate the activity of β-lactams, including meropenem, represents a promising strategy to treat infections caused by KpC isolates.  相似文献   

7.
In both natural and artificial environments, bacteria predominantly grow in biofilms, and bacteria often disperse from biofilms as freely suspended single-cells. In the present study, the formation and dispersal of planktonic cellular aggregates, or ‘suspended biofilms’, by Pseudomonas aeruginosa in liquid batch cultures were closely examined, and compared to biofilm formation on a matrix of polyester (PE) fibers as solid surface in batch cultures. Plankton samples were analyzed by laser-diffraction particle-size scanning (LDA) and microscopy of aggregates. Interestingly, LDA indicated that up to 90% of the total planktonic biomass consisted of cellular aggregates in the size range of 10–400 µm in diameter during the growth phase, as opposed to individual cells. In cultures with PE surfaces, P. aeruginosa preferred to grow in biofilms, as opposed to planktonicly. However, upon carbon, nitrogen or oxygen limitation, the planktonic aggregates and PE-attached biofilms dispersed into single cells, resulting in an increase in optical density (OD) independent of cellular growth. During growth, planktonic aggregates and PE-attached biofilms contained densely packed viable cells and extracellular DNA (eDNA), and starvation resulted in a loss of viable cells, and an increase in dead cells and eDNA. Furthermore, a release of metabolites and infective bacteriophage into the culture supernatant, and a marked decrease in intracellular concentration of the second messenger cyclic di-GMP, was observed in dispersing cultures. Thus, what traditionally has been described as planktonic, individual cell cultures of P. aeruginosa, are in fact suspended biofilms, and such aggregates have behaviors and responses (e.g. dispersal) similar to surface associated biofilms. In addition, we suggest that this planktonic biofilm model system can provide the basis for a detailed analysis of the synchronized biofilm life cycle of P. aeruginosa.  相似文献   

8.
We investigated the activities of fluconazole, caspofungin, anidulafungin, and amphotericin B against Candida species in planktonic form and biofilms using a highly sensitive assay measuring growth-related heat production (microcalorimetry). C. albicans, C. glabrata, C. krusei, and C. parapsilosis were tested, and MICs were determined by the broth microdilution method. The antifungal activities were determined by isothermal microcalorimetry at 37°C in RPMI 1640. For planktonic Candida, heat flow was measured in the presence of antifungal dilutions for 24 h. Candida biofilm was formed on porous glass beads for 24 h and exposed to serial dilutions of antifungals for 24 h, and heat flow was measured for 48 h. The minimum heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration reducing the heat flow peak by ≥50% (≥90% for amphotericin B) at 24 h for planktonic Candida and at 48 h for Candida biofilms (measured also at 24 h). Fluconazole (planktonic MHICs, 0.25 to >512 μg/ml) and amphotericin B (planktonic MHICs, 0.25 to 1 μg/ml) showed higher MHICs than anidulafungin (planktonic MHICs, 0.015 to 0.5 μg/ml) and caspofungin (planktonic MHICs, 0.125 to 0.5 μg/ml). Against Candida species in biofilms, fluconazole''s activity was reduced by >1,000-fold compared to its activity against the planktonic counterparts, whereas echinocandins and amphotericin B mainly preserved their activities. Fluconazole induced growth of planktonic C. krusei at sub-MICs. At high concentrations of caspofungin (>4 μg/ml), paradoxical growth of planktonic C. albicans and C. glabrata was observed. Microcalorimetry enabled real-time evaluation of antifungal activities against planktonic and biofilm Candida organisms. It can be used in the future to evaluate new antifungals and antifungal combinations and to study resistant strains.  相似文献   

9.
Silver nanoparticles (AgNPs) are widely studied for their broad-spectrum antimicrobial effects, and can be utilised readily in biomaterials, however the cellular safety of specific AgNP formulations should be profiled prior to clinical usage. This study determined the cytotoxic effect of small sized (6 nm) alpha lipoic acid capped-AgNPs on human gingival fibroblasts (HGF), as compared to ionic silver and clinical antiseptics. The metabolic pathway was investigated to determine the cellular effects on HGF cells. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) was established for a range of oral related bacteria. Results showed that cell viability decreased with increasing AgNP concentration, whereas lower concentrations of AgNPs, (≤5 μg ml−1) caused a significant increase in cell proliferation at 24 and 72 hour time points. The cytotoxicity profile of AgNPs exhibited significantly lower concentrations, relative to the dose of clinical efficacy, when compared to clinical antiseptics. Caspase 3/7 was not significantly altered when HGF cells were treated with 0.225 μg ml−1 AgNPs, indicating cell necrosis rather than apoptosis. Quantitative RT2-PCR detected an upregulation of genes associated with oxidative stress and the G2M cell cycle checkpoint at ≤4 hours, but expression levels returned to levels consistent with control cells at 24–96 hours. An MIC range of 2.5–12.5 μg ml−1 (min. Escherichia coli, Streptococcus mutans, S. mitis; max. Staphylococcus aureus) was determined across the bacterial species tested and an MBC range of 5–100 μg ml−1 (min. E. coli, max. S. mutans). The antimicrobial profile was similar to that of AgNO3 which suggested that the antimicrobial effect may be influenced by free Ag+ release. It was concluded that alpha lipoic acid capped AgNPs possess limited cytotoxic activity to HGF cells when compared to clinically utilised oral antiseptics, observed via the cellular recovery after initial AgNP treatment and a lack of cumulative cytotoxic effect, whilst maintaining a broad range antimicrobial effect of the AgNPs.

Presentation of the limited cumulative cytotoxic effects of an alpha lipoic-acid capped silver nanoparticle on human gingival fibroblasts, with broad range antimicrobial activity, for potential use in biomaterials.  相似文献   

10.
Pseudomonas aeruginosa infections are attributed to its ability to form biofilms and are difficult to eliminate with antibiotic treatment. Biofilm formation is regulated by quorum sensing (QS), an intracellular bacterial communication mechanism that allows the activation of numerous virulence factors and secondary metabolites. Targeting the QS pathway is a potential approach that prevents QS-controlled phenotypes and biofilm formation. For the first time, the current work has identified antiquorum sensing activity in the partially purified four fractions from the hot ethyl acetate extract of Cassia fistula fruit pods. Of the four fractions, only fraction-1 gave decreased AHL activity; the phytoconstituents in this fraction were identified as rhein, 3-aminodibenzofuran, 5-(hydroxymethyl)-2-(dimethoxymethyl)furan, and dihydrorhodamine. Fraction-1 (1 mg ml−1) and rhein (0.15 mg ml−1) showed 63% and 42.7% reduction in short-chain AHL production, respectively, without hindering the bacterial growth. Fraction-1 inhibited QS-mediated extracellular virulence factors viz. protease, elastase, pyocyanin, and rhamnolipid (p < 0.05). Quantitative analysis of biofilm formation showed 77% & 62.4% reduction by fraction-1 (1 mg ml−1) and rhein (0.15 mg ml−1) respectively. Confocal laser microscopy (CLMS) & scanning electron microscopy (SEM) confirmed the reduction of biofilm formation in Pseudomonas aeruginosa upon treatment with fraction-1 and rhein. Moreover, the in vivo study displayed that fraction-1 and rhein (standard) significantly enhanced the survival of Caenorhabditis elegans by suppressing the potency of virulence factors of Pseudomonas aeruginosa. Quantitative real-time polymerase chain reaction results demonstrated the down-regulation of QS-related genes, lasI, lasR, rhlI, and rhlR. In addition, in silico analysis divulged that a component identified by GC-MS displayed a strong affinity towards LasI and LasR. These findings suggest that potent phytochemicals from fraction-1, including rhein, could serve as novel phytotherapeutics in controlling emerging infections of antibiotic-resistant bacterial pathogens like Pseudomonas aeruginosa.

Pseudomonas aeruginosa infections are attributed to its ability to form biofilms and are difficult to eliminate with antibiotic treatment.  相似文献   

11.
Biofilm-related infections account for at least 65% of all human infections, but there are no available antimicrobials that specifically target biofilms. Their elimination by available treatments is inefficient since biofilm cells are between 10- and 1,000-fold more resistant to conventional antibiotics than planktonic cells. Here we describe the synergistic interactions, with different classes of antibiotics, of a recently characterized antibiofilm peptide, 1018, to potently prevent and eradicate bacterial biofilms formed by multidrug-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Combinations of peptide 1018 and the antibiotic ceftazidime, ciprofloxacin, imipenem, or tobramycin were synergistic in 50% of assessments and decreased by 2- to 64-fold the concentration of antibiotic required to treat biofilms formed by Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella enterica, and methicillin-resistant Staphylococcus aureus. Furthermore, in flow cell biofilm studies, combinations of low, subinhibitory levels of the peptide (0.8 μg/ml) and ciprofloxacin (40 ng/ml) decreased dispersal and triggered cell death in mature P. aeruginosa biofilms. In addition, short-term treatments with the peptide in combination with ciprofloxacin prevented biofilm formation and reduced P. aeruginosa PA14 preexisting biofilms. PCR studies indicated that the peptide suppressed the expression of various antibiotic targets in biofilm cells. Thus, treatment with the peptide represents a novel strategy to potentiate antibiotic activity against biofilms formed by multidrug-resistant pathogens.  相似文献   

12.
Antibiotic susceptibility of Moraxella catarrhalis biofilms was assessed using a Sorbarod filter continuous flow model. Ceftriaxone, erythromycin, amoxicillin, and Augmentin produced significant decreases in both biofilm and planktonic viable cell populations collected from the effluent. Augmentin produced the greatest reduction in biofilm (2.5 orders of magnitude) and planktonic populations (4 orders of magnitude). However, the minimum biofilm eradication concentration was not reached within the concentration range tested (4–64 mg/L), despite demonstrable susceptibility in standard microdilution tests (minimum bactericidal concentrations [MBC] ≤0.06 mg/L). Antibiotic tolerance of M. catarrhalis biofilm populations was partly due to an inoculum effect and partly inherent. Amoxicillin had no effect against a β-lactamase–producing M. catarrhalis. Compared to batch-grown cells, planktonic cells recovered from the Sorbarod filter effluent were more resistant to the antibiotics tested (MBC ≤0.06 and >64 mg/L, respectively). Overall, the findings may explain the lack of response of some M. catarrhalis infections to antimicrobial therapy.  相似文献   

13.
Green synthesized nanoparticles (NPs) have attracted enormous attention for their clinical and non-clinical applications. A natural polyphenol, gallo-tannin (GT) was used to reduce and cap the Fe2O3-NPs. GT-Fe2O3-NPs were synthesized following co-precipitation of FeCl3 and FeSO4·7H2O with GT. Fe2O3-NPs absorbed light at 380 nm. Physicochemically, Fe2O3-NPs were spherical with slight aggregation and average diameter of 12.85 nm. X-ray diffraction confirmed crystallinity and EDX revealed the elemental percentage of iron and oxygen as 21.7% and 42.11%, respectively. FT-IR data confirmed the adsorption of gallo-tannin functional groups. Multiple drug-resistant (MDR) Escherichia coli (ESβL), Pseudomonas aeruginosa (ESβL), and Staphylococcus aureus were found susceptible to 500–1000 μg GT-Fe2O3-NPs per ml. In synergy, Fe2O3-NPs enhanced the efficiency of some antibiotics. GT-Fe2O3 NPs showed significant (P ≤ 0.05) inhibition of growth and biofilm against MDR E. coli, P. aeruginosa, and S. aureus causing morphological and biofilm destruction. Violacein production (quorum sensing mediated) by C. violaceum was inhibited by GT-Fe2O3-NPs in a concentration-dependent manner with a maximum decrease of 3.1-fold. A decrease of 11-fold and 2.32-fold in fungal mycelial growth and human breast cancer (MCF-7) cell viability, respectively was evident. This study suggests a plausible role of gallo-tannin capped Fe2O3-NPs as an alternative antibacterial, antiquorum sensing, antibiofilm, antifungal, and anti-proliferative agent.

Broad-spectrum biological effects of gallo-tannin capped Fe2O3 nanoparticles against planktonic bacteria, biofilm, fungi, and cancer cell line.  相似文献   

14.
Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated catheters with Pseudomonas aeruginosa bacteriophages on biofilm formation by P. aeruginosa in an in vitro model. Hydrogel-coated catheters were exposed to a 10 log10 PFU ml−1 lysate of P. aeruginosa phage M4 for 2 h at 37°C prior to bacterial inoculation. The mean viable biofilm count on untreated catheters was 6.87 log10 CFU cm−2 after 24 h. The pretreatment of catheters with phage reduced this value to 4.03 log10 CFU cm−2 (P < 0.001). Phage treatment immediately following bacterial inoculation also reduced biofilm viable counts (4.37 log10 CFU cm−2 reduction; P < 0.001). The regrowth of biofilms on phage-treated catheters occurred between 24 and 48 h, but supplemental treatment with phage at 24 h significantly reduced biofilm regrowth (P < 0.001). Biofilm isolates resistant to phage M4 were recovered from catheters pretreated with phage. The phage susceptibility profiles of these isolates were used to guide the development of a five-phage cocktail from a larger library of P. aeruginosa phages. The pretreatment of catheters with this cocktail reduced the 48-h mean biofilm cell density by 99.9% (from 7.13 to 4.13 log10 CFU cm−2; P < 0.001), but fewer biofilm isolates were resistant to these phages. These results suggest the potential of applying phages, especially phage cocktails, to the surfaces of indwelling medical devices for mitigating biofilm formation by clinically relevant bacteria.Indwelling medical devices of various kinds may become colonized with microorganisms, resulting in the formation of microbial biofilms (16). Biofilm-associated organisms are tolerant to antimicrobial agents, can evade the host immune system, and can act as a nidus for infection (16). As a result, device-related infections, such as catheter-associated bloodstream infections, cause substantial morbidity and mortality among specific patient populations (9). Attributable mortality rates for healthcare-associated bloodstream infections have been estimated to be 25% (44).A number of novel strategies have been proposed to more effectively prevent and control device-associated biofilms, either by minimizing microbial attachment to device surfaces or by targeting the biofilm after it has developed. One such strategy is to use bacteriophages (phages) (17). Phages have been used for the treatment of infectious diseases in plants (26), animals (6), and humans (33, 39, 43). The use of phages to control biofilms has potential for several reasons. Phages can replicate at the site of an infection, thereby increasing in numbers where they are most required. During the lytic replication cycle, the infection of a bacterial host cell by a single phage virion will result in the production of dozens or hundreds of progeny phage, depending on the particular phage and host strains. Some phages also have been shown to produce enzymes that degrade the extracellular polymeric substance (EPS) matrix of a biofilm (23, 25). Doolittle et al. (19) showed that progeny phage will propagate radially through a biofilm. At least in theory, a single phage dose should be capable of treating a biofilm infection as progeny phage infect adjacent cells and degrade the biofilm matrix.Curtin and Donlan (13) demonstrated that a phage that is active against Staphylococcus epidermidis could be incorporated into a hydrogel coating on a catheter and significantly reduce biofilm formation by this organism in an in vitro model system. Based on those studies with S. epidermidis, we have investigated whether phages specific for Pseudomonas aeruginosa also can reduce biofilm formation by this organism in a similar in vitro model. Catheters were treated with a single phage or a combination of phages prior to, immediately following, or 24 h after inoculation with the test P. aeruginosa culture, and the effects of the phage treatments on biofilm formation and maintenance were characterized.(Portions of this paper were presented as poster no. A-011 at the 2007 American Society for Microbiology General Meeting in Toronto, Canada [20a].)  相似文献   

15.
The vaginal microbiome of healthy women is a diverse and dynamic system of various microorganisms. Any sudden change in microbe composition can increase the vaginal pH and thus lead to vaginal infections, conditions that affect a large percentage of women each year. The most common fungal strains involved in infections belong to the yeast species Candida albicans. The main virulence factor of C. albicans is the ability to transform from planktonic yeast-form cells into a filamentous form (hyphae or pseudohyphae), with the subsequent formation of biofilm. The hyphal form, constituted by filamentous cells, has the ability to invade tissue and induce inflammation. Our hypothesis is that certain polyhydroxylated carboxylic acids, that may serve as an alternative carbohydrate source and at the same time lower the pH, function as an indicator of a nutrient-rich environment for C. albicans, which favors planktonic cells over hyphae, and thus diminish the formation of biofilm. We have shown that the biofilm formation in C. albicans and other Candida species can be significantly reduced by the addition of glucono-δ-lactone (GDL).

Treatment of Candida albicans with glucono δ-lactone results in less formation of hyphae and diminish biofilm formation.  相似文献   

16.
Intracellular concentrations of isoniazid and rifabutin resulting from administration of inhalable microparticles of these drugs to phorbol-differentiated THP-1 cells and the pharmacokinetics and biodistribution of these drugs upon inhalation of microparticles or intravenous administration of free drugs to mice were investigated. In cultured cells, both microparticles and dissolved drugs established peak concentrations of isoniazid (~1.4 and 1.1 μg/106 cells) and rifabutin (~2 μg/ml and ~1.4 μg/106 cells) within 10 min. Microparticles maintained the intracellular concentration of isoniazid for 24 h and rifabutin for 96 h, whereas dissolved drugs did not. The following pharmacokinetic parameters were calculated using WinNonlin from samples obtained after inhalation using an in-house apparatus (figures in parentheses refer to parameters obtained after intravenous administration of an equivalent amount, i.e., 100 μg of either drug, to parallel groups): isoniazid, serum half-life (t1/2) = 18.63 ± 5.89 h (3.91 ± 1.06 h), maximum concentration in serum (Cmax) = 2.37 ± 0.23 μg·ml−1 (3.24 ± 0.57 μg·ml−1), area under the concentration-time curve from 0 to 24 h (AUC0-24) = 55.34 ± 13.72 μg/ml−1 h−1 (16.64 ± 1.80 μg/ml−1 h−1), and clearance (CL) = 63.90 ± 13.32 ml·h−1 (4.43 ± 1.85 ml·h−1); rifabutin, t1/2 = 119.49 ± 29.62 h (20.18 ± 4.02 h), Cmax = 1.59 ± 0.01 μg·ml−1 (3.47 ± 0.33 μg·ml−1), AUC0-96 = 109.35 ± 14.78 μg/ml−1 h−1 (90.82 ± 7.46 μg/ml−1 h−1), and CL = 11.68 ± 7.00 ml·h−1 (1.03 ± 0.11 ml·h−1). Drug targeting to the lungs in general and alveolar macrophages in particular was observed. It was concluded that inhaled microparticles can reduce dose frequency and improve the pharmacologic index of the drug combination.  相似文献   

17.
Quorum sensing is involved in biofilm formation and modulates virulence factor production in pathogenic bacteria. Quorum sensing inhibitors can be used as novel intervention strategies for attenuating bacterial pathogenicity. Berberine is an isoquinoline alkaloid with pharmacological properties. The present study investigated the sub-inhibitory concentrations of berberine for inhibiting biofilm formation and quorum sensing regulated phenotypes in the bacterial pathogens Pseudomonas aeruginosa PA01 and Salmonella enterica serovar Typhimurium. Berberine inhibited quorum sensing regulated violacein production in C. violaceum. It reduced the pigment production in the wild type strain at 1.6 mg mL−1 by 62.67%. In the opportunistic pathogen, P. aeruginosa PA01, at sub-MIC, it showed significant antibiofilm activity in by reducing biomass by 71.70% (p < 0.05). It prevented biofilm formation and inactivated biofilm maturation in bacterial pathogens at the concentration ranging from 0.019 to 1.25 mg mL−1. In silico studies showed that berberine interacted with the quorum sensing signal receptors, LasR and RhlR. Furthermore, its anti-infective properties in S. Typhimurium were studied. At sub-inhibitory concentrations of 0.019 mg mL−1, it reduced biofilm formation in S. Typhimurium by 31.20%. It significantly prevented invasion and adhesion of Salmonella invasion in the colonic cell, HT 29 by 55.37% and 54.68%, respectively. It was capable of reducing in vivo virulence in Caenorhabditis elegans infected with Salmonella at 0.038 mg mL−1 by 65.38%. Our results suggest that berberine, previously recognised for its antimicrobial activity, could find potential application as an anti-biofilm and anti-infective agent based on its quorum sensing inhibitory activity.

Quorum sensing regulates violacein pigment production in C. violaceum.  相似文献   

18.
Cyanobacteria, as one of the largest groups of phototrophic bacteria, have a high potential as an excellent source of fine chemicals and bioactive compounds, including lipid-like compounds, amino acid derivatives, proteins, and pigments. This study aimed to synthesize ZnO nanoparticles using the cell extract of the cyanobacterium Nostoc sp. EA03 (CEN-ZnO NPs) through a rapid and eco-friendly approach. The biosynthesized nanoparticles, CEN-ZnO NPs, were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), zeta potential measurement, differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA), FTIR, SEM, TEM, and EDX spectroscopy. The UV-Vis spectrum showed an absorption peak at 370 nm. The star-shaped CEN-ZnO NPs, as observed in the TEM and SEM images, had an average diameter of 50–80 nm. MIC and MBC values for E. coli, P. aeruginosa and S. aureus, were determined to be, respectively, 2000, 2000, and 64 μg ml−1, and 2500, 2500 and 128 μg ml−1. Further analysis through confocal laser scanning microscopy (CLSM) provided the observable confirmation that the CEN-ZnO NPs stunted the bacterial growth, preventing the formation of exopolysaccharides. The AFM analysis of surface topography of bacterial biofilm samples treated with CEN-ZnO NPs showed a rugged topography in some parts of the biofilm surface, indicating the destruction of biofilms. In contrast, in the untreated control samples, the structured biofilms were flat and prominent. MTT assay indicated that CEN-ZnO NPs had less cytotoxicity on the MRC-5 lung fibroblast cells compared with the cancerous treated A549 cells. As the concentration of the CEN-ZnO NPs increased, the amount of ROS produced in the tested bacterial strains also increased. Analyzing the data obtained from flow cytometry showed that the higher concentrations of CEN-ZnO NPs lead to a reduction in the viability of P. aeruginosa PAO1, E. coli and S. aureus. The biosynthesized ZnO nanoparticles using Nostoc cell extracts exhibited different attributes, inspiring enough to be considered for further investigation.

Cyanobacteria, as one of the largest groups of phototrophic bacteria, have a high potential as an excellent source of fine chemicals and bioactive compounds, including lipid-like compounds, amino acid derivatives, proteins, and pigments.  相似文献   

19.
Biofilms of Candida albicans were grown in vitro under iron limitation and at a low growth rate to simulate conditions for implant-associated biofilms in vivo. Their properties were compared with those of glucose-limited biofilms grown under analogous conditions. At steady state, the adherent cell populations of iron-limited biofilms were double those of glucose-limited biofilms, although the growth rates were similar (0.038 to 0.043 h−1). Both biofilm types were resistant to amphotericin B, but daughter cells from iron-limited biofilms were significantly more susceptible to the drug than those from glucose-limited biofilms.  相似文献   

20.
The continuously increasing incidence rates of cancer and infectious diseases are open threats to the sustainable survival of animals and humans. In the last two decades, the demands of nanomaterials as modern therapeutic agents have increased. In this study, biogenic zinc oxide nanoparticles (ZnO NPs) were developed from aqueous Pandanus odorifer leaf extract (POLE) and characterized using modern methods and tools, such as electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy and UV-vis spectroscopy, which indicated the formation of very pure, spherical NPs approximately 90 nm in size. The anticancer activity of the ZnO NPs was evaluated by MTT and neutral red uptake (NRU) assays in MCF-7, HepG2 and A-549 cells at different doses (1, 2, 5, 10, 25, 50, 100 μg ml−1). Moreover, the morphology of the treated cancer cells was examined by phase contrast microscopy. The results suggest that the synthesized ZnO NPs inhibited the growth of the cells when applied a concentration from 50–100 μg ml−1. Moreover, the biogenic ZnO NPs were analysed as an antimicrobial agent against pathogenic bacteria. The highest antibacterial activity was observed against Gram-positive Bacillus subtilis (26 nm) and Gram-negative Escherichia coli (24 mm) at 50 μg per well. Complete bacterial growth (100%) vanished 100% upon treatment with ZnO NPs at 85 μg ml−1. Overall, POLE mediated derived biogenic ZnO NPs could serve as a significant anticancer and antimicrobial agent and be used in the development of novel drugs and skin care products.

The continuously increasing incidence rates of cancer and infectious diseases are open threats to the sustainable survival of animals and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号