首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prior exposure to a stressor can potentiate CNS pro-inflammatory immune responses to a peripheral immune challenge. However, the neuroimmune substrate(s) mediating this effect has not been determined. The present investigation examined whether microglia serve as this neuroimmune substrate given that microglia are the primary immune effector cell in the CNS. The effect of inescapable shock (IS) on glial activation (MHC II, CD11b, Iba-1, and GFAP) and regulatory markers (CD200) in vivo, and microglia pro-inflammatory responses (interleukin-1beta; IL-1beta) to lipopolysaccharide (LPS) ex vivo, were assessed in rat hippocampus. IS upregulated the microglia activation marker MHC II 24h post-IS, while the astroglia marker GFAP was unaffected. IS also downregulated the neuronal glycoprotein CD200, which functions to hold microglia in a quiescent state. Moreover, IS potentiated the pro-inflammatory response to LPS ex vivo 24h post-IS in isolated hippocampal microglia. Finally, the behavioral controllability of shock was manipulated and the effect of escapable (controllable) shock was comparable to the effect of IS on hippocampal microglia responses to LPS ex vivo. The present results suggest that stress can activate microglia, thereby sensitizing the pro-inflammatory reactivity of microglia to immunogenic stimuli.  相似文献   

2.
Glucocorticoids (GCs), the adrenal steroid hormones released during stress, have well-known anti-inflammatory actions. Despite that, there is increasing evidence that GCs are not uniformly anti-inflammatory in the injured nervous system and, in fact, can be pro-inflammatory. The present report continues this theme. Primary hippocampal cultures were treated with GC concentrations approximating basal, acute (1 h) stress or chronic (24 h) stress conditions and were then exposed to the excitotoxin kainic acid (KA). KA induced expression of the pro-inflammatory cytokines IL-1 beta and TNF-alpha, and chronic high dose GC exposure excacerbated this induction. In a second study, cultures were exposed to the physiological range of GC concentrations for 24 h prior to KA treatment. Low- to mid-range GC concentrations were anti-inflammatory, decreasing expression of IL-1 beta and TNF-alpha, while the highest GC doses either failed to be anti-inflammatory or even potentiated expression further. These findings add to the growing picture of these classically anti-inflammatory hormones potentially having pro-inflammatory effects in the injured CNS.  相似文献   

3.
4.
Inflammation contributes to perinatal brain injury and can be induced by hypoxia-ischemia (HI) or exposure to infection (fetal inflammatory response). The anti-inflammatory cytokine interleukin-10 (IL10) has been shown to have neuroprotective effects following HI. To determine whether IL10 can reduce the inflammatory response to lipopolysaccharide (LPS) in microglial cell cultures, primary microglial (MG) and/or HAPI cells (new MG-like cell line) were treated with LPS (50 ng/ml) in the presence or absence of IL10 (20 ng/ml) for 0.5, 1, 4, and 8 h. TNFalpha, MIP-1alpha, and RANTES were assayed by ELISA. Chemokine receptors, CCR5, CXCR3, and CX3CR1 (fractalkine receptor) were assayed by semiquantitative RT-PCR. We found that in MG cell cultures TNFalpha, MIP-1alpha, and RANTES release after 8-h exposure to LPS was significantly higher compared to non-exposed MG cells (P < 0.001). In HAPI cell cultures similar stimulation of mRNA levels was found for TNFalpha, MIP-1alpha, CXCR3, and CX3CR1. IL10 inhibited TNFalpha, MIP-1alpha, and RANTES release of LPS-stimulated MG cells as well as TNFalpha, MIP-1alpha, and CXCR3 mRNA expression by HAPI cells after exposure to LPS (P < 0.05). In contrast to those inhibitory effects, there was no change in fractalkine, and a modest increase in CX3CR1 mRNA levels was found in the presence of IL10. We conclude that the inflammatory response induced in microglial cells by LPS can be markedly reduced by IL10. The increase in fractalkine receptor (CX3CR1) is also potentially protective. Our results suggest that treatment of damaging neuroinflammatory insults such hypoxia-ischemia, with IL10 may be protective for the immature brain.  相似文献   

5.
Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction.  相似文献   

6.
The hippocampal damage caused by stress has been attributed to an increased glutamatergic tone brought about by secretion of glococorticoids. Although exposure to stress has been shown to increase the outflow of glutamate, direct involvement of glucocorticoid in this phenomenon has not been examined. The present study demonstrates that adrenalectomy attenuates the stress-induced outflow of glutamate in the hippocampus and prefrontal cortex and that glucocorticoid replacement abolishes this attenuation.  相似文献   

7.
8.
Missense mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset Parkinson's disease (PD), and common genetic variation in LRRK2 modifies susceptibility to Crohn's disease and leprosy. High levels of LRRK2 expression in peripheral monocytes and macrophages suggest a role for LRRK2 in these cells, yet little is known about LRRK2 expression and function in immune cells of the brain. Here, we demonstrate a role for LRRK2 in mediating microglial proinflammatory responses and morphology. In a murine model of neuroinflammation, we observe robust induction of LRRK2 in microglia. Experiments with toll-like receptor 4 (TLR4)-stimulated rat primary microglia show that inflammation increases LRRK2 activity and expression, while inhibition of LRRK2 kinase activity or knockdown of protein attenuates TNFα secretion and nitric oxide synthase (iNOS) induction. LRRK2 inhibition blocks TLR4 stimulated microglial process outgrowth and impairs ADP stimulated microglial chemotaxis. However, actin inhibitors that phenocopy inhibition of process outgrowth and chemotaxis fail to modify TLR4 stimulation of TNFα secretion and inducible iNOS induction, suggesting that LRRK2 acts upstream of cytoskeleton control as a stress-responsive kinase. These data demonstrate LRRK2 in regulating responses in immune cells of the brain and further implicate microglial involvement in late-onset PD.  相似文献   

9.
Inflammation has been argued to play a primary role in the pathogenesis of Alzheimer's disease by contributing to the development of neuropathology and clinical symptoms. However, the mechanisms underlying these effects remain obscure. Lipopolysaccharide (LPS) activates the innate immune response and triggers gliosis when injected into the central nervous system. In the studies described in the present work, we evaluated the time course of microgliosis after a single intrahippocampal injection of LPS. Mice were injected bilaterally with 4 mug of LPS. Post-injection survival times were 1, 6, and 24 h, as well as 3, 7, 14, and 28 days. Protein and RNA analyses were performed for inflammatory markers. Significant elevations of cluster differentiation marker CD45, glial fibrillary acidic protein (GFAP), scavenger receptor A (SRA), and Fcgamma receptor mRNA were seen after 24 h. Immunohistochemistry revealed a complex pattern of protein expression by microglia, as well as changes in cell morphologies. RNA and protein for Fcgamma receptor and SRA were transiently elevated, peaked at 3 days, and returned to basal levels after 1 week. In contrast, microglia remained significantly activated through the 28-day time point, as determined by CD45 and complement receptor 3 levels. These findings indicate a multivariate response to LPS, and evaluation of microglial phenotypes may lead to a better understanding of neuroinflammatory diseases.  相似文献   

10.
Depression is a risk factor for morbidity and mortality, and immune dysregulation may be partially responsible for this link. Proinflammatory cytokines such as interleukin 6 (IL-6) are reliable predictors of quality of life, morbidity, and many causes of mortality. The current study evaluated relationships between depressive symptoms, as assessed by the CES-D, and stress-induced inflammation. The participants, 138 healthy adults, were evaluated at rest, and after a standardized laboratory speech and mental arithmetic stressor. Compared with individuals with fewer depressive symptoms, those with more depressive symptoms produced more IL-6 in response to the stressor, as well as significantly higher levels of IL-6 both 45 min and 2 h after the stressor. These findings add to our emerging understanding of the complex interactions among stress, depression, and immune dysregulation, and provide one potential pathway to explain relationships between depressive symptoms and disease.  相似文献   

11.
Acute and chronic stressors sensitize or prime the neuroinflammatory response to a subsequent peripheral or central immunologic challenge. However, the neuroimmune process(es) by which stressors prime or sensitize subsequent neuroinflammatory responses remains unclear. Prior evidence suggested that toll-like receptors (TLRs) might be involved in the mediation of primed neuroinflammatory responses, but the role of TLRs during a stressor has never been directly tested. Here, a novel TLR2 and TLR4 antagonist, OxPAPC, was used to probe the contribution of TLRs in the stress sensitization phenomenon. OxPAPC has not previously been administered to the brain, and so its action in blocking TLR2 and TLR4 action in brain was first verified. Administration of OxPAPC into the CNS prior to stress prevented the stress-induced potentiation of hippocampal pro-inflammatory response to a subsequent peripheral LPS challenge occurring 24 h later. In addition, in vivo administration of OxPAPC prior to stress prevented the sensitized pro-inflammatory response from isolated microglia following administration of LPS ex vivo, further implicating microglia as a key neuroimmune substrate that mediates stress-induced sensitized neuroinflammation.  相似文献   

12.
Bassett T  Bach P  Chan HM 《Neurotoxicology》2012,33(2):229-234
Glial cells, including oligodendrocytes, astrocytes and microglia are important to proper central nervous system (CNS) function. Deregulation or changes to CNS populations of astrocytes and microglia in particular are expected to play a role in many neurodegenerative diseases, including Parkinson's disease, amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). Previous studies have reported methylmercury (MeHg) induced changes in glial cell function; however, the effects of MeHg on these cells remains poorly understood. This study aims to examine the effect of MeHg on the secretion of pro-inflammatory cytokines from microglia and astrocytes. The impact of the microglia/astrocyte ratio on cytokine secretion was also examined. Microglia and astrocytes were cultured from the brains of neo-natal BALB/C mice and dosed with MeHg (0-1 μM) and stimulated with PAM(3)CSK(4) (PAM(3)), a toll-like receptor (TLR) ligand. After this, the secretion of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and interleukin-1-beta (IL-1β) was measured by ELISA. MeHg reduced the secretion of IL-6 in a dose dependant manner but did not effect the secretion of TNF-α. No change in IL-1β was observed in any treatments, indicating that PAM(3) cannot induce the secretion of this cytokine from glial cells. Additionally, the ratio of microglia/astrocyte had an effect on the secretion of IL-6 but not TNF-α. These results indicate that MeHg can modify the response of glial cells and the interactions with astrocytes can affect the response of the microglia cells in culture. These results are significant in understanding the potential relationship with MeHg and neurodegenerative diseases and for the interpretation of results of future in vitro studies using monoculture.  相似文献   

13.
Microglia is considered the central nervous system (CNS) resident macrophages that establish an innate immune response against pathogens and toxins. However, the recent studies have shown that microglial gene and protein expression follows a circadian pattern; several immune activation markers and clock genes are expressed rhythmically without the need for an immune stimulus. Furthermore, microglia responds to an immune challenge with different magnitudes depending on the time of the day. This review examines the circadian control of microglia function and the possible physiological implications. For example, we discuss that synaptic prune is performed in the cortex at a certain moment of the day. We also consider the implications of daily microglial function for maintaining biological rhythms like general activity, body temperature, and food intake. We conclude that the developmental stage, brain region, and pathological state are not the only factors to consider for the evaluation of microglial functions; instead, emerging evidence indicates that circadian time as an essential aspect for a better understanding of the role of microglia in CNS physiology.  相似文献   

14.
Aguirre K  Miller S 《Glia》2002,39(2):184-188
Acquired resistance to the CNS pathogen Cryptococcus neoformans is mediated by CD4(+) T lymphocytes primed by exposure to antigen in the context of major histocompatibility class II (MHC II) molecules. In mouse brain, parenchymal and perivascular microglial cells may express interferon-gamma (IFN-gamma)-inducible MHC class II marker and thus interact with CD4(+) T cells. Primed effector T cells are retained in the infected CNS if antigen is encountered in proper MHC context and may deliver signals that potentiate microglia to enhanced fungistasis. Vaccinated C57BL6/J mice resist an ordinarily lethal C. neoformans rechallenge, but identically treated congenic Abeta(o/o) mice (MHC class II-deficient; CD4(+) T-cell-deficient) do not. Nor can Abeta(o/o) mice be adoptively immunized by infusion of lymphocytes from vaccinated C57BL6/J donors, as are severe combined immunodeficient (SCID) mice (MHC class II-intact, lymphocyte-deficient). Chimeric (C57BL/6J:Abeta(o/o)) mice with class II expression likely on perivascular microglia only were, like SCID mice, capable of adoptive immunization against C. neoformans brain infection. To the contrary, chimeric mice with class II expression likely only on parenchymal microglia were not capable of effective adoptive immunization against C. neoformans brain infection. Therefore, in order to mediate resistance to infection, primed CD4(+) T cells must interact with the replenishable perivascular microglial subset that lies in close proximity to cerebral vasculature. Although T cells may supply help in the form of inflammatory cytokines to parenchymal microglia, expression of class II on these cells appears unnecessary for antifungal activity.  相似文献   

15.
Evidence to date suggests that stress-induced exacerbation or relapse of intestinal inflammation in inflammatory bowel disease requires both activation of the autonomic nervous system and the activation of the immune system by the presence of previously encountered luminal antigens. The aim of the present study was to further explore these associations and to determine the role of the autonomic nervous in modulating the intestinal inflammatory response to stress. Rats healed from an initial dinitrobenzene sulfonic acid-induced colitis were given a non-colitic dose of dinitrobenzene sulfonic acid (dissolved in saline) or 0.9% saline intra-rectally and then subjected to restraint stress. Cardiac sympathovagal balance was assessed by power spectral analysis of heart rate variability data collected from telemetric electrocardiogram recordings before, during and post stress. Only rats that were stressed and received dinitrobenzene sulfonic acid showed an inflammatory relapse characterized by significant macroscopic damage and elevated myeloperoxidase activity associated with a significant infiltration of mucosal and submucosal T lymphocytes. No difference in inflammatory markers was observed in animals that received intra-rectal saline and restraint stress. Rats subjected to stress and intra-rectal dinitrobenzene sulfonic acid demonstrated an increase in sympathetic activity with a nearly four fold increase in LF:HF ratio during stress and a significant increase in heart rate. Shortly after cessation of stress, the LF:HF ratio decreased significantly, returning to baseline levels, however the heart rate remained significantly elevated over baseline levels following stress, but decreased to a level that was significantly lower than during stress. The stress/dinitrobenzene sulfonic acid-induced relapses were preventable by pre-treating rats with hexamethonium (a nicotinic cholinergic ganglion blocking agent) or the co-administration of atropine (a muscarinic cholinoceptor antagonist) and bretylium (a noradrenergic ganglion blocking agent), but was not prevented when either atropine or bretylium were administered alone. This study utilizes an established model of chemically induced colitis that when integrated with stress results in relapsing inflammatory bowel disease. Moreover, this study demonstrates that noradrenergic and cholinergic neural pathways mediate the stress response critical for the relapse of colitis.  相似文献   

16.
Glucocorticoids: protectors of the brain during innate immune responses.   总被引:2,自引:0,他引:2  
The innate immune response is a coordinated set of reactions involving cells of myeloid lineage and a network of signaling molecules. Such a response takes place in the CNS during trauma, stroke, spinal cord injury, and neurodegenerative diseases, suggesting that macrophages/microglia are the cells that perpetuate the progressive neuronal damage. However, there is accumulating evidence that these cells and their secreted proinflammatory molecules have more beneficial effects than detrimental consequences for the neuronal elements. Indeed, a timely controlled innate immune response may limit toxicity in swiftly eliminating foreign materials and debris that are known to interfere with recovery and regeneration. Each step of the immune cascade is under the tight control of stimulatory and inhibitory signals. Glucocorticoids (GCs) act as the critical negative feedback on all myeloid cells, including those present within the brain parenchyma. Because too little is like too much, both an inappropriate feedback of GCs on microglia and high circulating GC levels in stressed individuals have been associated with deleterious consequences for the brain. In this review, the authors discuss both sides of the story with a particular emphasis on the neuro-protective role of endogenous GCs during immune challenges and the problems in determining whether GCs can be a good therapy for the treatment of neuropathological conditions.  相似文献   

17.
High glucocorticoid stress-responses are associated with prolonged freezing reactions and decreased active approach and avoidance behavior in animals. The present study was designed to investigate the effects of cortisol responses and trait avoidance on approach-avoidance behavior in humans. Twenty individuals were administered a computerized approach-avoidance (AA)-task before and after stress-induction (Trier Social Stress Test). The AA-task involved a reaction time (RT) task, in which participants made affect congruent and affect incongruent arm movements towards positive and threatening social stimuli. Affect congruent responses involved arm extension (avoidance) in response to angry faces and arm flexion (approach) in response to happy faces. Reversed responses were made in affect incongruent instruction conditions. As expected, participants with high cortisol responses showed significantly decreased RT congruency-effects in a context of social stress. Low trait avoidance was also associated with diminished congruency-effects during stress. However, the latter effect disappeared after controlling for the effects of cortisol. In sum, in agreement with animal research, these data suggest that high cortisol responses are associated with a decrease in active approach-avoidance behavior during stress. These findings may have important implications for the study of freezing and avoidance reactions in patients with anxiety disorders, such as social phobia and post-traumatic stress disorder.  相似文献   

18.
Exposure of phosphatidylserine (PS), an aminophospholipid normally sequestered in the inner leaflet of plasma membrane, is one of the crucial steps in the recognition and ingestion of apoptotic cells by macrophages. The recognition of PS on apoptotic cells by peripheral macrophages is mediated by a phosphatidylserine-specific receptor (PtdSerR), which has recently been cloned. In spite of the important role of apoptosis in the CNS, the process of apoptotic neuron recognition by microglia is poorly understood. Because recent studies suggest that engagement of PS with a not yet characterized microglial receptor is necessary for apoptotic neuron uptake, we investigated the expression of PtdSer-R and its functional role in neonatal rat brain microglial cultures. Semi-quantitative RT-PCR analysis revealed that PtdSerR mRNA was detectable in unstimulated cultures and enhanced in LPS activated microglia. The presence of PS-liposomes strongly reduced the release of pro-inflammatory molecules such as nitric oxide, interleukin-1beta, and tumor necrosis factor-alpha by LPS-activated microglia. At variance, the immunoregulatory cytokines interleukin-10 and transforming growth factor-beta1 were moderately decreased or unaffected. The activity of PS-liposomes was mimicked by the PS head group phospho-L-serine, but not by phosphatidylcholine-containing liposomes. Our data suggest that, as for peripheral macrophages, PS through its receptor can modulate microglial activation toward an anti-inflammatory phenotype.  相似文献   

19.
Microglia, the resident immune cells of the central nervous system, exist in either a “resting” state associated with physiological tissue surveillance or an “activated” state in neuroinflammation. We recently showed that ATP is the primary chemoattractor to tissue damage in vivo and elicits opposite effects on the motility of activated microglia in vitro through activation of adenosine A2A receptors. However, whether systemic inflammation affects microglial responses to tissue damage in vivo remains largely unknown. Using in vivo two‐photon imaging of mice, we show that injection of lipopolysaccharide (LPS) at levels that can produce both clear neuroinflammation and some features of sepsis significantly reduced the rate of microglial response to laser‐induced ablation injury in vivo. Under proinflammatory conditions, microglial processes initially retracted from the ablation site, but subsequently moved toward and engulfed the damaged area. Analyzing the process dynamics in 3D cultures of primary microglia indicated that only A2A, but not A1 or A3 receptors, mediate process retraction in LPS‐activated microglia. The A2A receptor antagonists caffeine and preladenant reduced adenosine‐mediated process retraction in activated microglia in vitro. Finally, administration of preladenant before induction of laser ablation in vivo accelerated the microglial response to injury following systemic inflammation. The regulation of rapid microglial responses to sites of injury by A2A receptors could have implications for their ability to respond to the neuronal death occurring under conditions of neuroinflammation in neurodegenerative disorders. GLIA 2014;62:1345–1360  相似文献   

20.
Pain is powerfully modulated by circuitries within the CNS. Two major types of pain inhibitory systems are commonly believed to exist: opiate (those that are blocked by systemic opiate antagonists and by systemic morphine tolerance) and non-opiate (those that are not). We used intrathecal delivery of mu, delta, and kappa opiate receptor antagonists to examine 3 well-accepted non-opiate stress-induced analgesias. Combined blockade of all 3 classes of opiate receptors antagonized all of the 'non-opiate' analgesias. Further experiments demonstrated that blocking mu and delta or mu and kappa was sufficient to abolish 'non-opiate' analgesias. Combined blockade of kappa and delta receptors was without effect. The clear conclusion is that all endogenous analgesia systems may in fact be opiate at the level of the spinal cord. Phenomena previously thought to be non-opiate appear to involve parallel activation of multiple spinal opiate processes. These findings suggest the need for a fundamental shift in conceptualizations regarding the organization and function of pain modulatory systems in particular, and opiate systems in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号