首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
目的 探索接触131I放射性核素放射工作人员内照射剂量估算方法。方法 选择某131I放射性药物生产企业和某开展131I甲亢和甲状腺癌治疗的医院核医学科放射工作人员,使用便携式高纯锗(HPGe)γ谱仪,以7 d为周期,连续4次测量甲状腺部位131I活度,结合人员接触131I的轮岗方式,估算内照射剂量。结果 以监测月份为典型月份估算人员内照射剂量时,调查企业从事131I放射性药物分装的生产人员年待积有效剂量为0.09~1.93 mSv,调查医院核医学科工作人员内照射年待积有效剂量为0.06~0.58 mSv。对监测结果进行校正和结合轮岗方式后估算的工作人员内照射年待积有效剂量,放射性药物生产工作人员和核医学科工作人员分别为0.06~1.22 mSv和0.03~0.16 mSv。结论 在进行接触131I放射性核素工作人员内照射剂量估算时,仅以单次测量的结果估算全年受照剂量会带来较大的误差。在连续监测时,应根据前续监测周期的结果对后续监测周期结果进行校正。为准确估算人员内照射剂量,应充分考虑工作人员接触131I的方式、接触的时间、接触的频率、内污染的途径等因素。对于接触131I内照射剂量可能>1 mSv/年的工作人员,以14 d作为常规监测周期较为适宜。  相似文献   

2.
目的 了解核医学科碘治疗工作人员甲状腺内131I的活度,并估算年待积有效剂量,分析碘治疗人员的内照射现状。方法 选择甲状腺内照射碘测量仪,对山东省6家医院进行调查并进行甲状腺131I活度测量,得出6家医院核医学科碘治疗工作人员甲状腺131I的检出率和活度值,进而计算摄入量和年待积有效剂量。结果 6家医院共有63名碘治疗工作人员接受测量,其中有52人甲状腺内检测到131I,检出率83%,测得131I活度大多低于200 Bq。估算的年待积有效剂量范围为0.23~7.78 mSv,其中有84.6%的人年待积有效剂量<2 mSv。结论 核医学科碘治疗工作人员应进行常规内照射个人监测,各医院在辐射防护制度方面需进一步完善。  相似文献   

3.
目的 评估分化型甲状腺癌(DTC)患者131I治疗后体内残留放射性活度.方法 本次前瞻性研究包括49例DTC患者,分为“清甲”(131I摧毁术后残留的甲状腺组织)与“清灶”(131I治疗甲状腺床残留甲状腺癌、甲状腺床复发灶和转移灶)组,于服131I后收集患者每次排泄尿液,测定患者每天每次通过尿液排泄的放射性活度及排泄的总放射性活度,进而估算患者体内残留的放射性活度.分别于服131I后2、6、24、48、72 h进行1 m处剂量当量率的测定,估算患者体内残留放射性活度达到400 MBq时1 m处剂量当量率.结果131I后2、6、24、48、72 h体内残留131I活度占服131I初始活度的百分比,“清甲”组分别为99%、72%、25%、15%、7%,1 m处剂量当量率分别为157、120、35、11、9 μSv/h;"清灶"组对应百分比分别为99%、71%、18%、7%、3%,1 m处剂量当量率分别为232、182、48、11、2 μSv/h.体内残留的放射性活度与1 m处剂量当量率呈正相关(r=0.94,P<0.001).“清甲”与“清灶”组服131I后48~72 h体内残留放射性活度分别为548~259及451~248 MBq,对应的1 m处剂量当量率为8~10 μSv/h.结论 DTC患者于服131I后48~72 h体内残留放射性活度达到国家标准规定的400 MBq,即DTC患者1 m处剂量当量率达到8~10 μSv/h方可出院.  相似文献   

4.
目的 了解碘治疗工作场所空气中131I气溶胶的活度浓度,估算核医学科医务人员吸入131I所致内照射剂量。方法 使用CF-1001BRL型便携式大容量空气采样器,采用碘盒收集山东省6家医院核医学科碘治疗工作场所空气中的131I气溶胶,利用HPGe-γ能谱仪对样品进行测量,得到6家医院碘治疗工作场所中131I的活度浓度值,并估算医务人员的内照射剂量。结果 6家医院碘治疗工作场所空气中131I的活度浓度范围为3.64~2.94×103Bq/m3,控制区(病房、患者通道、分装间、远程操作给药室)131I的浓度水平明显高于监督区,监督区131I的浓度最高的是医护通道,为2.62×102Bq/m3。核医学科医务人员两种职业待积有效剂量估算值为0.07~5.68 mSv,均未超过国家规定限值。结论 医院核医学科碘治疗工作场所仍存在不可忽视的131I气溶胶污染现象,应面向全国各地区核医学科开展内照射监测,探索更加合理的防护标准和方法。  相似文献   

5.
目的 了解医疗机构131I治疗工作场所空气中131I核素的活度浓度水平,探讨通过空气采样方法估算工作人员内照射剂量的方法并分析其影响因素。方法 选取郑州市10家开展131I核素治疗的工作场所,采用空气采样方法采集131I治疗工作场所中放射性气溶胶,用高纯锗γ能谱仪进行γ放射性核素测定并推算工作场所空气中131I核素的活度浓度水平,根据测量结果和现场调查结果估算放射工作人员因131I核素吸入导致的内照射剂量。结果 19个分装间空气样品的131I活度浓度为0.087~570 Bq/m3,平均为(51.04±128.58)Bq/m3;11个病房空气样品的131I活度浓度为0.162~54.6 Bq/m3,平均为(7.97±15.89)Bq/m3。根据GBZ 129-2016《职业性内照射个人监测规范》推荐的典型工作时间估算,放射工作人员由于吸入131I核素导致的年待积有效剂量范围为2 μSv~10 mSv,平均为(0.61±1.80)mSv,年有效剂量均未超过国家标准所规定的剂量限值。结论 郑州市10家医疗机构核医学工作场所中131I核素活度浓度较高的样品多分布在甲状腺癌住院患者较多、核素操作量较大的三甲医院,由此导致的工作人员内照射剂量不容忽视。根据空气样品的测量结果估算内照射剂量带有很大不确定度,但空气采样方法可及时发现异常或事故情况下的放射性污染,为工作人员开展体外直接测量和内照射评价提供预警。  相似文献   

6.
目的 通过测量甲状腺癌患者131I治疗过程中患者周围剂量当量率及住院期间胸前体表的累积剂量,探讨加强131I治疗过程中辐射防护问题。方法 在某开展甲状腺癌患者131I治疗的医院,选取接受131I治疗的患者78名,用γ辐射巡测仪测量患者服用131I药物后10 min、1、2、5 d共5个时间点的周围剂量当量率;测量距离分别为体表5、0.5和1 m处;测量方向为患者前后左右4个方向。用光激发光剂量计测量患者胸前位置住院期间(6 d)接受的累积吸收剂量。结果 服药后10 min患者胸前体表5 cm处周围剂量当量率最高可达4.81 mSv/h,患者出院前胸前体表5 cm处周围剂量当量率范围在2.6~64.1 μSv/h,住院期间患者胸前体表的累积剂量在15.9~58.8 mGy之间。服药10 min后3.7 GBq药剂量组与5.55 GBq药剂量组患者体表5 cm处剂量率差异有统计学意义(t=-6.11,P<0.05),服药10 min后男性与女性患者体表5 cm处剂量率差异有统计学意义(t=4.52,P<0.05),其他组别差异无统计学意义(P>0.05)。结论 在甲状腺癌患者131I治疗过程中,患者周围具有较高的辐射水平,应加强对患者的防护及管理,减少周围公众不必要的照射。  相似文献   

7.
目的 研究131I治疗分化型甲状腺癌(DTC)患者体内放射性活度及外部剂量水平的变化规律,分析二者之间的关系,并估算400 MBq患者剂量当量率的修正因子。方法 研究对象为43例甲状腺全切术后,首次行131I"清甲"治疗的DTC患者,服药量为1 850~3 700 MBq,平均服药量(2 405±777)MBq。分别于口服131I后2、6、20、22、24、27、30、44、46、48、54、68及72 h,测定患者的体内剩余放射性活度以及患者前部0.3、1及3 m处的剂量当量率。结果 患者服131I后的体内剩余放射性活度随时间变化函数为A=A0(1.033 16e-0.062 4t+0.017 17)。可估算出"清甲"治疗的DTC患者有效半减期为12.19 h,体内放射性活度降至400 MBq仅需26.4~38.9 h。患者服用131I后距其0.3、1及3 m的标准化剂量当量率随时间变化函数分别为:0.3=127.220 7e-0.054 8t+3.765 71、1=30.225 8e-0.064 4t+0.824 67、3=4.161 9e-0.061 5t+0.167 97。患者服131I后体内剩余放射性活度与1 m处剂量当量率呈正相关(r=0.982,P<0.05),函数为1=0.025A+1.245。DTC患者体内剩余活度分别为1 000、700和400 MBq时,距患者1 m处对应的剂量当量率分为26.2、18.7和11.2 μSv/h。估算活度为400 MBq的患者0.3、1及3 m处剂量当量率的修正因子分别为0.25、0.49及0.70。结论 服用131I活度在3 700 MBq以下的DTC患者仅需住院2日便可达到出院标准。当DTC患者体内活度降至400 MBq时,其1 m处的剂量当量率远小于25 μSv/h。单纯利用点源公式估算患者周围剂量当量率会造成高估的情况,因此对于公式估算患者周围辐射水平时使用的修正因子还需进一步研究,使模型估算结果更贴合实际情况。  相似文献   

8.
我所于5月3日起,对苏联切尔诺贝利核电站事故的泄漏物进行了为期一个多月的监测工作。测定了大气沉降物、雨水、蔬菜、露天水源、近地面空气气溶胶总日活度及地面γ照射量率,分析了大气沉降物、雨水、蔬菜、牛奶和露天水源中131I含量;估算了环境样品中131I对居民甲状腺所致剂量当量和全身待积有效剂量当量,对沈阳地区受到的污染水平做了卫生学评价。  相似文献   

9.
目的 研究用热释光剂量计(TLD)测量并计算125I粒子源植入中职业人员器官和组织接受的吸收剂量及有效剂量方法。方法 60Co γ射线开展TLD稳定性等相关性能实验。用125I粒子源照射一组TLD片,建立空气比释动能标准剂量曲线。将TLD片分别贴在粒子源植入过程中职业人员铅衣内外甲状腺等13个部位,测量平均吸收剂量,计算器官和组织的吸收剂量和有效剂量。结果 3例前列腺癌粒子源植入术中,职业人员铅衣外器官和组织吸收剂量0.02~3.80 μGy,有效剂量0.06~1.81 μSv;铅衣内最高吸收剂量2.35 μGy,有效剂量0.02 μSv,屏蔽65.9%以上γ射线。3例脑癌中,职业人员铅衣外器官和组织吸收剂量0.23~11.31 μGy,有效剂量0.88~4.07 μSv;铅衣内最高吸收剂量2.22 μGy,有效剂量0.09 μSv,屏蔽54.5%以上射线。3例肺癌中,职业人员铅衣外器官和组织吸收剂量0.03~14.78 μGy,有效剂量0.35~7.59 μSv;铅衣内最高吸收剂量4.09 μGy,有效剂量0.22 μSv,屏蔽58.4%以上射线。2例纵隔癌中,职业人员铅衣外器官和组织的吸收剂量为0.06~74.91 μGy,有效剂量0.83~17.96 μSv;铅衣内最高吸收剂量10.29 μGy,有效剂量0.50 μSv,屏蔽85%以上射线。1例卵巢癌中,职业人员铅衣外器官和组织吸收剂量0.09~14.29 μGy,有效剂量2.40~4.50 μSv;铅衣内最高吸收剂量7.77 μGy,有效剂量0.12 μSv,屏蔽33.4%以上射线。植入1例眼睛癌中,职业人员铅衣外器官和组织吸收剂量为2.20~39.84 μGy,有效剂量4.48~10.06 μSv;铅衣内最高吸收剂量5.19 μGy,有效剂量0.16 μSv,屏蔽54.6%以上射线。结论 用TLD监测粒子源植入中职业人员剂量的方法简单易行,是保护近距离植入粒子源治疗中医务人员健康的有效措施。  相似文献   

10.
目的 调查分析2015—2019年三门核电站周围近海海域海水与海产品中90Sr放射性水平,估算食入海产品所致年待积有效剂量。方法 2015—2019年,在近海海域采集海水样品,并结合当地居民饮食习惯,采集三门当地3类常见海产品,测定分析90Sr放射性水平,结合浙江省沿海地区居民海产品消费量估算人群年待积有效剂量。结果 2015—2019年,三门核电站近海海域海水中90Sr放射性活度浓度范围为2.4~4.1 mBq/L,处于本底水平;3种海产品90Sr放射性活度浓度范围为6.7×10-2~1.3 Bq/kg (鲜重),均低于《食品中放射性物质限制浓度标准》(GB 14882-94)指导值。三门县居民食用海产品摄入90Sr所致年待积有效剂量为2.2×10-4~4.2×10-4 mSv,远低于全球内照射所致年待积有效剂量。结论 2015—2019年期间三门核电站周围海水及海产品中90Sr放射性水平平稳,人群剂量负担轻微。  相似文献   

11.

Objective

To evaluate for how long patients should be isolated after I-131 treatment for thyroid cancer according to the guidelines issued by the Japanese Ministry of Welfare.

Methods

We reviewed 92 therapies performed in 76 patients who were administered I-131 at our hospital from July 2007 to September 2009. Fifty-six patients were given 2220 or 2960 MBq I-131 at the first therapy, and 29 patients underwent 36 repeated therapies using 2960, 3700, 5550 or 7400?MBq I-131. We surveyed radioactivity for a 1?cm dose equivalent rate at 1?m intervals at 30 and 48?h after administration of I-131, obtained planar scintigrams at 48?h, and surveyed radioactivity repeatedly until it fell to under 30???Sv/h.

Results

The radioactivity was under 30???Sv/h at 30?h in 51 out of 92 cases (55%). Among the remaining 41 (45%) cases, 27 (29%) and 32 (35%) cases showed decreased radioactivity under 30???Sv/h at 48 and 72?h, respectively, and it remained higher than 30???Sv/h at 72?h in another 9 cases (10%). In 5 (38%) of the 13 cases with bone metastasis, the radioactivity remained over 30???Sv/h after 72?h, and scintigrams showed strong accumulation in bone metastases. Among the 27 cases demonstrating below 30???Sv/h at 48?h, 26 showed radioactivity being below 50???Sv/h at 30?h, while it was above 50???Sv/h at 30?h in all 14 cases which demonstrated above 30???Sv/h at 48?h. We compared the radioactivity levels of 27 cases under 30???Sv/h at 48?h and 14 cases over 30???Sv/h at 48?h using a cutoff value of under 50???Sv/h at 30?h to release patient at 48?h, the positive predictive value and negative predictive value were 100 and 93%, respectively, and radioactivity was found to differ significantly (P?<?0.001).

Conclusions

To predict external radiation levels at 48?h, it is helpful to consider external radiation levels at 30?h after treatment. Consideration of intracellular uptake in thyroid cancer, especially in cases of bone metastases, digestive tract function, and renal function, is important for predicting isolated period.  相似文献   

12.
High-dose radioactive iodine therapy using 131I is the treatment of choice for patients with thyroid cancer following thyroidectomy. Because of the large amount of activity which is excreted during hospitalization, contamination hazard from 131I excretion via perspiration, saliva, breath and urine may arise. In eight patients treated with doses of 131I ranging from 3.7 to 14.8 GBq (100-400 mCi), activity levels were measured in room air, from room surfaces, the toilet, the patients' exhaled breath, skin, saliva and toothbrushes, and the gloves used by medical staff. Thyroid bioassays were also performed on medical staff personnel caring for these patients both before and two days after administration of the treatment dose. Removable activity from the skin was positively correlated with treatment dose and reached a maximum at 24 hr post-therapy. Removable activity from room surfaces exceeded the level of contamination which requires clean-up in a restricted area during the patient's hospitalization. Thyroid bioassays on medical staff showed no significant uptake 2 days after treatment. The relatively high activities present in the saliva, urine and on the skin of these patients emphasizes the need for all individuals coming in contact with these patients to be made aware of the contamination hazard present.  相似文献   

13.
14.
15.
The objective of this study was to report three cases with an accumulation of 131I in the nasolacrimal duct after radioiodine therapy for papillary thyroid cancer. A whole-body scan was taken 3 days after the administration of 3.7 GBq of 131I. Single-photon emission computed tomography (SPECT)/CT images were added when the location of a focal tracer uptake was undetermined on whole-body scans. In case 1, a 62-year-old woman complained of epiphora of the left eye after nine radioiodine therapies with a cumulative dose of 31.08 GBq. The left nasolacrimal duct was visualized at her tenth treatment with 131I. In case 2, a series of three radioiodine therapies had been given to a 73-year-old woman with a cumulative dose of 11.1 GBq. The accumulation of 131I was noted in the left nasolacrimal duct at her fourth treatment. She complained of epiphora of the left eye. In case 3, bilateral nasolacrimal ducts were visualized at the second radioiodine therapy in a 75-year-old woman. The patient had received 3.7 GBq of 131I at the first therapy. She did not complain of epiphora. It is possible that radiation from 131I that is secreted in tears and/or actively accumulated in the nasolacrimal duct may induce nasolacrimal duct obstruction. 131I in tears would be responsible for the visualization of nasolacrimal duct in the first two cases. 131I actively accumulated in the nasolacrimal duct might have been visualized in the third case. In summary, 131I is excreted in tears and is actively accumulated in the nasolacrimal duct. Obstruction of the lacrimal drainage system could occur after high-dose radioiodine therapy.  相似文献   

16.
Whole body imaging with radioiodine can detect functioning metastases, which can often be effectively treated with appropriate amounts of radioiodine. Non-physiologic I-131 uptake detected on images is usually interpreted as suggesting functioning thyroid metastases. However, extra-thyroidal I-131 accumulation does not always imply thyroid cancer metastases and has been reported on many occasions, including various non-thyroidal neoplasms, and contamination by body secretions. In order to avoid unnecessary therapeutic interventions it is extremely important to properly distinguish false-positive sites of I-131 localization. Three patients with unusual radioiodine contamination patterns, either presented for the first time or rarely presented in the existing literature, were reported. Reported cases consist of contamination in hair (due to styling hair with sputum), contamination in neck (due to drooling during sleep) and, contaminated chewing gum. False positive contamination sources were clarified by careful examination of patients and further images when necessary.  相似文献   

17.
目的 研究在放射性核素肾动态显像中肾脏和膀胱所受到的内照射剂量。方法 建立一个双隔室链肾脏-膀胱排泄模型并推导出相关的数学表达式,模拟放射性核素肾动态显像剂被人体摄入后的转移、排泄过程,计算核素在肾脏、膀胱和人体其余组织内的总衰变数,再采用蒙特卡罗模拟的方法,计算核素衰变释放的射线在肾脏以及膀胱内产生的能量沉积,最后根据辐射的品质因数计算它们的有效剂量。结果131I-OIH和 99Tcm-DTPA显像剂为例,肾脏受到的内照射剂量分别为0.058mGy/MBq(131I-OIH)和0.0054 mGy/MBq(99Tcm-DTPA);膀胱受到的内照射剂量分别为0.40mGy/MBq(131I-OIH)和0.033mGy/MBq(99Tcm-DTPA)。结论 常规剂量水平下的放射性核素肾动态显像对肾脏和膀胱造成的辐射剂量很小。  相似文献   

18.
The aim of this study was to determine the non-extremity gamma dose received by a technician while performing an ordinary nuclear medicine procedure or a static (i.e. without blood sampling) fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) study. The dose per patient was measured by means of a commercial electronic pocket Geiger Mueller dosimeter, worn in the upper left pocket of the overalls. This was previously tested by exposure to known point sources of technetium-99m, gallium-67, iodine-131 and fluorine-18 in the air. A further test was performed with 99mTc, 131I and 18F sources inserted in a water phantom to simulate the condition of high scattering degradation of the primary radiation due to the patient’s tissues. Subsequently, the dose was measured by two technicians for a total of 314 clinical cases, covering the most common nuclear medicine procedures, including 44 static, two-level FDG PET studies with repositioning of the patient on the couch between the transmission and the emission scan and seven whole-body PET studies. The dose read by the dosimeter was corrected for environmental background and for detector efficiency measured with sources in the air. For a limited subset of cases, the time spent close to patients was also measured. Doses were then estimated by a crude non-absorbing point source approximation and by using experimental dose rates. A comparison between experimental and estimated doses, as well as with previously published data, completed the work. For most of the conventional procedures, the measured dose per procedure proved to be within the range 0.2–0.4 μSv, except for equilibrium angiocardioscintigraphy (1.0±0.5 μSv) and 99mTc-sestamibi single-photon emission tomography (1.7±1.0 μSv). Comparison with data published in the last 20 years shows that our values are generally lower. The current more favourable working conditions are a result of technological improvements (for instance two-head gamma cameras capable of whole-body studies), and safer shielding and distance from patients. Two-level PET gave 11.5±4.4 μSv and whole-body PET 5.9±1.2 μSv. In a subset of patients these values could be subdivided into the separate contributions from each phase of the procedure. They were: 0.11±0.04 μSv for daily quality assurance, 2.9±3.0 μSv for two transmission scans, 0.3±0.1 μSv for syringe preparation, 2.8±1.8 μSv for injection and escorting the patient to the waiting room, 1.7±1.5 μSv for a whole-body emission scan, 7.7±5.2 μSv for two emission scans, and 0.8±0.2 μSv for patient departure. The higher value from PET by comparison with conventional procedures is attributable to the higher specific gamma constant of 18F, as well as the longer time required for accurate positioning. Received 11 March and in revised form 5 July 1997  相似文献   

19.
The aim of this study was to investigate the possible role of technetium-99m methoxyisobutylisonitrile (MIBI) scan in planning post-surgical therapy and follow-up in patients with differentiated thyroid carcinoma (DTC). Four groups of DTC patients were considered: Group 1 comprised 122 patients with high serum thyroglobulin (s-Tg) levels and negative high-dose iodine-131 scan during follow-up who had previously undergone total thyroidectomy and 131I treatment. Group 2 consisted of 27 patients who had previously undergone total thyroidectomy and 131I treatment but were now considered disease-free; this group was considered as controls. Group 3 comprised 49 patients studied after total thyroidectomy but prior to 131I scan. Finally, group 4 consisted of 21 patients who had previously undergone partial thyroidectomy alone. MIBI scan, neck ultrasonography (US), and s-Tg measurements during suppressive hormonal therapy (SHT) were obtained in all patients. Neck and chest computed tomography (CT) or magnetic resonance imaging (MRI) was also performed in group 1 patients. In group 1, MIBI scan and US were very sensitive in detecting cervical lymph node metastases (93.54% and 89.24%, respectively). Furthermore, MIBI scan and US played a complementary role in several patients, yielding a global sensitivity of 97.84%. In contrast, CT/MRI sensitivity for cervical lymph node metastases was very low (43.01%). MIBI scan also showed a higher sensitivity than CT/MRI in detecting mediastinal lymph node metastases (100% vs 57.89%). Regarding distant metastases, MIBI scan provided results similar to those of conventional imaging (CT, MRI, 99mTc-methylene diphosphonate bone scan). In group 2, no false-positive cases were observed with MIBI scan (100% specificity). In group 3, MIBI scan correctly identified all the 131I-positive metastatic foci, except in two patients with micronodular pulmonary metastases that were visualised with 131I scan. In contrast, both MIBI scan and US showed low sensitivity (46.15% and 61.53%, respectively) compared with 131I scan in detecting thyroid remnants. s-Tg was increased in all patients with distant metastases but only in 56% of those with lymph node metastases. Furthermore, s-Tg was increased in 21.42% of patients with thyroid remnants alone (false-positive results). In group 4, MIBI scan was the only examination capable of detecting at an early stage a mediastinal lymph node metastasis in one patient. We conclude that the integrated MIBI scan/neck US protocol: (a) can be proposed as a first-line diagnostic procedure in the follow-up of DTC patients with high s-Tg levels and negative high-dose 131I scan, and (b) may be helpful in the follow-up of DTC patients who undergo partial thyroidectomy alone. Moreover, the combined MIBI scan/neck US/s-Tg protocol appears to be highly sensitive in identifying patients with metastatic disease after total thyroidectomy and prior to 131I scan; consequently, it may play a prognostic role in distinguishing high-risk from low-risk DTC patients. However, due to the low sensitivity of MIBI scan and neck US in detecting thyroid remnants, this diagnostic approach cannot be used as a predictor of 131I scan results. Lastly, because of the high sensitivity of MIBI scan and neck US in revealing both functioning and non-functioning metastases, this integrated protocol might be helpful in the follow-up of high-risk DTC patients, particularly for the early detection of lymph node metastases in patients with undetectable s-Tg during SHT. Received 21 October and in revised form 20 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号