首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kuwana M 《Human immunology》2002,63(12):1156-1163
The induction of antigen-specific tolerance is critical for maintaining immune homeostasis and preventing autoimmunity. Because the central tolerance that eliminates potentially harmful autoreactive T cells is incomplete, peripheral mechanisms for suppressing self-reactive T cells play an important role. Dendritic cells (DCs) are professional antigen-presenting cells, which have an extraordinary capacity to stimulate naïve T cells and initiate primary immune responses. Recent accumulating evidence indicates that several subsets of human DCs also play a critical role in the induction of peripheral tolerance by anergizing effector CD4+ and CD8+ T cells or by inducing the differentiation of naïve T cells into T-regulatory cells, which produce interleukin (IL)-10. Human DC subsets with the property of suppressing an antigen-specific T-cell response include plasmacytoid DCs, which are either in an immature state or in a mature state induced by CD40 ligand stimulation, and monocyte-derived DCs, which are either in an immature state or have had their state modulated by treatment with IL-10 or CD8+CD28 T cells. These “tolerogenic” DCs may be relevant to therapeutic applications for autoimmune and allergic diseases as well as organ transplant rejection.  相似文献   

2.
Immune surveillance of skin cancer involves the stimulation of effector T cells by tumor-derived antigens and antigen-presenting cells (APCs). An effective APC must not only display processed antigen in the context of MHC molecules but also express co-stimulatory molecules that are required to fully activate T cells. One of the most common cutaneous neoplasms is basal cell carcinoma. To investigate expression of the co-stimulatory molecules CD80 (B7-1) and CD86 (B7-2) on tumor-associated dendritic cells (TADCs), cryosections from basal cell carcinomas were immunostained. In basal cell carcinomas, only 1 to 2% of intratumor and 5 to 10% of peritumor APCs expressed CD80 or CD86. In contrast, biopsies of immunological/inflammatory dermatoses revealed that 38 to 73% of APCs expressed CD80 and CD86. To further evaluate their phenotype and function, TADCs were isolated from tissue samples of basal cell carcinomas; they were non-adherent to plastic, displayed a typical dendritic morphology, and expressed high levels of major histocompatibility class II molecules on their surface. When TADCs were compared with dendritic cells from blood for presentation of superantigens (staphylococcal enterotoxins A and B) to resting autologous T cells, TADCs were consistently weaker stimulators of T cell proliferation than blood dendritic cells. When analyzed by flow cytometry, TADCs expressed high levels of HLA-DR, but only 5 to 10% co-expressed CD80 or CD86. A 3-day culture in granulocyte/macrophage colony-stimulating factor-containing medium partially reconstituted the TADC expression of CD80 and CD86 as well as their immunostimulatory capacity. Thus, in this common skin cancer, although there are prominent collections of HLA-DR-positive APCs in and around tumor cells, the TADCs are deficient in important co-stimulatory molecules as well as being weak stimulators of T cell proliferation. The paucity of co-stimulatory molecule expression and functional activity of TADCs may explain why the local T lymphocytic infiltrate fails to become fully activated to eradicate adjacent tumor cells. From a clinical perspective, these findings suggest a novel immunotherapeutic strategy targeting T cell co-stimulatory molecules on professional APCs in cutaneous oncology.  相似文献   

3.
The molecular mechanisms by which dendritic cells (DC) favor naive T cell survival in mice have been examined in co-cultures of DC and naive CD4+ T cells. Naive T cells can survive in the presence of IL-4 or IL-7, but DC-induced T cell survival requires direct cell-cell interactions and does not seem to be mediated by these or other soluble factors. Classical MHC II molecules on DC are not necessary for T cell survival as long as hybrid AalphaEbeta MHC class II molecules are present. In the total absence of MHC II molecules on DC, T cell survival is reduced by half, and CD3zeta phosphorylation fully disappears. These results contrast with the classical view that naive T cell survival is associated with CD3zeta phosphorylation and depends mostly on IL-7 and MHC-TCR interactions. We demonstrate that DC-induced T cell survival is a multi-factorial process that also involves CD28, LFA-1 and another (as yet undefined) surface molecule that requires the activity of src (but not phosphatidylinositol-3-) kinase.  相似文献   

4.
Dendritic cells (DCs) orchestrate the immune response establishing immunity versus tolerance. These two opposite functions may be dictated by DC maturation status with maturity linked to immunogenicity. DCs directly interact with trillions of noninvasive intestinal bacteria in vivo, a process that contributes to gut homeostasis. We here evaluated the maturation program elicited in human DCs by direct exposure to commensal-related bacteria (CB) in the absence of inflammatory signals. We showed that eight gram(+) and gram(-) CB strains up-regulated costimulatory molecule expression in DCs and provoked a chemokine receptor switch similar to that activated by gram(+) pathogens. CB strains may be classified into three groups according to DC cytokine release: high IL-12 and low IL-10; low IL-12 and high IL-10; and low IL-12 and IL-10. All CB-treated DCs produced IL-1beta and IL-6 and almost no TGF-beta. Yet, CB instructed DCs to convert naive CD4+ T cells into hyporesponsive T cells that secreted low or no IFN-gamma, IL-10, and IL-17 and instead, displayed suppressor function. These data demonstrate that phenotypic DC maturation combined to an appropriate cytokine profile is insufficient to warrant Th1, IL-10-secreting T regulatory Type 1 (Tr1), or Th17 polarization. We propose that commensal flora and as such, probiotics manipulate DCs by a yet-unidentified pathway to enforce gut tolerance.  相似文献   

5.
Neurocysticercosis is caused by the establishment of Taenia solium cysticerci in the central nervous system. It is considered that, during co‐evolution, the parasite developed strategies to modulate the host's immune response. The action mechanisms of regulatory T cells in controlling the immune response in neurocysticercosis are studied in this work. Higher blood levels of regulatory T cells with CD4+CD45RO+forkhead box protein 3 (FoxP3)high and CD4+CD25highFoxP3+CD95high phenotype and of non‐regulatory CD4+CD45RO+FoxP3med T cells were found in neurocysticercosis patients with respect to controls. Interestingly, regulatory T cells express higher levels of cytotoxic T lymphocyte antigen 4 (CTLA‐4), lymphocyte‐activation gene 3 (LAG‐3), programmed death 1 (PD‐1) and glucocorticoid‐induced tumour necrosis factor receptor (GITR), suggesting a cell‐to‐cell contact mechanism with dendritic cells. Furthermore, higher IL‐10 and regulatory T cell type 1 (Tr1) levels were found in neurocysticercosis patients’ peripheral blood, suggesting that the action mechanism of regulatory T cells involves the release of immunomodulatory cytokines. No evidence was found of the regulatory T cell role in inhibiting the proliferative response. Suppressive regulatory T cells from neurocysticercosis patients correlated negatively with late activated lymphocytes (CD4+CD38+). Our results suggest that, during neurocysticercosis, regulatory T cells could control the immune response, probably by a cell‐to‐cell contact with dendritic cells and interleukin (IL)‐10 release by Tr1, to create an immunomodulatory environment that may favour the development of T. solium cysticerci and their permanence in the central nervous system.  相似文献   

6.
We previously reported that Cd3e‐deficient mice adoptively transferred with CD4+ T cells generate high numbers of T follicular helper (Tfh) cells, which go on to induce a strong B‐cell and germinal center (GC) reaction. Here, we show that in this system, GC B cells display an altered distribution between the dark and light zones, and express low levels of activation‐induced cytidine deaminase. Furthermore, GC B cells from Cd3e–/– mice accumulate fewer somatic mutations as compared with GC B cells from wild‐type mice, and exhibit impaired affinity maturation and reduced differentiation into long‐lived plasma cells. Reconstitution of Cd3e–/– mice with regulatory T (Treg) cells restored Tfh‐cell numbers, GC B‐cell numbers and B‐cell distribution within dark and light zones, and the rate of antibody somatic mutations. Tfh‐cell numbers and GC B‐cell numbers and dynamics were also restored by pre‐reconstitution of Cd3e–/– mice with Cxcr5–/– Treg cells or non‐regulatory, memory CD4+ T cells. Taken together, these findings underline the importance of a quantitatively regulated Tfh‐cell response for an efficient and long‐lasting serological response.  相似文献   

7.
Previous studies demonstrated that lymphocyte development is impaired in leptin receptor (Ob-R)-deficient db/db mice. However, it remains unclear whether or not leptin signaling plays a physiological role in dendritic cell (DC) development and function. In this study, we first detected Ob-R expression in murine DC. Using db/db mice at a pre-diabetic stage, we demonstrate that the total number of DC generated from bone marrow (BM) cultures is significantly lower than in WT controls. Similarly, selective blockade of leptin with a soluble mouse Ob-R chimera (Ob-R:Fc) inhibited DC generation in wild-type BM cultures. The reduced DC yield in db/db BM culture was attributed to significantly increased apoptosis, which was associated with dysregulated expression of Bcl-2 family genes. Moreover, db/db DC displayed markedly reduced expression of co-stimulatory molecules and a Th2-type cytokine profile, with a poor capacity to stimulate allogeneic T cell proliferation. Consistent with their impaired DC phenotype and function, db/db DC showed significantly down-regulated activities of the PI3K/Akt pathway as well as STAT-3 and IkappaB-alpha. In conclusion, our findings demonstrate the involvement of leptin signaling in DC survival and maturation.  相似文献   

8.
The aim of this study was to define the effects of diltiazem, a calcium antagonist drug used in cardiology and in clinical transplantation, on the differentiation and maturation of human dendritic cells (DC). Herein, we demonstrate that diltiazem, in association with granulocyte macrophage-colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), induces monocytes to differentiate into cells with many of the characteristic of DC. However, diltiazem-induced DC express high levels of mannose receptor and Fc gamma RII and, consequently, manifest a higher endocytic activity compared with GM-CSF+IL-4-induced DC. Importantly, diltiazem-induced DCs have an impaired responsiveness to lipopolysaccharide and CD40 ligand because they produce decreased levels of IL-12 and reveal a reduced ability to stimulate alloreactive T-cell responses as well as in inducing interferon-gamma producing Th1 cells. These effects may contribute to a decreased DC-dependent T-cell activation and may help to explain the immunoregulatory function of diltiazem and its effectiveness in preventing transplant rejection.  相似文献   

9.
目的:探讨诱导树突状细胞成熟的最优方法。方法:以细胞因子GM-CSF和IL-4体外诱导人单核细胞来源的树突状细胞,分别采用CD40L、LPS、TNF-α、细胞因子鸡尾酒法(TNF-α、IL-6、IL-1β、PGE2)诱导成熟,24小时后收获DCs以流式细胞仪检测其成熟表型CD80、CD83、CD86、HLA-DR和FITC-Dextran的内吞能力,ELISA法检测其IL-12的分泌,MTT法检测其刺激淋巴细胞增殖活性。结果:CD40L、LPS、TNF-α、鸡尾酒法均可诱导DCs的成熟,其中以鸡尾酒法诱导成熟的效果最优,CD83的表达率为66.91%(P〈0.05);成熟DCsFITC-Dextran的内吞能力明显下降;成熟DCsIL-12分泌量明显高于未成熟DCs,其中鸡尾酒法诱导成熟的DCs的IL-12分泌量最高,成熟的DCs有较强的刺激淋巴细胞增殖能力。结论:细胞因子鸡尾酒法是诱导DCs成熟的最佳方法。  相似文献   

10.
The success of pregnancy depends upon regulatory mechanisms that allow the fetus to survive and develop to term in the uterus, despite maternal immune cells' awareness of paternal alloantigens. At least some of these specific mechanisms are mediated by the effect of fetal trophoblast cells. In the present study we examine the effect of human placental cytotrophoblast cells (CTCs) on the maturation of dendritic cells (DCs) in vitro. For that purpose, CTCs were isolated from samples of placentae at 5–11 weeks of gestation and co‐cultured with peripheral blood monocytes under conditions inducing DC maturation. CTC were shown to alter the morphology, phenotype and functional properties of DCs. As a result, a significant portion of cells acquire fibroblast‐like morphology and some of the cells retain the expression of CD14. DCs matured in the presence of CTCs do not differ from usual DCs in terms of CD80, CD83 and CD86 expression, as well as the ability to induce allogenic lymphocytes proliferation. However, CTCs reduce significantly the ability of DCs to stimulate interferon‐γ production and the loss of CD62L by T cells. The results obtained indicate that DCs may be involved in pregnancy‐associated changes of cytokine production and T cell migration.  相似文献   

11.
《Seminars in immunology》2013,25(4):313-320
One of the mechanisms that are in place to control the activation of mature T cells that bear self-reactive antigen receptors is anergy, a long-term state of hyporesponsiveness that is established in T cells in response to suboptimal stimulation. T cells receive signals that result not only from antigen recognition and costimulation but also from other sources, including cytokine receptors, inhibitory receptors or metabolic sensors. Integration of those signals will determine T cell fate. Under conditions that induce anergy, T cells activate a program of gene expression that leads to the production of proteins that block T cell receptor signaling and inhibit cytokine gene expression. In this review we will examine those signals that determine functional outcome following antigen encounter, review current knowledge of the factors that ensure signaling inhibition and epigenetic gene silencing in anergic cells and explore the mechanisms that lead to the reversal of anergy and the reacquisition of effector functions.  相似文献   

12.
Dendritic cells (DCs) are antigen-presenting cells with the ability to induce primary immune responses necessary in innate immunity and adaptive immunity. Osteopontin (OPN) is a secreted acidic phosphoprotein containing an arginine-glycine-aspartate sequence and has been suggested to play an important role in early cellular immune responses. The interaction between DCs and OPN has not been clarified. We hypothesized that there is an important interaction between DCs and OPN, which is an indispensable extracellular matrix component in early cellular immune responses. Human monocyte-derived DCs synthesized OPN especially during the differentiation from monocytes to immature DCs. By blocking of OPN with anti-OPN antibody, cultured DCs became smaller and expressed lower levels of costimulatory molecules and major histocompatibility complex class II antigens than untreated DCs. Furthermore, DCs treated with anti-OPN antibody easily underwent apoptosis. These results suggest that human DCs can produce OPN and that OPN may play a role in the differentiation, maturation, and survival of DCs by autocrine and/or paracrine pathways.  相似文献   

13.
Dendritic cells (DCs) are the most powerful antigen presenting cells, capable of inducing T-dependent immune responses even in naive T cells. DCs are of special interest as cellular adjuvants for immunity induction in clinical settings and several methods for their generation and maturation are recently under investigation. The present study was set out to define the effects of PPD (Purified Protein Derivative), a mycobacterial extract used in the tuberculin skin test, on in vitro differentiation and maturation of human monocyte derived dendritic cells. Immature DCs were prepared from the peripheral blood monocytes of healthy volunteers by culturing in a medium supplemented with granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). The resultant cells were then stimulated with PPD extract and their properties such as cell morphology and the expression of key surface molecules were compared with tumor necrosis factor-alpha (TNF-alpha) stimulated immature DCs. Our results suggest that mycobacterial purified extract is as potent as TNF-alpha, a well-established DC stimulator, in induction of maturation in human monocyte derived DCs. We also ruled out the contribution of lipopolysaccharide (LPS) and beta-glucan contamination in maturation effect of PPD preparations. So, PPD as an examined safe material for in vivo consumption could be used to stimulate DC maturation in DC based immunotherapy protocols.  相似文献   

14.
Circulating human macrophages are often used to generate dendritic cells (DCs) by culturing them in granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). As DCs are superb antigen-presenting cells, these types of myeloid DCs are now used in many DC-based vaccination protocols, especially in cancer, with the belief that they are essentially stimulatory or 'immunogenic'. Here we show that just as peripheral macrophage-derived myeloid DCs can be stimulatory, in vitro cultures of myeloid DCs in GM-CSF and IL-4 followed by further maturation in interferon-gamma plus bacterial superantigens (as DC maturing agents) can give rise to DCs that are functionally inhibitory. The stimulatory DCs express higher amounts of costimulatory molecules, synthesize IL-12, and efficiently stimulate naive allogeneic T cells in mixed lymphocyte reaction (MLR). The inhibitory DCs, in contrast, express lower concentrations of the critical costimulatory molecules, synthesize large amounts of IL-10, and are either marginally stimulatory or nonstimulatory in MLR. Moreover, while the stimulatory DCs further amplify proliferation of T cells in lectin-driven proliferation assays, the inhibitory DCs suppress T cell proliferation in similar assays, in vitro. Most interestingly, neutralization of the endogenously derived IL-10 with anti-IL-10 antibody with DC cultures as well as exposure of the inhibitory DCs to CpG oligonucleotides or to in vitro activated autologous CD4+ T helper cells repolarize them into stimulatory phenotype. Accordingly, these observations have important implications in translational research involving myeloid DCs.  相似文献   

15.
Campylobacter jejuni is a leading bacterial cause of human diarrheal disease in both developed and developing nations. Colonic mucosal invasion and the resulting host inflammatory responses are thought to be the key contributing factors to the dysenteric form of this disease. Dendritic cells (DCs) play an important role in both the innate and adaptive immune responses to microbial infection. In this study, the interaction between human monocyte-derived dendritic cells and C. jejuni was studied. We found that C. jejuni was readily internalized by DCs over a 2-h period. However, after a prolonged infection period (24 or 48 h) with C. jejuni, only a few viable bacteria remained intracellularly. Minimal cytotoxicity of C. jejuni to dendritic cells was observed. C. jejuni induced the maturation of dendritic cells over 24 h, as indicated by up-regulation of cell surface marker proteins CD40, CD80, and CD86. In addition, Campylobacter-infected DCs triggered activation of NF-kappaB and significantly stimulated production of interleukin-1beta (IL-1beta), IL-6, IL-8, IL-10, IL-12, gamma interferon, and tumor necrosis factor alpha (TNF-alpha) compared to uninfected DCs. Active bacterial invasion of DCs was not necessary for the induction of these cytokines, as heat-killed C. jejuni stimulated similar levels of cytokine production as live bacteria. Purified lipooligosaccharide of C. jejuni appears to be the major stimulant for the increased production of cytokines by DCs. Taken together, these data indicate that during infection, Campylobacter triggers an innate inflammatory response through increased production of IL-1beta, IL-6, IL-8, and TNF-alpha and initiates a Th1-polarized adaptive immune response as predicted from the high level of production of IL-12.  相似文献   

16.
The ligand for the receptor tyrosine kinase fms-like tyrosine kinase 3 (Flt3L) is a growth factor for hematopoietic progenitors and induces expansion of the two distinct lineages of dendritic cells (DC) that have been described in humans. These two lineages, DC1 and DC2, have been described according to their ability to induce naive T cell differentiation to T helper cell type 1 (Th1) and Th2 effector cells, respectively. The immunoregulatory potential of DC1 and DC2 depends on their state of maturation and activation, which can be mediated by several molecules. Because monocyte-derived DC1 produce interleukin-12 (IL-12) when stimulated with CD40 ligand (CD40L), we hypothesized that similar results would be obtained with DC1 mobilized by Flt3L. Unexpectedly, we found that immature DC expanded in vivo by Flt3L treatment could not be stimulated to produce IL-12 in vitro using CD40L and/or interferon-gamma (IFN-gamma) alone. Instead, we found that Flt3L-mobilized DC from cancer patients require a sequence of specific signals for maturation, which included initial treatment with granulocyte macrophage-colony stimulating factor followed by a combination of maturation signals such as CD40L and IFN-gamma. Flt3L-mobilized DC matured in this manner possessed greater T cell-stimulatory function than nonmatured DC. The ability to generate phenotypically mature, IL-12-producing DC1 from peripheral blood mononuclear cells mobilized by Flt3L will have important implications for the development of effective cancer immunotherapy strategies.  相似文献   

17.
Cholera toxin B subunit (CTB) is an efficient mucosal carrier molecule for the generation of immune responses to linked antigens. There is also good evidence that CTB acts as an immunosuppressant, as it is able to down-modulate human monocyte/macrophage cell line activation and to suppress Th1-type responses. In the present study, we examined the possibility that recombinant CTB (rCTB) may affect human dendritic cell (DC) functions in response to LPS stimulation and may induce the generation of DC with the capacity to generate CD4(+) regulatory T cells (Tregs). Our findings show that rCTB partially prevents the LPS-induced maturation process of monocyte-derived DC (MDDC) and decreases their IL-12 production with no relevant effect on IL-10 production. LPS-stimulated MDDC pretreated with rCTB are able to promote the induction of low proliferating T cells, which show an enhanced IL-10 production associated with a reduced IFN-gamma production and the same high levels of TGF-beta as the control. These T cells suppress proliferation of activated autologous T cells. Transwell experiments and blockade of IL-10R and TGF-beta showed that the immunomodulatory effect is mediated by soluble factors. Thus, T cells induced by rCTB-conditioned MDDC acquire a regulatory phenotype and activity similar to those described for type 1 Tregs.  相似文献   

18.
Macrophages and dendritic cells (DC) play an important role in the immunopathology of multiple sclerosis. We analyzed the impact of human myelin on monocyte-derived DC and describe their immunostimulatory capacity. Cells were grown on myelin and stimulated with LPS or a defined maturation cocktail. DC activation was analyzed by the expression of cell surface markers and the secretion of cytokines and chemokines. The immunostimulatory capacity of DC was assessed by allogeneic mixed-leukocyte reactions via proliferation. Additionally, their ability to bias T cells towards Th1, Th17 or Treg differentiation was investigated. We found that phagocytosis of myelin impaired the activation of DC, displayed by an impaired ability to stimulate allogeneic T cells, an increased production of TGF-β1 and a diminished upregulation of CCR7 but did not affect the differentiation into T helper cell subsets. We hypothesize that myelin influences DC activation and plays a pivotal role in balancing immunity and tolerance.  相似文献   

19.
We have shown that low-dose UVB radiation converts Langerhans cells (LC) from immunogenic to tolerogenic APC. Therefore, we questioned whether low-dose UVB irradiation of bone marrow-derived dendritic cells (DC) alters their APC function, thereby inducing tolerance in T cells. To address this issue, cocultures of DC; and naive, allogeneic T cells; na?ve, OVA-specific TCR-transgenic T cells from DO11.10 mice; or primed, antigen-specific T cells using the Th1 clone AE7 were analyzed. First, we found low-dose UVB-irradiated DC (UVB-DC) to dose-dependently (50-200 J/m2) inhibit T-cell proliferation of naive and primed T cells. In addition, supernatants harvested from cocultures of UVB-DC and naive T cells showed markedly reduced levels of IL-2 and IFN-gamma and to a lesser degree of IL-4 and IL-10, suggesting a preferential down-regulation of Th1 responses by UVB-DC. FACS analysis of UVB-DC revealed no changes in surface expression of MHC, costimulatory, and adhesion molecules. To test tolerance induction, allo- or antigen-specific T cells isolated from cocultures with unirradiated DC and UVB-DC were restimulated with unirradiated DC or IL-2. It is interesting that UVB-DC induced antigen-specific tolerance in the Th1 clone AE7. In contrast, UVB-DC induced a partial inhibition of allogeneic T-cell proliferation but no tolerance with similar unresponsiveness to restimulation with IL-2 and unirradiated DC irrespective of their haplotype. Similar observations were made when naive, TCR-transgenic T cells from DO11.10 mice were used. In conclusion, UVB-DC are impaired in their APC function and tolerize the primed antigen-specific Th1 clone AE7 but not naive allo- or OVA-specific T cells.  相似文献   

20.
Li L  Li SP  Min J  Zheng L 《Immunology letters》2007,114(1):38-45
Tumor cells may escape from the immune responses because of defective differentiation of dendritic cells (DC). Recent studies have found an increased number of regulatory T cells (Treg) in both peripheral blood and tissues from patients with hepatocellular carcinoma. In the present study, we used tumor culture supernatants (TSN) from hepatoma-derived cell lines to investigate whether TSN interfere with the differentiation of human monocyte-derived DC and/or their ability to increase Treg. The results showed that exposure to TSN significantly inhibited the differentiation of monocytes into DC with retained CD14 molecule and reduced expression of CD1a. These TSN-exposed immature DC also produced significant amount of immunosuppressive cytokine IL-10 and displayed an increased expression of co-stimulatory molecules. Upon stimulation with LPS, however, the TSN-exposed DC failed to undergo full maturation, with a blockage of the upregulation of co-stimulatory molecules on their surface and a switch to an IL-10(high)IL-12(low)TNF-alpha(low) phenotype. Moreover, exposure of DC to TSN selectively inhibited their capacity to stimulate the proliferation of allogeneic CD8(+) T cells, but promoted the generation of CD4(+)CD25(hi)Foxp3(+) Treg cells. These findings, together with previous clinical studies showing that CD4(+)CD25(hi) Treg cells are concentrated within hepatocellular carcinoma tissue, suggest that the local tumor microenvironment may favor the induction of Treg cells through inhibiting the differentiation and maturation of DC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号