首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using immunohistochemistry, the occurrence and age-related changes of the P2Y2 receptor was investigated in the adrenal gland of rat at different ages, ranging from embryonic day E16 to 22 months. Immunoreactivity for the P2Y2 receptor was present in chromaffin cells and nerve fibres at all ages examined. Double labeling with the antibody against phenyl ethanolamine-N-methyltransferase, which marks adrenaline-producing chromaffin cells, revealed that only a few of the P2Y2-immunoreactive cells were adrenaline producing at embryonic day E16, the vast majority being noradrenaline-containing cells. However, immunoreactivity for adrenaline-containing cells in the P2Y2 receptor-labeled chromaffin cells increased with increasing age and at 1 week post-natal almost all chromaffin cells were positive for both P2Y2 and phenyl ethanolamine-N-methyltransferase, while noradrenaline-containing cells were minimal. At 2 weeks, there was a dramatic drop in P2Y2-immunoreactive chromaffin cells and this was maintained in adult rats, noradrenaline-containing cells dominating. In the aging rat adrenals, P2Y2 receptor-immunoreactivity was localized in subpopulations of both adrenaline and noradrenaline-producing cells. Intrinsic neurones were also visible that were positively labeled with the P2Y2 receptor antibody in the adrenals of both adult and aging rats. P2Y2-immunoreactive nerve fibres formed a plexus around the adrenal cortical cells of zona glomerulosa in the post-natal, but not in adult or aging rats. In conclusion, this study suggests that ATP, acting through P2Y2 receptors, may influence the phenotypic expression of chromaffin cells during the development and aging of the rat adrenal gland. However, during early development, when the chromaffin cells are actively dividing and during aging, when the adrenal medullary cells are known to show hyperplastic lesions, ATP acting through P2Y2 receptors may be involved in other physiological activities, such as proliferation and/or differentiation of the chromaffin cells associated with their adrenaline or noradrenaline phenotype.  相似文献   

2.
ATP is the dominant messenger for astrocyte-to-astrocyte calcium-mediated communication. Definition of the exact ATP/P2 receptors in astrocytes and of their coupling to intracellular calcium ([Ca(2+)](i)) has important implications for brain physiology and pathology. We show that, with the only exception of the P2X(6) receptor, primary rat cortical astrocytes express all cloned ligand-gated P2X (i.e., P2X(1-5) and P2X(7)) and G-protein-coupled P2Y receptors (i.e., P2Y(1), P2Y(2), P2Y(4), P2Y(6), and P2Y(12)). These cells also express the P2Y-like UDP-glucose receptor, which has been recently recognized as the P2Y(14) receptor. Single-cell image analysis showed that only some of these receptors are coupled to [Ca(2+)](i). While ATP induced rapid and transient [Ca(2+)](i) increases (counteracted by the P2 antagonists suramin, pyridoxal-phosphate-6-azophenyl-2'-4'-disulfonic acid and oxidized ATP), the P2X(1)/P2X(3) agonist alphabetameATP produced no changes. Conversely, the P2X(7) agonist BzATP markedly increased [Ca(2+)](i); the presence and function of the P2X(7) receptor was also confirmed by the formation of the P2X(7) pore. ADP and 2meSADP also produced [Ca(2+)](i) increases antagonized by the P2Y(1) antagonist MRS2179. Some cells also responded to UTP but not to UDP. Significant responses to sugar-nucleotides were also detected, which represents the first functional response reported for the putative P2Y(14) receptor in a native system. Based on agonist preference of known P2 receptors, we conclude that, in rat astrocytes, ATP-induced calcium rises are at least mediated by P2X(7) and P2Y(1) receptors; additional receptors (i.e., P2X(2), P2X(4), P2X(5), P2Y(2), P2Y(4), and P2Y(14)) may also contribute.  相似文献   

3.
The expression and functionality of P2X/P2Y receptor subtypes in multipolar nonpyramidal neurons of mixed cortical cell cultures were investigated by means of immunocytochemistry and fura‐2 microfluorimetry. The morphological studies revealed that most of the neurons are immunoreactive for GABA and express a range of P2X/P2Y receptors, predominantly of the P2X2,4,6 and P2Y1,2 subtypes. P2X1 and P2X7 receptor immunoreactivity (IR) was found on thin axon‐like processes and presynaptic structures, respectively. Application of ATP caused a small concentration‐dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in most investigated neurons, whereas only about the half of these cells responded to 2′,3′‐O‐(benzoyl‐4‐benzoyl)‐ATP (BzATP), ADPβS, 2MeSADP, or 2MeSATP and even fewer cells to UTP. In contrast, α,β‐meATP, UDP, and UDP‐glucose failed to produce any [Ca2+]i signaling. The response to ATP itself was inhibited by pyridoxal‐5′‐phosphate‐6‐azophenyl‐2′,4′‐disulfonic acid (PPADS), Reactive Blue 2, 2′‐deoxy‐N6‐methyl adenosine 3′,5′‐diphosphate (MRS2179), and suramin (300 μM) as well as by a cyclopiazonic acid‐induced depletion of intracellular Ca2+ stores. A Ca2+‐free external medium tended to decrease the ATP‐induced [Ca2+]i transients, although this action did not reach statistical significance. Various blockers of voltage‐sensitive Ca2+ channels and the gap junction inhibitor carbenoxolone did not interfere with the effect of ATP, whereas a combination of the ionotropic glutamate receptor antagonists D(–)‐2‐amino‐5‐phosphonopentanoic acid (AP5) and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX) decreased it. Cross‐desensitization experiments between ADPβS or UTP and ATP suggested that ATP acts on the one hand via P2Y1,2 receptors and on the other hand by additional signaling mechanisms. These mechanisms may involve the release of glutamate (which in consequence activates ionotropic glutamate receptors) and the entry of Ca2+ via store‐operated Ca2+ channels. Evidence for the presence of functional P2X receptors, in particular P2X7, remains elusive. J. Comp. Neurol. 516:343–359, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Expression of P2X receptors on rat microglial cells during early development   总被引:10,自引:0,他引:10  
Xiang Z  Burnstock G 《Glia》2005,52(2):119-126
  相似文献   

5.
Extracellular ATP is a signaling molecule, working through P2X purinoceptors in the nervous system. P2X7 is a major subtype of the purinoceptors in the brain, where it is expressed mostly in glia cells and considered to work as a trigger of cytolysis. In the rodent retina, however, P2X7 is expressed in several classes of neurons including ganglion cells. In the present study we identified cells immunopositive for P2X7 by double immunolabeling. Immunoreactivity for P2X7 was observed in the inner nuclear layer (INL), the inner plexiform layer (IPL), and the ganglion cell layer (GCL). In the INL, strongly immunopositive cells corresponded to the subpopulation of horizontal cells. In the IPL, fine processes were immunopositive. In the GCL, most of the ganglion cells showed P2X7 immunoreactivity. At the ultrastructural level, immunoreactivity was confirmed in the cytoplasm of ganglion cells. No P2X7 immunoreactivity was found in non-neural cells, i.e., Müller cells or microglia. The immunohistochemical distribution of other purinoceptor subtypes (P2X1, P2X2, and P2X4) was also examined in the monkey retina. Immunoreactivity for P2X1 was strongly detected in a band, in sublamina a of the IPL. The band existed at almost the same level as tyrosine hydroxylase immunoreactivity, but did not seem to actually overlap. P2X2 was not expressed in the retina, and P2X4 was only faintly expressed at the scleral margin of the INL. Because P2X7 in the primate retina is expressed exclusively in neurons, it may in this location be involved in neural transmission rather than in cytolysis, as found for glia cells.  相似文献   

6.
The secretion of steroid hormones from the adrenal cortex as well as cathecolamines from the adrenal medulla is stimulated by stress. In this study, we studied the effect of capsaicin-induced stress on the expression of the immediate-early genes (IEGs) NGFI-A, -B, -C, egr-2, -3 and Nurr1 in the rat adrenal gland using in situ hybridization. All of these IEGs except egr-2 were rapidly induced in the adrenal cortex and medulla. The temporal patterns of the IEG induction in medulla varied significantly. NGFI-A was induced in medulla within 15 min after stress, NGFI-B, egr-3 and Nurr1 were induced by 30 min, whereas NGFI-C was induced by 2 h. Surprisingly, only NGFI-B and Nurr1 were induced in the glucocorticoid secreting regions of zonae reticularis and fasciculata of the cortex, starting 15 min after the stress. All of the inducible IEGs were induced in the aldosterone secreting zona glomerulosa 15-30 min after the capsaicin injection. NGFI-A, NGFI-B and Nurr1 expression persisted for 6 h. Since the IEGs studied had major differences in their temporospatial induction pattern, they are likely to be induced by distinct stress-elicited factors and have separate target genes and roles in stress-induced glucocorticoid and catecholamine secretion.  相似文献   

7.
Within the central nervous system, functions of the ATP‐gated receptor‐channel P2X4 (P2X4R) are still poorly understood, yet P2X4R activation in neurons and microglia coincides with high or pathological neuronal activities. In this study, we investigated the potential involvement of P2X4R in microglial functions in a model of kainate (KA)‐induced status epilepticus (SE). We found that SE was associated with an induction of P2X4R expression in the hippocampus, mostly localized in activated microglial cells. In P2X4R‐deficient mice, behavioral responses during KA‐induced SE were unaltered. However, 48h post SE specific features of microglial activation, such as cell recruitment and upregulation of voltage‐dependent potassium channels were impaired in P2X4R‐deficient mice, whereas the expression and function of other microglial purinergic receptors remained unaffected. Consistent with the role of P2X4R in activity‐dependent degenerative processes, the CA1 area was partially protected from SE‐induced neuronal death in P2X4R‐deficient mice compared with wild‐type animals. Our findings demonstrate that P2X4Rs are brought into play during neuronal hyperexcitability and that they control specific aspects of microglial activation. Our results also suggest that P2X4Rs contribute to excitotoxic damages by regulating microglial activation. GLIA 2013;61:1306–1319  相似文献   

8.
Ohsawa K  Irino Y  Nakamura Y  Akazawa C  Inoue K  Kohsaka S 《Glia》2007,55(6):604-616
We previously reported that extracellular ATP induces membrane ruffling and chemotaxis of microglia and suggested that their induction is mediated by the Gi/o-protein coupled P2Y(12) receptor (P2Y(12)R). Here we report discovering that the P2X(4) receptor (P2X(4)R) is also involved in ATP-induced microglial chemotaxis. To understand the intracellular signaling pathway downstream of P2Y(12)R that underlies microglial chemotaxis, we examined the effect of two phosphatidylinositol 3'-kinase (PI3K) inhibitors, wortmannin, and LY294002, on chemotaxis in a Dunn chemotaxis chamber. The PI3K inhibitors significantly suppressed chemotaxis without affecting ATP-induced membrane ruffling. ATP stimulation increased Akt phosphorylation in the microglia, and the increase was reduced by the PI3K inhibitors and a P2Y(12)R antagonist. These results indicate that P2Y(12)R-mediated activation of the PI3K pathway is required for microglial chemotaxis in response to ATP. We also found that the Akt phosphorylation was reduced when extracellular calcium was chelated, suggesting that ionotropic P2X receptors are involved in microglial chemotaxis by affecting the PI3K pathway. We therefore tested the effect of various P2X(4)R antagonists on the chemotaxis, and the results showed that pharmacological blockade of P2X(4)R significantly inhibited it. Knockdown of the P2X(4) receptor in microglia by RNA interference through the lentivirus vector system also suppressed the microglial chemotaxis. These results indicate that P2X(4)R as well as P2Y(12)R is involved in ATP-induced microglial chemotaxis.  相似文献   

9.
P2X4 receptors are calcium-permeable cation channels gated by extracellular ATP. They are found close to subsynaptic sites on hippocampal CA1 neurons. We compared features of synaptic strengthening between wild-type and P2X4 knockout mice (21-26 days old). Potentiation evoked by a tetanic presynaptic stimulus (100 Hz, 1 s) paired with postsynaptic depolarization was less in P2X4(-/-) mice than in wild-type mice (230 vs. 50% potentiation). Paired-pulse ratios and the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) were not different between wild-type and knockout mice. Prior hyperpolarization (ten 3 s pulses to -120 mV at 0.17 Hz) potentiated the amplitude of spontaneous EPSCs in wild-type mice, but not in P2X4(-/-) mice; this potentiation was not affected by nifedipine, but was abolished by 10 mM 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA) in the recording pipette. The amplitude of N-methyl-d-aspartate EPSCs (in 6-cyano-7-nitroquinoxaline-2,3-dione, 10 or 30 μm, at -100 mV) facilitated during 20 min recording in magnesium-free solution. In wild-type mice, this facilitation of the N-methyl-d-aspartate EPSC was reduced by about 50% by intracellular BAPTA (10 mM), ifenprodil (3 μm) or 4-(4-fluorophenyl)-2-(4-methylsulphinylphenyl)-5-(4-pyridyl)1H-imidazole (5 μm). In P2X4(-/-) mice, the facilitation was much less, and was unaffected by intracellular BAPTA, ifenprodil (3 μm) or mitogen-activated protein (MAP) kinase inhibitor 4-(4-fluorophenyl)-2-(4-methylsulphinylphenyl)-5-(4-pyridyl)1H-imidazole (5 μm). This suggests that the absence of P2X4 receptors limits the incorporation of NR2B subunits into synaptic N-methyl-d-aspartate receptors.  相似文献   

10.
Liang SD  Gao Y  Xu CS  Xu BH  Mu SN 《Brain research》2004,995(2):247-252
Tetramethylpyrazine (TMP) has been used in traditional Chinese medicine as an analgesic for dysmenorrhea. In the present study, we try to investigate the effects of TMP on acute nociception mediated by P2X receptor activation of rat hindpaw and the membrane depolarization of rat dorsal root ganglion (DRG) neurons induced by P2X receptor agonists. The subcutaneous administration of TMP (0.1-10 mmol) into rat hindpaw in a dose-dependent manner decreased acute paw flinching responses mediated by adenosine 5'-triphosphate (ATP, 1000 nmol) or alpha,beta-methylene ATP (alpha,beta-meATP, 600 nmol). The subcutaneous administration of TMP (5 or 10 mmol) into rat hindpaw inhibited significantly the first phase of nociceptive behaviors induced by 5% formalin and attenuated slightly the second phase of nociceptive behaviors induced by 5% formalin. The subcutaneous administration of TMP (10 mmol) into rat hindpaw reduced the nociceptive responses induced by alpha,beta-meATP (200 nmol) co-injected with Prostaglandin E2 (PGE2), 5 micromol). The membrane depolarization induced by ATP (200 micromol) or alpha,beta-meATP (50 micromol) in DRG neurons was inhibited by TMP (300 micromol). The data suggest that the antinociceptive effect of TMP is involved in blocking the signaling of P2X3 receptor activation in rat.  相似文献   

11.
The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.  相似文献   

12.
We have previously shown that P2Y1, P2Y2 and P2Y12 nucleotide receptors are functionally expressed and active on the cell surface of rat glioma C6 cells. In the present study, we have immunocytochemically shown their sub-cellular colocalization with mitochondria in these cells. The same colocalization of above receptors has been found in rat astrocytes. Additionally, differences in intracellular distribution of examined receptors between both cell lines have been observed. This data indicates that P2Y1, P2Y2 and P2Y12 receptor proteins exist within mitochondria of astrocytes and C6 cells, although their role in these sub-cellular structures remains unclear.  相似文献   

13.
腺嘌呤核苷酸受体(P2受体)的概念于1978年提出,这类受体包括配体门控离子通道受体P2X和G蛋白耦联受体P2Y两个家族。迄今为止,已有七个亚型的P2X受体(P2X1,7)和八个亚型的P2Y受体(P2Y1,2,4,6,11,12,13,14)被克隆。其中P2X受体家族被认为是继烟碱受体家族及谷氨酸受体家族后第三类配体门控的离子通道。随着研究的不断深入,目前已经明确P2X受体广泛存在于中枢神经系统(CNS)并执行多种生理功能。[第一段]  相似文献   

14.
It has been shown that lobeline (alpha-lobeline) is a lipophilic, nonpyridine, naturally occurring alkaloid obtained from Indian tobacco, Lobelia inflata. The present study was attempted to investigate the effect of lobeline on secretion of catecholamines (CA) evoked by ACh, high K(+), 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP) and (3-(m-chloro-phenyl-carbamoyl-oxy)-2-butynyl trimethyl ammonium chloride (McN-A-343) from the isolated perfused rat adrenal gland and to establish the mechanism of its action. l-Lobeline (30-300 microM) perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32 x 10(-3) M), DMPP (10(-4) M for 2 min) and McN-A-343 (10(-4) M for 2 min). However, lower dose of lobeline did not affect CA secretion by high K(+) (5.6 x 10(-2) M), higher dose of it reduced greatly CA secretion of high K(+). l-Lobeline itself did also fail to affect basal catecholamine output. Furthermore, in adrenal glands loaded with lobeline (100 microM), CA secretory response evoked by methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine-5-carboxylate (Bay-K-8644), an activator of L-type Ca(2+) channels was markedly inhibited while CA secretion by cyclopiazonic acid, an inhibitor of cytoplasmic Ca(2+)-ATPase was not affected. However, nicotine (30 microM), given into the adrenal gland for 60 min, initially rather enhanced CA secretory responses evoked by ACh (5.32 x 10(-3) M) and high K(+) (5.6 x 10(-2) M) followed by great inhibition later, while responses evoked by DMPP (10(-4) M for 2 min) and McN-A-343 (10(-4) M for 2 min) were greatly inhibited. Taken together, these results suggest that lobeline inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors. Lobeline at lower dose does not affect that by membrane depolarization, but at larger dose inhibits that. It is thought that this inhibitory effect of lobeline may be mediated by blocking the calcium influx into the rat adrenal medullary chromaffin cells without the inhibition of Ca(2+) release from the cytoplasmic calcium store, which is relevant to its nicotinic antagonistic activity. It also seems that there is a difference in the mode of action between nicotine and lobeline in rat adrenomedullary CA secretion.  相似文献   

15.
The pyramidal neurons in the CA1 area of hippocampal slices from 17- to 19-day-old rats have been investigated by means of patch clamp. Excitatory postsynaptic currents (EPSCs) were elicited by stimulating the Schaffer collateral at a frequency below 0.2 Hz. It was found that inhibition of glutamatergic transmission by 20 μm 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 100 μm 2-amino-5-phosphonovaleric acid (D-APV) left a small component of the EPSC uninhibited. The amplitude of this residual EPSC (rEPSC) comprised 25 ± 11% of the total EPSC when measured at a holding potential of ?50 mV. The rEPSC was blocked by selective P2 blocker pyridoxal phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS) 10 μm and bath incubation with non-hydrolysable ATP analogues, ATP-γ-S and α,β-methylene-ATP at 50 and 20 μm , respectively. The rEPSC was dramatically potentiated by external Zn2+ (10 μm ). In another series of experiments exogenous ATP was applied to the CA1 neurons in situ. An inward current evoked by ATP was inhibited by PPADS to the same extent as the rEPSC. It is concluded that, depending on membrane voltage, about one-fifth to one-quarter of the EPSC generated by the excitatory synaptic input to the hippocampal CA1 neurons of rat is due to the activity of P2X receptors.  相似文献   

16.
Trigeminal primary afferents expressing P2X(3) receptor are involved in the transmission of orofacial nociceptive information. However, little is known about their central projection pattern and ultrastructural features within the trigeminal brainstem sensory nuclei (TBSN). Here we use multiple immunofluorescence and electron microscopy to characterize the P2X(3)-immunopositive (+) neurons in the trigeminal ganglion and describe the distribution and synaptic organization of their central terminals within the rat TBSN, including nuclei principalis (Vp), oralis (Vo), interpolaris (Vi), and caudalis (Vc). In the trigeminal ganglion, P2X(3) immunoreactivity was mainly in small and medium-sized somata, but also frequently in large somata. Although most P2X(3) (+) somata costained for the nonpeptidergic marker IB4, few costained for the peptidergic marker substance P. Most P2X(3) (+) fibers in the sensory root of trigeminal ganglion (92.9%) were unmyelinated, whereas the rest were small myelinated. In the TBSN, P2X(3) immunoreactivity was dispersed in the rostral TBSN but was dense in the superficial laminae of Vc, especially in the inner lamina II. The P2X(3) (+) terminals contained numerous clear, round vesicles and sparse large, dense-core vesicles. Typically, they were presynaptic to one or two dendritic shafts and also frequently postsynaptic to axonal endings, containing pleomorphic vesicles. Such P2X(3) (+) terminals, showing glomerular shape and complex synaptic relationships, and those exhibiting axoaxonic contacts, were more frequently seen in Vp than in any other TBSN. These results suggest that orofacial nociceptive information may be transmitted via P2X(3) (+) afferents to all TBSN and that it may be processed differently in different TBSN.  相似文献   

17.
Extracellular ATP can influence cells via activation of P2X purinoceptors, the distribution of which can be altered in the central and peripheral nervous systems following injury or tissue damage. Here we have investigated the effect of a unilateral section of the cervical vagus nerve on the distribution of P2X(1), P2X(2), P2X(3), P2X(4) and P2X(7) receptor subunit immunoreactivity (R-IR) in the dorsal vagal motor nucleus (DVN) and the nucleus ambiguus (NA) in the medulla oblongata. As early as 2 days, and followed up to 14 days, there was a dramatic ipsilateral increase in P2X(1), P2X(2) and P2X(4)R-IR in the cell soma of vagal efferent neurones in the DVN following the nerve section, but not the NA. There were no changes in P2X(3) and P2X(7)R-IR in either nuclei. To test for possible functional consequences of increased P2X receptor levels, whole-cell patch-clamp recordings were made from DVN cells in brainstem slices 4 days following unilateral vagotomy. Application of ATP revealed large cell-to-cell variance in the current amplitude in neurones from both sectioned and control DVN. However, when ATP responses were compared to those elicited by the nicotinic acetylcholine receptor agonist carbachol, the mean ratio of the peak ATP-evoked current to the peak carbachol-evoked current was significantly larger in DVN neurones ipsilateral to the section. Thus the increase in P2XR levels in DVN cells ipsilateral to a nerve section are likely to reflect an increase in expression of functional P2XRs on the cell surface.  相似文献   

18.
Zhang Q  Zhao Y  Guo Y  Cao DY  Tang XD  Tian YL  Yao FR  Wang HS 《Brain research》2006,1102(1):78-85
The present study investigated the activation and sensitization effects of local injection of P2X receptor agonist alpha,beta-methylene ATP (alphabeta-meATP) into the receptive fields of afferent fibers innervating dorsal hairy skin in anesthetized rats. Single unit activities of afferent fibers were recorded by means of isolation of the fiber filaments from the dorsal cutaneous nerve branch. A total of 237 fibers were obtained. Of these, 67 were classed as C fibers, 104 as Adelta fibers and 66 as Abeta fibers. When alphabeta-meATP (0.1-100 microM, 10 microl) was injected subcutaneously into the receptive fields of these units, C and Adelta fibers demonstrated a dose-related increase in the discharge rates of the response. The activated proportion of C and Adelta fibers with a response to the drug also increased with dose. However, Abeta fibers did not exhibit significant activation. Furthermore, injection of alphabeta-meATP (10 microl) at a concentration of 100 microM resulted in a significant decrease of mechanical thresholds in C and Adelta fibers compared with pre-injection baseline (P < 0.05). In control experiments, injection of the vehicle phosphate-buffered saline (PBS, 10 microl) had no effect on all units tested. alphabeta-meATP (100 microM, 10 microl) followed by pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), a P2X receptor antagonist, successfully blocked the activation and sensitization effects of alphabeta-meATP on C and Adelta fibers tested. These results suggest that peripheral P2X receptors are involved in mediating peripheral excitation of C and Adelta fibers.  相似文献   

19.
The present study describes the presence and expression of functional nucleotide receptors, both ionotropic and metabotropic, in highly purified cultures of cerebellar granule neurons. Microfluorimetric experiments have been carried out to record specific [Ca(2+)](i) transients in individual granule neurons after challenge with diverse nucleotides. Although great heterogeneity was found in nucleotide responses in single cells, these responses all became modified during the course of granule cell differentiation, not only at the level of the number of responding cells, but also in the magnitude of the response to nucleotides. These in vitro developmental changes were more significant in metabotropic responses to pyrimidine nucleotides, UTP and UDP, which were down- and upregulated, respectively, during the time in culture. At least two types of ADP-specific receptors seem expressed in different granule cell subpopulations responding to 2MeSADP, as the specific P2Y(1) antagonist MRS-2179 inhibited Ca(2+) responses in only one of these populations. The great diversity of metabotropic responses observed was confirmed by the RT-PCR expression of different types of P2Y receptors in granule cell cultures: P2Y(1), P2Y(4), P2Y(6), and P2Y(12). Similarly, ionotropic nucleotide responses were confirmed by the presence of specific messengers for different P2X subunits, and by immunolabeling studies (P2X(1), P2X(2), P2X(3), P2X(4) and P2X(7)). Immunolabeling reflected great variety in the P2X subunit distribution along the granule neuron cytoarchitecture, with P2X(2), P2X(3) and P2X(4) present at somatodendritic locations, and P2X(1), P2X(7), and P2X(3), located at the axodendritic prolongations. The punctuated labeling pattern obtained for P2X(3) and P2X(7) subunits is particularly notable, as it presents a high degree of colocalization with synaptophysin, a specific marker of synaptic vesicles, suggesting specialized localization and function in granule neurons.  相似文献   

20.
Brain ischemia leading to stroke is a major cause of disability in developed countries. Therapeutic strategies have most commonly focused on protecting neurons from ischemic damage. However, ischemic damage to white matter causes oligodendrocyte death, myelin disruption, and axon dysfunction, and it is partially mediated by glutamate excitotoxicity. We have previously demonstrated that oligodendrocytes express ionotropic purinergic receptors. The objective of this study was to investigate the role of purinergic signaling in white matter ischemia. We show that, in addition to glutamate, enhanced ATP signaling during ischemia is also deleterious to oligodendrocytes and myelin, and impairs white matter function. Thus, ischemic oligodendrocytes in culture display an inward current and cytosolic Ca2+ overload, which is partially mediated by P2X7 receptors. Indeed, oligodendrocytes release ATP after oxygen and glucose deprivation through the opening of pannexin hemichannels. Consistently, ischemia‐induced mitochondrial depolarization as well as oxidative stress culminating in cell death are partially reversed by P2X7 receptor antagonists, by the ATP degrading enzyme apyrase and by blockers of pannexin hemichannels. In turn, ischemic damage in isolated optic nerves, which share the properties of brain white matter, is greatly attenuated by all these drugs. Ultrastructural analysis and electrophysiological recordings demonstrated that P2X7 antagonists prevent ischemic damage to oligodendrocytes and myelin, and improved action potential recovery after ischemia. These data indicate that ATP released during ischemia and the subsequent activation of P2X7 receptor is critical to white matter demise during stroke and point to this receptor type as a therapeutic target to limit tissue damage in cerebrovascular diseases. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号