共查询到20条相似文献,搜索用时 0 毫秒
1.
Ahmadi S Kotalla C Gühring H Takeshima H Pahl A Zeilhofer HU 《Molecular pharmacology》2001,59(3):612-618
Nociceptin/orphanin FQ (N/OFQ) and nocistatin (NST) are two neuropeptides derived from the same precursor protein that exhibit opposing effects on spinal neurotransmission and nociception. Here, we have used whole-cell, patch-clamp recordings from visually identified neurons in spinal cord dorsal horn slices of genetically modified mice to investigate the role of the N/OFQ receptor (N/OFQ-R) in the modulatory action of both peptides on excitatory glutamatergic and inhibitory glycinergic and gamma-aminobutyric acid (GABA)-ergic synaptic transmission. In wild-type mice, N/OFQ selectively suppressed excitatory transmission in a concentration-dependent manner but left inhibitory synaptic transmission unaffected. In contrast, NST reduced only inhibitory but not alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated excitatory synaptic transmission. N/OFQ-mediated inhibition of excitatory transmission was completely absent in N/OFQ-R receptor-deficient (N/OFQ-R(-/-)) mice and significantly reduced in heterozygous (N/OFQ-R(+/-)) mice, whereas the action of NST on inhibitory neurotransmission was completely retained. To test for the relevance of these results for spinal nociception, we investigated the effects of intrathecally injected N/OFQ in the mouse formalin test, an animal model of tonic pain. N/OFQ (3 nmol/mouse) induced significant antinociception in wild-type mice, but had no antinociceptive effects in N/OFQ-R(-/-) mice. These results indicate that the inhibitory action of N/OFQ on excitatory glutamatergic synaptic transmission and its spinal antinociceptive action are mediated via the N/OFQ receptor, whereas the action of NST is independent of this receptor. 相似文献
2.
Röver S Adam G Cesura AM Galley G Jenck F Monsma FJ Wichmann J Dautzenberg FM 《Journal of medicinal chemistry》2000,43(7):1329-1338
The discovery of 8-(5,8-dichloro-1,2,3,4-tetrahydro-naphthalen-2-yl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one, 1a, as a high-affinity ligand for the human ORL1 (orphanin FQ/nociceptin) receptor led to the synthesis of a series of optimized ligands. These compounds exhibit high affinity for the human ORL1 receptor, exhibit moderate to good selectivity versus opioid receptors, and behave as full agonists in biochemical assays. In this paper we present the synthesis, structure-activity relationship (SAR), and biochemical characterization of substituted 1-phenyl-1,3,8-triazaspiro[4.5]decan-4-ones culminating in the discovery of 8-(5-methyl-1,2,3,4-tetrahydro-naphthalen-1-yl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one, 1p, and 8-acenaphten-1-yl-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one 1q, two high-affinity, potent ORL1 receptor agonists with good to moderate selectivity versus the other opioid receptors. 相似文献
3.
The antinociceptive potency of nociceptin/orphanin FQ, an opioid-like orphan receptor agonist, was examined using the tail-flick test and the formalin-induced nociception test in diabetic mice. Nociceptin/orphanin FQ, at doses of 0.1 to 10 nmol, intrathecal (i.t.), produced a marked and dose-dependent inhibition of the tail-flick response in both non-diabetic and diabetic mice. The antinociceptive effect of nociceptin/orphanin FQ in the tail-flick test in diabetic mice was greater than that in non-diabetic mice. The antinociceptive effect of nociceptin/orphanin FQ was not antagonized by pretreatment with either beta-funaltrexamine, a selective mu-opioid receptor antagonist, naltrindole, a selective delta-opioid receptor antagonist, or nor-binaltorphimine, a selective kappa-opioid receptor antagonist. The antinociceptive effects of nociceptin/orphanin FQ in diabetic, but not in non-diabetic mice, were abolished when mice were pretreated with capsaicin i.t. 24 h before testing. In the formalin test, nociceptin/orphanin FQ also produced a marked and dose-dependent antinociceptive effect on the first-phase response, but not the second phase-response, in both diabetic and non-diabetic mice. Furthermore, nociceptin/orphanin FQ significantly and dose-dependently reduced the flinching responses to i.t.-administered substance P in diabetic mice, but not in non-diabetic mice. The results of the present experiments clearly indicate that the antinociceptive potency of nociceptin/orphanin FQ is significantly greater in diabetic mice than in non-diabetic mice. Furthermore, the results of this study suggest that the reduction of substance P-mediated nociceptive transmission in the spinal cord may be responsible for the antinociceptive effect of nociceptin/orphanin FQ. 相似文献
4.
Tonic inhibition by orphanin FQ/nociceptin of noradrenaline neurotransmission in the amygdala 总被引:3,自引:0,他引:3
Kawahara Y Hesselink MB van Scharrenburg G Westerink BH 《European journal of pharmacology》2004,485(1-3):197-200
The present microdialysis study investigated whether nociceptin/orphanin FQ exerts a tonic inhibition of the release of noradrenaline in the basolateral nucleus of the amygdala in awake rats. The non-peptide competitive nociceptin/orphanin FQ (N/OFQ) peptide receptor antagonist J-113397 (20 mg/kg i.p.) induced an increase in the release of noradrenaline to about 150-200%. The increase was strongly suppressed by local infusion of an endogenous N/OFQ peptide receptor agonist, nociceptin/orphanin FQ (1 microM) via retrograde microdialysis, into the basolateral nucleus of the amygdala. Local infusion of nociceptin/orphanin FQ (1 microM) itself reduced noradrenaline release in the basolateral nucleus of the amygdala to about 70% of basal levels. These results indicate that a large part of basal release of noradrenaline in the basolateral nucleus of the amygdala is under tonic inhibitory control by endogenous nociceptin/orphanin FQ through the N/OFQ peptide receptors localized within the basolateral nucleus of the amygdala. 相似文献
5.
6.
Ozaki S Kawamoto H Itoh Y Miyaji M Iwasawa Y Ohta H 《European journal of pharmacology》2000,387(3):R17-R18
We discovered a potent nociceptin/orphanin FQ receptor (ORL1) receptor antagonist, J-113397 (1-[(3R, 4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1, 3-dihydro-2H-benzimidazol-2-one). J-113397 inhibited [125I][Tyr(14)]nociceptin binding to Chinese hamster ovary (CHO) cells expressing ORL1 receptor in a dose-dependent manner (IC(50); 2. 3 nM), but showed 600-fold or less affinity for mu-, delta- and kappa-opioid receptors. Nociceptin/orphanin FQ-induced suppression of cyclic AMP accumulation elicited by forskolin was completely inhibited by J-113397 with an IC(50) value of 26 nM. These results indicate that J-113397 is a potent and selective nonpeptidyl antagonist of the ORL1 receptor. 相似文献
7.
Sandra Corrado Claudia Sorbi Annalisa Tait Umberto M. Battisti Valeria Camarda Davide Malfacini Girolamo Calò Livio Brasili 《Medicinal chemistry research》2014,23(11):4642-4656
A series of N-substituted analogs based upon the spiropiperidine core of the lead compound Spiroxatrine was synthesized. In particular, the new compounds were obtained by replacing the benzodioxane moiety of the Spiroxatrine with several 2-substituted 1,3-dioxolanes. Thus the designed derivatives were synthesized and evaluated as possible NOP receptor ligands. As a conclusion of these studies, the new triazaspirodecanone derivatives showed unique and significant SAR as NOP receptor agonists. In particular, the present study demonstrated that 1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one portion together with appropriate 1,3-dioxolane substituents could lead to a new promising class of NOP receptor ligands. 相似文献
8.
Many studies point toward the nociceptin/orphanin FQ (N/OFQ) and the N/OFQ peptide receptor (NOP) as targets for the development of innovative drugs for treating affective disorders. It has been reported that the activation of NOP receptors produces anxiolytic-like effects in rodents in a large series of behavioral assays, i.e., elevated plus maze, light-dark aversion, operant conflict, fear-potentiated startle, pup ultrasonic vocalizations, and hole board tests. In contrast, the blockade of N/OFQ signaling obtained with NOP-selective antagonists promotes antidepressant-like effects in the forced swimming and tail suspension tests. In these assays, N/OFQ is inactive per se, but reverses the antidepressant-like effects of NOP antagonists. NOP receptor knockout mice show an antidepressant-like phenotype, and NOP antagonists are inactive in these animals. Thus, the activation of the NOP receptor seems to evoke anxiolytic-like effects while its blockade antidepressant-like effects. This appears to be a rather unique behavioral profile since the activation or the blockade of a given neuropeptide receptor produces, in most of the cases, both antidepressant- and anxiolytic-like effects. This particular behavioral profile, the possible mechanisms of action, and the therapeutic potential of NOP receptor ligands for the treatment of depression and anxiety disorders are discussed in this review article. 相似文献
9.
Kazuto Sakoori 《Neuropharmacology》2009,56(5):896-256
The opioid peptide nociceptin (orphanin FQ) has been implicated in reward, reinforcement and addiction. The current study sought evidence of a role of endogenous nociceptin in nicotine responses by studying nociceptin receptor (NOP) knockout mice. The results were: (1) NOP receptor knockout mice showed enhanced anxiety-like behavior on an elevated plus maze. Whereas nicotine (0.05-0.5 mg/kg) tended to be anxiogenic in wild-type mice, NOP receptor KO mice were resistant to this effect, though interpretation was confounded by their stronger anxiety-like behavior. (2) When presented increasing nicotine concentrations (3-50 μg/ml) in a bottle choice drinking paradigm, there were no genotype-dependent differences in nicotine preference. However, NOP receptor knockout mice consumed more 3 μg/ml nicotine solution when considered in absolute terms. (3) NOP receptor knockout mice showed stronger hypothermic responses to nicotine (1 or 2 mg/kg) administration. (4) There was modest evidence that NOP receptor KO mice showed attenuated behavioral sensitization to a low dose of nicotine (0.05 mg/kg) during repeated daily treatment. (5) NOP receptor knockout mice more rapidly tolerated the sedative effect of nicotine (1 mg/kg), due partially to slightly lower locomotion on first treatment. (6) NOP receptor knockout mice, unlike wild-type mice, showed a significant mecamylamine (2.5 mg/kg) induced conditioned place aversion to nicotine (24 mg/kg/day) withdrawal. These results show that mice lacking the influence of endogenous N/OFQ mice are hypersensitive to nicotine in most measures, showing a role of endogenous nociceptin in modulating or mediating the acute effects of nicotine, and possibly nicotine addiction. 相似文献
10.
Hashimoto Y Calo' G Guerrini R Smith G Lambert DG 《European journal of pharmacology》2002,442(1-2):17-22
Since the therapeutic efficacy of Li+ in the treatment of mood disorder is observed only after chronic administration, we examined whether long-term Li+ treatment with a therapeutic concentration affected the elevation of intracellular-free Ca2+ concentration ([Ca2+]i) induced by carbachol, a muscarinic receptor agonist, in 1321N1 human astrocytoma cells. Carbachol caused [Ca2+]i elevation through phosphoinositide hydrolysis in a concentration-dependent manner. Treatment of the cells with phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, for 2 min resulted in a reduction of the carbachol-induced [Ca2+]i elevation. However, PMA did not reduce the carbachol-induced [Ca2+]i elevation in cells treated with PMA for 48 h, reflecting the down-regulation of protein kinase C. Although Li+ at a therapeutic concentration (1 mM) did not affect the carbachol-induced [Ca2+]i elevation in normal cells, it potently inhibited the [Ca2+]i elevation in protein kinase C down-regulated cells. This inhibitory action of Li+ was observed in a concentration- and time-dependent manner. When protein kinase C activity was directly determined, Li+ treatment did not restore protein kinase C activity in protein kinase C down-regulated cells. [3H]Quinuclidinyl benzylate, a muscarinic receptor ligand, bound to membranes derived from normal and protein kinase C down-regulated cells with a similar Kd and Bmax, and Li+ did not affect these parameters of [3H]quinuclidinyl benzylate binding. These results indicated that Li+ at a therapeutic concentration reduced the muscarinic receptor-mediated increased in [Ca2+]i under the protein kinase C-deficient condition without affecting muscarinic receptor or protein kinase C activity. 相似文献
11.
The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family 总被引:21,自引:0,他引:21
The isolation of an opioid receptor-related clone soon led to the isolation and characterization of a new neuropeptide, termed orphanin FQ or nociceptin (OFQ/N). This heptadecapeptide binds to the NOP(1) (previously termed ORL1) receptor with exceedingly high affinity, but does not interact directly with classical opioid receptors. Functionally, the actions of OFQ/N are diverse and intriguing. Most work has focused upon pain mechanisms, where OFQ/N has potent anti-analgesic actions supraspinally and analgesic actions spinally. Other OFQ/N activities are less clear. The diversity of responses might reflect NOP(1) receptor heterogeneity, but this remains to be established. The actions of this neurochemical system may also be uniquely dependent on contextual factors, both genetic and environmental. This review will address the molecular biology and behavioral pharmacology of OFQ/N and its receptor. 相似文献
12.
Hashiba E Harrison C Galo' G Guerrini R Rowbotham DJ Smith G Lambert DG 《Naunyn-Schmiedeberg's archives of pharmacology》2001,363(1):28-33
Studies of nociceptin/orphanin FQ (NC) have been hampered by the paucity of available ligands with activity at the nociceptin receptor (NCR). In this study we have compared the agonist profile of NC and a novel NCR agonist, Ro65-6570, in a series of radioligand binding studies and effects on forskolin-stimulated cAMP formation in Chinese hamster ovary (CHO) cells expressing the recombinant human NCR (CHOhNCR). In addition, we report the effects of three antagonists, [Nphe1]NC(1-13)NH2, J-113397 and III-BTD, on these responses. In radioligand binding studies Ro65-6570, [Nphe1]NC(1-13)NH2, J-113397 and III-BTD displaced [3H]NC with similar pKi values (8.4-8.8). This compares with a pK(D) of 10.2 for NC in a direct saturation experiment. [Nphe1]NC(1-13)NH2 and J-113397 showed at least 100-fold selectivity over classical opioid receptors. Both NC and Ro65-6570 produced a concentration-dependent inhibition of cAMP formation with pEC50 values of 9.56+/-0.06 and 8.68+/-0.04, respectively. Maximum inhibition achieved was 100%. [Nphe1]NC(1-13)NH2, J-113397 and III-BTD produced a parallel rightward shift in the concentration-response curves to both NC and Ro65-6570 with pK(B) values of approximately 6.5, approximately 7.5 and approximately 7.7, respectively. Importantly, all three antagonists were devoid of residual agonist activity. Collectively, these data indicate the value of Ro65-6570, [Nphe1]NC(1-13)NH2, J-113397 and III-BTD in studies of the physiological role played by NC. However, due to the relatively poor selectivity of Ro65-6570 and III-BTD caution should be exercised when using tissues that co-express micro-opioid receptors. 相似文献
13.
Orphanin FQ/nociceptin (OFQ/N) is a recently identified neuropeptide with high affinity for the orphan opioid receptor. OFQ/N blocked morphine analgesia in mice in a dose-dependent manner, as well as the analgesic actions of [D-Pen2, D-Pen5]enkephalin (DPDPE), morphine-6 beta-glucuronide, trans-3,4-dichloro-N-[2-(1-pyrrolindinyl)-cyclohexyl]-benzeneac eta mide, methane sulfonate hydrate (U50,488H) and naloxone benzoylhydrazone. These actions are anti-analgesic, because OFQ/N also blocked clonidine analgesia and OFQ/N was inactive against the inhibition of gastrointestinal transit by morphine. Although OFQ/N was quite potent in these paradigms, two truncated forms, OFQ/N(1-11) and OFQ/N(1-7), were inactive. An antisense oligodeoxynucleotide targeting the first coding exon of KOR-3, the mouse homolog of the orphan opioid receptor, effectively prevented the anti-opioid actions of OFQ/N, confirming the importance of the orphan opioid receptor in this action. 相似文献
14.
Lambert DG 《Nature reviews. Drug discovery》2008,7(8):694-710
Identification of the enigmatic nociceptin/orphanin FQ peptide (N/OFQ) in 1995 represented the first successful use of reverse pharmacology and led to deorphanization of the N/OFQ receptor (NOP). Subsequently, the N/OFQ-NOP system has been implicated in a wide range of biological functions, including pain, drug abuse, cardiovascular control and immunity. Although this could be considered a hurdle for the development of pharmaceuticals selective for a specific disease indication, NOP represents a viable drug target. This article describes potential clinical indications and highlights the current status of the very limited number of clinical trials. 相似文献
15.
Pharmacological profile of nociceptin/orphanin FQ receptors 总被引:2,自引:0,他引:2
Calo' G Rizzi A Bigoni R Guerrini R Salvadori S Regoli D 《Clinical and experimental pharmacology & physiology》2002,29(3):223-228
1. Nociceptin/orphanin FQ (NC) and its receptor (OP4) represent a novel peptide/receptor system pharmacologically distinct from classical opioid systems. 2. Via OP4 receptor activation, NC regulates several biological functions, both at peripheral and central levels; therefore, the OP4 receptor may be viewed as a novel target for drug development. However, the pharmacology of this receptor is still in its infancy, with few molecules interacting selectively with this receptor. 3. In the present article, we review the findings of studies that have investigated the pharmacological profile of ligands selective for the OP4 receptor, these being two antagonists, the peptide [Nphe1]NC(1-13)NH2 and the non-peptide J-113397, and two agonists, the peptide [Arg14,Lys15]NC, and the non- peptide Ro 64-6198. 4. The results of these studies indicate that agents that selectively activate or block the OP4 receptor may represent new potential drugs for the treatment of human diseases. 相似文献
16.
17.
Uchiyama H Yamaguchi T Toda A Hiranita T Watanabe S Eyanagi R 《European journal of pharmacology》2008,590(1-3):185-189
We investigated the mechanism underlying the anxiolytic actions of the neuropeptide nociceptin/orphanin FQ (N/OFQ) with an elevated plus-maze test. In mice, intracerebroventricular (i.c.v.) infusions of N/OFQ (0.1 and 0.32 nmol) led to an increase in time spent in the open arms (anxiolytic-like effects). A non-peptidyl N/OFQ receptor (NOP) antagonist, J-113397(1-{(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl}-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one), (1.0 and 3.2 mg/kg, s.c.) blocked the increase induced by N/OFQ. On the other hand, a benzodiazepine receptor antagonist, flumazenil, (10 mg/kg, i.p.) and a GABAA receptor antagonist, (+)-bicuculline, (5.6 mg/kg, i.p.) also inhibited the increase induced by N/OFQ. In rats, microinfusions of N/OFQ (10 and 32 pmol) into the amygdala led to an increase in time spent in the open arms. However, intracranial infusions of N/OFQ (10-100 pmol) into the dorsal hippocampus did not affect the time spent in the open arms. These findings suggest that the anxiolytic-like effects of N/OFQ may be related to the GABA/benzodiazepine system in the amygdala. 相似文献
18.
Gündüz O Rizzi A Baldisserotto A Guerrini R Spagnolo B Gavioli EC Kocsis L Magyar A Benyhe S Borsodi A Calò G 《European journal of pharmacology》2006,539(1-2):39-48
It was recently reported that the hexapeptide Ac-RYYRIK-ol binds with high affinity nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptors and competitively antagonizes N/OFQ actions in the mouse vas deferens assay. Here we further describe the in vitro and in vivo pharmacological features of this NOP receptor ligand. In mouse brain homogenate the degradation half life of Ac-RYYRIK-ol (2.48 min) was significantly higher than that of the parent compound Ac-RYYRIK-NH2 (1.20 min). In the electrically stimulated mouse vas deferens, Ac-RYYRIK-ol (10-1000 nM) competitively antagonized the inhibitory effect of N/OFQ (pA2=8.46), while in the isolated mouse colon the hexapeptide mimicked N/OFQ contractile effects thus behaving as a NOP receptor agonist (pEC50=9.09). This latter effect was no longer evident in colon tissues taken from mice knock out for the NOP receptor gene (NOP-/-). In vivo in mice, similarly to N/OFQ, Ac-RYYRIK-ol (dose range 0.001-1 nmol) produced: i) pronociceptive effects after intracerebroventricular (i.c.v.) administration and antinociceptive actions when given intrathecally (i.t.) in the tail withdrawal assay; ii) inhibition of locomotor activity and iii) stimulation of food intake after supraspinal administration. Finally, in the forced swimming test, Ac-RYYRIK-ol was inactive per se, but reversed the antidepressant-like effects elicited by the NOP receptor selective antagonist UFP-101 ([Nphe(1),Arg(14),Lys(15)]N/OFQ-NH2). Thus, in all these in vivo assays Ac-RYYRIK-ol mimicked the actions of N/OFQ showing however higher potency. In conclusion, Ac-RYYRIK-ol displayed a complex pharmacological profile which is likely due to the low efficacy agonist nature of this novel ligand of the NOP receptor. The high potency, selectivity of action, and in vivo effectiveness make Ac-RYYRIK-ol a useful pharmacological tool for future studies in the field of N/OFQ and its NOP receptor. 相似文献
19.
Calo G Guerrini R Rizzi A Salvadori S Burmeister M Kapusta DR Lambert DG Regoli D 《CNS drug reviews》2005,11(2):97-112
Nociceptin/orphanin FQ modulates various biological functions at central and peripheral levels by selectively activating a G-protein coupled receptor named N/OFQ peptide (NOP) receptor. For extending our knowledge on the biological roles of the N/OFQ-NOP receptor system the identification of selective NOP ligands, especially antagonists, is mandatory. [Nphe1, Arg14, Lys15] N/OFQ-NH2 (UFP-101) is a novel NOP ligand that was designed by combining, in the same molecule, the [Nphe1] chemical modification which eliminates efficacy and the [Arg14, Lys15] substitution which increases ligand potency and duration of action in vivo. In the present article, we summarize the pharmacological features of UFP-101 as determined in a series of in vitro and in vivo assays. Moreover, some biological actions and possible therapeutic indications of NOP ligands are discussed on the basis of results obtained with UFP-101. Data obtained with this compound were compared with those generated using other NOP antagonists, especially J-113397 and [Nphe1]N/OFQ(1-13)-NH2, receptor or peptide knockout mice and other pharmacological tools useful for blocking N/OFQ - NOP receptor signaling. The analysis of the available data demonstrates that UFP-101 is a useful pharmacological tool for the investigation of the central and peripheral biological functions regulated by the N/OFQ-NOP receptor system and for defining the therapeutic potential of NOP receptor ligands. 相似文献
20.
Guerrini R Caló G Lambert DG Carrá G Arduin M Barnes TA McDonald J Rizzi D Trapella C Marzola E Rowbotham DJ Regoli D Salvadori S 《Journal of medicinal chemistry》2005,48(5):1421-1427
Previous structure-activity studies on nociceptin/orphanin FQ (N/OFQ) identified [Phe(1)Psi(CH(2)NH)Gly(2)]N/OFQ(1-13)-NH(2) and [Nphe(1)]N/OFQ(1-13)-NH(2) as a N/OFQ peptide receptor (NOP) partial agonist and pure antagonist, respectively. The addition of fluorine to the Phe(4) or the insertion of a further pair of basic amino acids Arg(14)-Lys(15) generate potent agonists. On the basis of these findings, we combined in the N/OFQ-NH(2) template the chemical modifications Arg(14)-Lys(15) and (pF)Phe(4) that increase the agonist potency with those conferring partial agonist (Phe(1)Psi(CH(2)NH)Gly(2)) or pure antagonist (Nphe(1)) properties. Twelve peptides were synthesized and pharmacologically evaluated in Chinese hamster ovary cells expressing the human recombinant NOP and in electrically stimulated mouse vas deferens and guinea pig ileum assays. All peptides behaved as NOP ligands; the chemical modifications Arg(14)-Lys(15) and (pF)Phe(4) increased ligand affinity/potency. Peptides with the normal Phe(1)-Gly(2) peptide bond behaved as full agonists, and those with the Phe(1)Psi(CH(2)NH)Gly(2) modification behaved as partial agonists, while those with the Nphe(1) modification behaved as partial agonists or pure antagonists depending on the presence or absence of the (pF)Phe(4) modification, respectively. The full agonist [(pF)Phe(4),Arg(14),Lys(15)]N/OFQ-NH(2), the partial agonist [Phe(1)Psi(CH(2)NH)Gly(2),(pF)Phe(4),Arg(14),Lys(15)]N/OFQ-NH(2), and the pure antagonist [Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2) represent the most potent peptide ligands for NOP. 相似文献