首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Immortalized cell lines offer significant logistical advantages over primary cells when used for in-vitro studies. Immortalized cells may, however, exhibit important differences relative to their primary cell counterparts. In this study, microarrays were used to make a genome-wide comparison between primary human umbilical vein endothelial cells (HUVECs) and EA.hy926, an immortalized HUVEC cell line, in their baseline properties and in their response to inhibition of the mevalonate pathway with an inhibitor of hydroxy methylglutaryl-coenzyme A reductase (statin). HUVECs and EA.hy926 were incubated with control medium, atorvastatin, mevalonate, or a combination of atorvastatin and mevalonate for 24 h. Gene expression profiles were obtained in duplicates using Affymetrix Human Genome U133A 2.0 arrays (Santa Clara, California, USA). Probe-sets were selected according to the following criteria: a twofold or greater increase/decrease in atorvastatin-treated cells compared with untreated cells; a twofold or greater reversal of the effect of atorvastatin by combined treatment with atorvastatin and mevalonate; no significant change in gene expression in cells treated with mevalonate alone compared with untreated cells. Most genes that were expressed by untreated HUVECs, were also expressed by untreated EA.hy926 cells. EA.hy926 cells, however, constitutively expressed a large number of additional genes, many of which were related to cell cycle control and apoptosis. Atorvastatin induced differential expression (> or = twofold) of 103 genes in HUVECs (10 up, 93 down) and 466 genes in EA.hy926 cells (198 up, 268 down). Applying the above selection criteria, thrombomodulin and tissue plasminogen activator were up-regulated in both cell types, whereas, connective tissue growth factor, thrombospondin-1, and cysteine-rich angiogenic inducer 61 were down-regulated. In conclusion, EA.hy926 cells retain most of the characteristics of endothelial cells under baseline conditions as well as after treatment with atorvastatin. It is necessary, however, to carefully select and validate changes in genes that are the focus of studies when using EA.hy926 cells. While this cell line is highly useful in studies on some genes, including genes encoding molecules involved in regulating thrombohemorrhagic homeostasis, they appear to be less suited for studies focused on other genes, particularly those involved in the regulation of cell proliferation and apoptosis.  相似文献   

3.
Vascular endothelial cells (ECs) modulate the blood fibrinolytic system by secreting tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), and their inhibitor, type-1 plasminogen activator inhibitor (PAI-1). ECs also express t-PA receptors (t-PAR) and u-PA receptors (u-PAR) on their cell surfaces, assembling both enzymes to regulate the cellular fibrinolytic activity. In addition, ECs modulate these factors in response to several stimuli. Fibrin clots on ECs induce the up- and downregulation of t-PA and PAI-1 production, respectively, thus causing an effective lysis of the fibrin clot. Heat shock (43 degrees C) increases the expression of u-PA, t-PA, PAI-1, and u-PAR by which ECs become more fibrinolytic around the cells. Furthermore, because ECs possess t-PAR and u-PAR on their cell surfaces, the binding of t-PA and u-PA is a critical event, which affords ECs the localized and condensed fibrinolytic potential. Therefore, ECs play a central role in antithrombotic activity by regulating the levels of these fibrinolytic factors.  相似文献   

4.
Suzuki Y  Mogami H  Ihara H  Urano T 《Blood》2009,113(2):470-478
We analyzed the secretory dynamics of tissue plasminogen activator (tPA) in EA.hy926 cells, an established vascular endothelial cell (VEC) line producing GFP-tagged tPA, using total internal reflection-fluorescence (TIR-F) microscopy. tPA-GFP was detected in small granules in EA.hy926 cells, the distribution of which was indistinguishable from intrinsically expressed tPA. Its secretory dynamics were unique, with prolonged (> 5 minutes) retention of the tPA-GFP on the cell surface, appearing as fluorescent spots in two-thirds of the exocytosis events. The rapid disappearance (mostly by 250 ms) of a domain-deletion mutant of tPA-GFP possessing only the signal peptide and catalytic domain indicates that the amino-terminal heavy chain of tPA-GFP is essential for binding to the membrane surface. The addition of PAI-1 dose-dependently facilitated the dissociation of membrane-retained tPA and increased the amounts of tPA-PAI-1 high-molecular-weight complexes in the medium. Accordingly, suppression of PAI-1 synthesis in EA.hy926 cells by siRNA prolonged the dissociation of tPA-GFP, whereas a catalytically inactive mutant of tPA-GFP not forming complexes with PAI-1 remained on the membrane even after PAI-1 treatment. Our results provide new insights into the relationship between exocytosed, membrane-retained tPA and PAI-1, which would modulate cell surface-associated fibrinolytic potential.  相似文献   

5.
6.
Confluent cultures of endothelial cells from human umbilical cord were used to study the effect of activated human protein C (APC) on the production of plasminogen activators, plasminogen activator-inhibitor, and factor VIII-related antigen. Addition of APC to the cells in a serum-free medium did not affect the production of tissue-type plasminogen activator (t-PA) or factor VIII-related antigen; under all measured conditions, no urokinase activity was found. However, less plasminogen activator-inhibitor activity accumulated in the conditioned medium in the presence of APC. This decrease was dose dependent and could be prevented by specific anti-protein C antibodies. No decrease was observed with the zymogen protein C or with diisopropylfluorophosphate-inactivated APC. APC also decreased the t-PA inhibitor activity in endothelial cell-conditioned medium in the absence of cells, which suggests that the effect of APC is at least partly due to a direct effect of APC on the plasminogen activator- inhibitor. High concentrations of thrombin-but not of factor Xa or IXa-- had a similar effect on the t-PA inhibitor activity. The effect of APC on the plasminogen activator-inhibitor provides a new mechanism by which APC may enhance fibrinolysis. The data suggest that activation of the coagulation system may lead to a secondary increase of the fibrinolytic activity by changing the balance between plasminogen activator(s) and its (their) fast-acting inhibitor.  相似文献   

7.
Oliver  LJ; Keeton  M; Wilson  EL 《Blood》1989,74(4):1321-1327
The secretion of tissue plasminogen activator (t-PA), urokinase (u-PA) and their inhibitors by the human leukemia cell line K562 was examined. K562 cells normally secrete both t-PA and u-PA in a ratio of 3:1. After addition of 10 or 1 ng/mL phorbol myristate acetate (PMA) to K562 cells, a marked decrease in enzymatic activity is observed in the medium. However, when t-PA antigen rather than activity is measured, an increased amount is found in the medium under these conditions. PMA also induces secretion of the two inhibitors of plasminogen activator: plasminogen activator inhibitor 1 (PAI-1) and plasminogen activator inhibitor 2 (PAI-2). This accounts for the decrease in total enzymatic activity under conditions when production of t-PA antigen is increased. A study of the time course of induction revealed that the synthesis of plasminogen activator occurred before that of its inhibitors. Low concentrations of PMA (0.1 ng/mL) induce t-PA antigen primarily and not the inhibitors. This results in an increase in total enzymatic activity, with 94% of the secreted activity being t-PA. Thus, the secretion of plasminogen activators and their inhibitors can be manipulated in certain leukemic cells by inducers such as PMA.  相似文献   

8.
It has been reported that omental fat tissue is a good source of human microvascular endothelial cells. By characterization we demonstrate that the epitheloid cells isolated from omental tissue are not endothelial cells, but mesothelial cells. They contain abundant cytokeratins 8 and 18, which are absent in endothelial cells, and vimentin. No staining with the endothelial-specific antibodies EN-4 and PAL-E is observed. A faint and diffuse staining of von Willebrand factor (vWF) is seen in mesothelial cells, whereas microvascular endothelial cells from subcutaneous fat display vWF in distinct granular structures. Human peritoneal mesothelium produces plasminogen activator-dependent fibrinolytic activity, which is essential in the resolution of fibrous exudates and may therefore be important in preventing the formation of fibrous peritoneal adhesions. This fibrinolytic activity is plasminogen activator-dependent, but has not been fully characterized. We report here that human omental tissue mesothelial cells in vitro produce large amounts of tissue-type plasminogen activator (t-PA), together with type 1 and 2 plasminogen activator inhibitor (PAI-1 and PAI-2). PAI-1 is predominantly secreted into the culture medium, whereas the major part of PAI-2 is found in the cells. No urokinase-type plasminogen activator is detected. On stimulation with the inflammatory mediator tumor necrosis factor (TNF), at least a threefold decrease in t-PA antigen is observed, together with an increase in both PAI-1 and PAI-2. TNF also induces a marked change in cell shape. Whereas TNF and bacterial lipopolysaccharide (LPS) have similar effects on the production of PA inhibitor by human endothelial cells, LPS has no or only a relatively small effect on the fibrinolytic properties of mesothelial cells. The decreased fibrinolytic activity induced by the cytokine TNF may impair the natural dissolution of fibrin deposits at the peritoneum in the presence of an inflammatory reaction.  相似文献   

9.
We have recently shown that resting human mast cells (MCs) produce tissue-type plasminogen activator (t-PA) without simultaneously expressing plasminogen activator inhibitor 1 (PAI-1). In the present study we have identified the anaphylatoxin rhC5a as a potent inducer of PAI-1 expression in human MCs and basophils. In primary human skin MCs and primary blood basophils, exposure to rhC5a was followed by an increase from undetectable to significant levels of PAI-1. In addition, rhC5a induced a concentration- and time-dependent increase in PAI-1 antigen in the MC line HMC-1 and the basophil cell line KU-812 and increased the expression of PAI-1 mRNA in HMC-1. In conditioned media of HMC-1 treated with rhC5a, active PAI-1 could be detected. A simultaneous loss of t-PA activity in conditioned media from the same cells indicated that rhC5a-induced PAI-1 was capable of inhibiting the enzymatic activity of coproduced t-PA. Correspondingly, the levels of t-PA-PAI-1 complexes increased in rhC5a-treated cells. When HMC-1 cells were incubated with pertussis toxin or anti-C5a receptor antibodies, the effect of rhC5a on PAI-1 production was completely abolished. Treatment of C5a with plasmin resulted in loss of its ability to induce PAI-1 production in MCs. Considering the suggested role for MCs and components of the complement system in the development of cardiovascular diseases, we hypothesize that MCs, by producing t-PA in a resting state and by expressing PAI-1 when activated by C5a, might participate in the modulation of the balance between proteases and protease inhibitors regulating tissue injury and repair in such disease processes.  相似文献   

10.
Endothelin-1 (ET-1) is both a potent vasoconstrictor and mitogenic factor that has been implicated as a cause of the micro- and macrovascular complications of diabetes mellitus. The pathway by which the high-glucose environment of diabetes mediates increased levels of endothelins has not been completely elucidated but appears to involve endothelin-converting enzyme (ECE-1), which converts inactive big ET-1 to active ET-1 peptide. To determine the effect of high glucose concentrations on the expression of ECE-1, hybrid endothelial cells (EA.hy926) and human umbilical vein endothelial cells (HUVEC) were both grown in various glucose concentrations. There was a 2-fold increase in ECE-1 immunoreactivity in the EA.hy926 cell line growing in medium containing 22.2 versus 5.5 mmol/l glucose after 24 h, which rose to greater than 20-fold after 5 days. Similar results were seen with HUVEC. Bradykinin or NG-nitro-L-arginine methyl ester did not change the effect of high glucose on ECE-1 protein expression. High glucose induced a 72 and 41% increase in total protein kinase C (PKC) activity in both EA.hy926 cells and HUVEC, respectively, and a 39, 49 and 109% elevation in PKC beta1, beta2 and delta expression, respectively, in EA.hy926 cells. The increase in ECE-1 expression was inhibited in both cell cultures by GF109203X (5 micromol/l), a general PKC inhibitor, while addition of 10 nmol/l phorbol myristic acid to EA.hy926 cells or HUVEC growing on medium containing 5.5 mmol/l glucose increased ECE-1 expression to a level similar to that of cells conditioned in high glucose. Human ECE-1 protein exists in four different isoforms, termed 1a, 1b, 1c and 1d. Northern blot analysis revealed that only ECE-1c isoform mRNA levels increased. Immunohistochemical staining of EA.hy926 cells grown in high glucose concentrations demonstrated an increase in the ECE-1c isoform, which occurred mainly in the plasma membrane. These results showed that the PKC pathway may play an important role in the glucose-mediated induction of ECE-1 expression. The main isoform to increase in response to high glucose was ECE-1c. This enzyme may be one of the factors contributing to the elevated ET-1 peptide levels observed in diabetes.  相似文献   

11.
We have studied the regulation by glucocorticoids and dibutyryl cAMP of the amounts of urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA) and a Mr approximately 54000 plasminogen activator inhibitor accumulated in serum-free conditioned culture fluid by a human fibrosarcoma, a human glioblastoma and a human melanoma cell line (HT-1080, UCT/gl-1 and Bowes). For the quantitation of u-PA and t-PA, we used sandwich-type ELISA with a combination of polyclonal and monoclonal antibodies. For an estimation of variations in the amount of the inhibitor, we used sodium dodecyl sulphate-polyacrylamide gel electrophoresis followed by Coomassie blue staining of conditioned culture fluid proteins, the inhibitor protein band being identified by its selective removal by passage of the conditioned culture fluids through a column with monoclonal antibodies against the inhibitor. The modulation of the 3 proteins by the hormonal agents varied greatly between the cell lines. The proteins were independently regulated, in the sense that the hormonal agents did not concomitantly change their levels in the direction expected either to increase or decrease total extracellular plasminogen activator activity. In conditioned culture fluids containing both t-PA and inhibitor, the two were present in the medium as a Mr approximately 120 000 complex. In contrast, no u-PA inhibitor complexes were found in conditioned culture fluid from any of the cell lines; this is likely to be due to the occurrence of u-PA in the culture fluid in the one-chain proenzyme form, which, unlike active u-PA, does not react with the inhibitor. These findings illustrate the complexity of the regulation of extracellular plasminogen activator activity, and imply that the presumed functional diversity of u-PA and t-PA may be related to their independent regulation.  相似文献   

12.
A permanent human cell line, EA . hy 926, has been established that expresses at least one highly differentiated function of vascular endothelium, factor VIII-related antigen. This line was derived by fusing human umbilical vein endothelial cells with the permanent human cell line A549. Hybrid cells that survived in selective medium had more chromosomes than either progenitor cell type and included a marker chromosome from the A549 line. Factor VIII-related antigen can be identified intracellularly in the hybrids by immunofluorescence and accumulates in the culture fluid. Expression of factor VIII-related antigen by these hybrid cells has been maintained for more than 100 cumulative population doublings, including more than 50 passages and three cloning steps. This is evidence that EA . hy 926 represents a permanent line.  相似文献   

13.
Increased concentrations of the fast-acting tissue-type plasminogen activator (t-PA) inhibitor attenuate the fibrinolytic activity of pharmacologically administered activators of the fibrinolytic system such as t-PA. Accordingly, it was hypothesized that augmentation of synthesis and elaboration of inhibitor from the liver, leading to increased concentrations of inhibitor in plasma, or from endothelial cells in the vicinity of thrombi undergoing lysis, leading to increased concentrations locally, may contribute to failure of pharmacologically induced thrombolysis or to early reocclusion. Because platelets are rich in transforming growth factor beta and epidermal growth factor-like activity, it was thought that release of growth factors from platelets activated in vivo could mediate increases of the inhibitor in plasma by stimulating its formation in the liver and its local release from endothelial cells in the vicinity of thrombi. If so, fibrinolysis might be rendered more effective by concomitant prevention of platelet growth factor release. Transforming growth factor beta, a major constituent of platelets, increased concentrations of the t-PA inhibitor messenger ribonucleic acid (mRNA) in human hepatoma cells in a specific and dose-dependent manner. A peak effect was seen with 5 ng/ml and a 10-fold increase in 6 hours. Release of inhibitor protein into conditioned media increased as well. Induction of the inhibitor mRNA increase was elicited by exposure as brief as 30 minutes. Cycloheximide, an inhibitor of protein synthesis, was not inhibitory. The mechanisms responsible differed from those seen with epidermal growth factor, shown previously in the laboratory to increase inhibitor mRNA. In addition, the 2 factors were synergistic. Platelet lysates elicited effects simulating those of the purified growth factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
The effect of interleukin-4 (IL-4) on the fibrinolytic system of human microvascular and macrovascular endothelial cells in culture was studied. Only foreskin microvascular endothelial cells (EC) responded to IL-4 treatment with a dose- and time-dependent increase in urokinase- type plasminogen activator (u-PA) (control: 3.0 +/- 0.8 ng/10(5) cells/24 h; 200 U/mL IL-4: 6.7 +/- 0.8 ng/10(5) cells/24 h), whereas human macrovascular EC remained unaffected. A maximum effect was achieved with 200 U/mL IL-4. Little u-PA activity was detected in the conditioned media of human foreskin microvascular EC (HFMEC) treated without and with IL-4 before plasmin treatment (control: 0.03 +/- 0.003 IU/10(5) cells/20 h; 200 U/mL IL-4: 0.09 +/- 0.007 IU/10(5) cells/20 h). These values increased to 0.18 +/- 0.02 IU/10(5) cells/20 h and 0.53 +/- 0.04 IU/10(5) cells/20 h, respectively, after plasmin treatment, indicating that u-PA is released by HFMEC predominantly in its inactive precursor form single-chain u-PA (scu-PA). u-PA activity increased also in the cell lysates of HFMEC up to 2.5-fold after IL-4 treatment. Plasminogen activator inhibitor type-1 (PAI-1) levels produced by HFMEC remained unaffected by IL-4, whereas tissue-type plasminogen activator (t-PA) levels were slightly decreased when HFMEC were treated with IL-4. These findings were also reflected in the specific mRNA levels as determined by Northern blotting. u-PA-specific mRNA increased significantly in HFMEC in the presence of IL-4, whereas t-PA mRNA and PAI-1-specific mRNA in HFMEC and u-PA specific mRNA in human saphenous vein EC (HSVEC) remained unaffected by IL-4 treatment. Our findings suggest a role for IL-4 in the process of angiogenesis, in addition to its known proliferative effect on human microvascular EC, by increasing the fibrinolytic potential of such EC, thereby facilitating extracellular proteolysis and cell migration.  相似文献   

16.
BACKGROUND AND OBJECTIVE: Vascular fibrinolysis, a major natural defense mechanism against thrombosis, is a highly regulated process. The aim of this study was to evaluate the effect of endotoxin, tumor necrosis factor-alpha (TNFalpha) and interleukin-1alpha (IL-1alpha), on the fibrinolytic potential of cultured human umbilical vein endothelial cells (HUVEC). DESIGN AND METHODS: Samples of stimulated conditioned media were collected over a period of 24 hours to determine: plasminogen activator (PA) and plasminogen activator inhibitor (PAI) activity, PAI-1 mRNA, tissue-type plasminogen activator (t-PA) antigen and urokinase-type plasminogen activator (u-PA) antigen. RESULTS: Similar changes were observed after endotoxin and cytokine stimulation: there was a significant increase of PAI activity (p<0.01), starting at 6 hours, which remained 24 hours after stimulation. PAI-1 mRNA also showed an important rise with these agents, although cytokines induced an earlier and more intense inhibitor response (up to 6-fold increase). PA activity increased significantly at 6 hours (p<0.01) to drop at 24 hours and was mainly related to the presence of u-PA. INTERPRETATION AND CONCLUSIONS: We conclude that endotoxin,+TNFalpha and IL-1alpha induce profound alterations in the fibrinolytic potential of HUVEC, characterized by an initial rise of activators (u-PA) followed by a strong increase of PAI-1. These changes may be of pathophysiologic significance for thrombosis and inflammatory reactions.  相似文献   

17.
Quantitative abnormalities of fibrinolytic system factors (tissue plasminogen activator (t-PA), plasminogen activator inhibitor (PA-inhibitor) are often found in the patients exhibiting an idiopathic thromboembolic pathology. Exploration of fibrinolytic system is performed by taking blood samples prior and after stimulation (after venous occlusion or DDAVP injection). Patients can be "good responders" (that is presenting with an increase of fibrinolytic activity after stimulation) or "bad responders". Among these latter (that is 30 p. 100 of cases), there are two groups: patients exhibiting an increase of PA inhibitor level, this concealing fibrinolytic role of t-PA released by stimulation (20 p. 100 of cases), patients failing to present any t-PA release through endothelial cells stimulation (10 p. 100 of cases). Furthermore, an hypofibrinolysis was demonstrated a long time ago, in certain thrombogenic conditions (post-operative period, obesity, elderly patients). Hypofibrinolysis was recently demonstrated, according to such conditions, as liable to an increase in the PA inhibitor levels. As pathogenic role of hypofibrinolysis is then demonstrated, therapeutic studies reducing the PA inhibitor level or increasing the t-PA rate produced and released by endothelial cells are to be developed.  相似文献   

18.
The extrinsic fibrinolytic system and its response to cigarette smoking was studied in five healthy male smokers 35-45 years old. Tissue plasminogen activator (t-PA) release in response to venous occlusion was intact both at 8:00 A.M. and 3:00 P.M. Acutely smoking two cigarettes neither stimulated fibrinolysis nor changed levels of t-PA or plasminogen activator inhibitors. Functional plasminogen activator inhibitor (PA-I) levels and euglobulin lysis times were higher in the smoking group than in a control group matched for age, sex, and body mass. Antigenic levels of PA-I 1, the PA-I derived from vascular endothelial cells and platelets, were similar in both groups. While smoking did not acutely alter fibrinolysis in chronic smokers, these individuals had a high frequency of abnormal fibrinolysis characterized by high levels of PA-I activity. This abnormality is due to either high specific activity of PA-I 1 or to the presence of other antigenically distinct plasminogen activator inhibitors. Abnormal fibrinolysis may be one mechanism contributing to the thrombotic diathesis of cigarette smokers.  相似文献   

19.
We investigated the effects of hemodynamic force on fibrinolytic activity of cultured human umbilical vein endothelial cells stimulated by cytokines, using a modified cone-plate viscometer in which well- controlled and -defined shear forces were generated. Treatment of the cells with interleukin (IL)-beta or tumor necrosis factor alpha (TNFalpha) under static conditions had no effect on tissue plasminogen activator (t-PA) secretion, while release of plasminogen activator inhibitor 1 (PAI-1) increased. When cells were exposed to increasing shear stress up to 24 dynes/cm2, levels of t-PA and t-PA/PAI-1 complex significantly increased relative to shear stress, while total PAI-1 and active PAI-1 secretion decreased gradually. In the presence of IL-1beta or TNFalpha, the increase in production of t-PA and the t-PA/PAI-1 complex was further augmented. Dot blot hybridization analysis of cultured cells in similar experimental conditions using t-PA and PAI-1 cDNA probes revealed no t-PA mRNA in 3 microg total RNA from static endothelial cells under resting or cytokine-stimulated conditions, but abundant t-PA mRNA was detected in cells subjected to a shear force of 18 dynes/cm2, and the increase was further augmented by addition of cytokines. In contrast, PAI-1 mRNA was detected in resting and cytokine- stimulated, nonsheared endothelial cells, but levels decreased after exposure to shear stress, even in the presence of cytokines. These results indicate a role for hemodynamic forces in regulating fibrinolytic activity with or without cytokine stimulation.  相似文献   

20.
Endocardial endothelial cells (EECs), when compared with endothelial cells of arteries and veins, possess higher resistance to apoptosis-inducing anticancer agents. The mechanism of this resistance property is unknown. We have investigated the molecular mechanism, which contributes to increased cell survival capacity in EECs. We explored whether the resistance to apoptosis is associated with the cellular expression of ATP-binding cassette transporters such as P-glycoprotein, MRP-1, and ABCG2. We used primary and immortalized porcine endocardial endothelial cells (PEECs and hTERT PEECs) and compared the results with that in porcine aortic endothelial cells (PAECs), left atrioventricular valve endothelial cells (PVECs), and human umbilical vein endothelial cell line (EA.hy926). FACS and immunoblot analysis revealed a significantly higher expression of ABCG2 in PEECs and hTERT PEECs compared to PAECs, PVECs, and EA.hy926. Using apoptosis-inducing anticancer agents such as doxorubicin and camptothecin, through chromatin condensation assay and immunoblot analysis, we demonstrated a higher resistance to apoptosis in EECs compared to PAECs, PVECs, and EA.hy926. Interestingly, resistance in EECs reversed in presence of ABCG2 specific inhibitor, fumitremorgin C. Our observations suggest that an inherently high expression of ABCG2 in EECs protects them against apoptosis in presence of anticancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号