首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Various effects of chlorpheniramine (CPA), diphenhydramine (DIPH), tripelennamine (TRIP), and pyrilamine (PYRI) on fenfluramine (FEN)-induced depletion of serotonin in the brain of rats were observed to be dependent on body temperature. Levels of 5-HT and 5-HIAA in the frontal cortex, hippocampus, and striatum of rats treated with FEN (10 mg/kg, once or twice daily x 4 days) decreased to approximately 30% (P < 0.01) that of controls with no significant changes after CPA, DIPH, TRIP, and PYRI. Treatment with FEN plus CPA (5, 10, 20 mg/kg) and FEN plus DIPH (20 mg/kg), but not FEN plus TRIP (20 mg/kg) and FEN plus PYRI (20 mg/kg), increased brain serotonin levels 2- to 3-fold more than those treated with FEN plus saline. Treatment with FEN plus CPA and FEN plus DIPH, but not FEN plus TRIP and FEN plus PYRI, decreased rectal temperature with no significant change after FEN. The antihistamines alone decreased temperature at a 1-hour period and enhanced FEN-induced reduction in body weight. Possible mechanisms of the different effects of antihistamines on FEN-induced depletion of serotonin are discussed.  相似文献   

2.
The non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 blocks the ability of D-methamphetamine (MA) to deplete striatal dopamine (DA). We now report that MK-801 attenuates decreases in serotonin (5-HT) concentration induced by MA and two other amphetamine analogues, 3,4-methylenedioxymethamphetamine (MDMA) and p-chloroamphetamine (PCA). Rats were injected with saline (1.0 ml/kg) or MK-801 (0.5, 1.0 or 2.5 mg/kg) followed by either saline (1.0 mg/kg), MA (4, 2 or 1 injection(s); 10.0, 20.0 or 40.0 mg/kg), MDMA (20.0 or 40.0 mg/kg) or PCA (5.0 or 10.0 mg/kg). In some experiments, two injections of MK-801 or saline were used. Seventy-two hours after the last injection rats were sacrificed and concentrations of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) and DA were determined in hippocampus and striatum. MA caused a depletion of 5-HT to 33% of control in hippocampus and to 50% of control in striatum after the 4 x 10.0 mg/kg dose regimen. When MK-801 (2.5 mg/kg) was co-administered with MA, concentrations of 5-HT did not differ from control levels in either brain region. MDMA depleted 5-HT to approximately 58% of control in hippocampus and 66% of control in striatum at the 40 mg/kg dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Long-term serotonin (5-HT) neuronal loss is currently a major cause of concern associated with recreational use of the substituted amphetamine 3,4 methylenedioxymethamphetamine (MDMA; "Ecstasy"). Such loss may be problematic considering that psychiatric disorders such as depression and anxiety and responses to first line treatments for these disorders are associated with 5-HT. In this study the effects of prior exposure to MDMA on behavioural and central neurochemical changes induced by the serotonin (5-HT) re-uptake inhibitor and antidepressant fluoxetine were examined in rats. Animals were administered MDMA (10 mg/kg. i.p.) four times daily for two consecutive days. One week later the animals were subjected to treatment with fluoxetine (10 mg/kg, i.p.). Fluoxetine treatment groups received either acute (saline injections for 20 days followed by 3 fluoxetine treatments over 24 h) or chronic (once daily fluoxetine for 21 days) drug administration. Prior exposure to MDMA resulted in an attenuation of fluoxetine-induced swimming behaviour in the modified forced swimming test (FST); a behavioural test of antidepressant action. In parallel MDMA treatment resulted in significant regional depletions of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) accompanied by a reduction in cortical [3H] paroxetine binding to nerve terminal 5-HT transporters. MDMA-induced 5-HT loss was enhanced in animals following chronic fluoxetine administration. Elimination of fluoxetine and its metabolite norfluoxetine from the brain abolished this interaction between MDMA and fluoxetine treatment. Fluoxetine administration reduced both 5-HIAA and the 5-HIAA:5-HT metabolism ratio, which was attenuated in animals pre-treated with MDMA. Overall the results show that MDMA induces long-term 5-HT loss in the rodent brain and consequently diminishes behaviour and reductions in 5-HT metabolism induced by the antidepressant fluoxetine. These results have potential clinical relevance, suggesting that 5-HT re-uptake inhibitors such as fluoxetine may be less effective at treating depression in chronic abusers of MDMA.  相似文献   

4.
Summary The effect of progesterone upon stress altered serotonin (5-HT) metabolism in various regions of the rat brain was investigated with regard to a possible connection with premenstrual and post-partum depression. When electric footshock was administered to ovariectomized rats pretreated with progesterone or its vehicle, there were generally higher 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations after progesterone. 5-HT levels were significantly higher in thalamus, hippocampus, raphe, and frontal cortex, 5-HIAA rose significantly in hippocampus, raphe, and frontal cortex. Whereas after electric footshock alone the septum showed highest increases of 5-HT and 5-HIAA and hippocampus ranged last, after pretreatment with progesterone increases of 5-HT and 5-HIAA were least pronounced in septum but rather high in hippocampus. Electric footshock administered to ovariectomized rats also resulted in an increase of plasma progesterone concentration.  相似文献   

5.
MDMA (methylenedioxymethamphetamine) is a recreational drug of abuse known as "Ecstasy" which markedly decreases regional brain serotonin (5-HT) content and produces 5-HT nerve terminal degeneration in forebrain areas of the rat. In order to determine the acute and chronic behavioral effects of MDMA, adult rats were given MDMA at 0, 5 or 10 mg/kg, po for 4 consecutive days. Alternatively, parachloroamphetamine (PCA) at 5 mg/kg was administered under the same regimen. Within 30 min after the first dose, the MDMA-treated rats exhibited the serotonin motor syndrome consisting of straub tail and splayed hindlimbs comparable to that seen in the PCA-treated rats. This serotonin motor syndrome, with a duration of about 2 hr, was less pronounced after subsequent doses. At 2-4 wk after the last dose, no significant differences between control and treated rats were seen in emergence, hot plate response, auditory startle response or complex maze behavior even though a significant dose-related decrease (50%) in 5-HT concentration was observed in the frontal cortex and hippocampus of these rats 4 wks after the last dose. Adult female monkeys dosed po with 5 or 10 mg/kg of MDMA twice/day for 4 consecutive days demonstrated no spontaneous behavioral changes or weight loss compared to controls, but forebrain 5-HT concentration was reduced by 80% 1 mon after dosing. These data indicate that at doses only 2-3 times the human dose, MDMA produces significant forebrain 5-HT decreases but does not produce detectable residual behavioral alterations as assessed by these behavioral paradigms.  相似文献   

6.
The respective influences of the corticotropic axis and sympathetic activity on 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) immediate effects on body temperature and long-term neurotoxicity, as assessed by decreases in hippocampal and striatal [(3)H]5-hydroxytryptamine ([(3)H]5-HT) reuptake, [(3)H]paroxetine binding at 5-HT transporters (5-HTT), and 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels, were examined in Fischer 344 rats. On each of the two injections of MDMA (5 or 10 mg/kg s.c. once a day for 2 consecutive days) body temperature rapidly increased in a dose-dependent manner. Six days after the last injection of 10 mg/kg MDMA, [(3)H]5-HT reuptake, [(3)H]paroxetine binding and 5-HT and 5-HIAA levels were decreased in the hippocampus and, to a lower extent, in striatum. Prior adrenalectomy (1 week beforehand), which weakened the immediate hyperthermic effect of MDMA, prevented the long-term MDMA-elicited reduction in hippocampal and striatal [(3)H]paroxetine binding. Supplementation of adrenalectomised Fischer 344 rats with corticosterone almost reinstated the immediate hyperthermic effect of MDMA and restored MDMA-elicited reduction in hippocampal and striatal [(3)H]paroxetine binding. In a final set of experiments, Fischer 344 rats were pretreated (30 min before each of the two injections of 10 mg/kg MDMA) with the ganglionic blocker chlorisondamine (2.5 mg/kg). This pretreatment markedly reduced the amplitudes of the immediate hyperthermia and long-term declines in hippocampal [(3)H]5-HT reuptake and [(3)H]paroxetine binding at 5-HTT, and in hippocampal and striatal 5-HT and 5-HIAA levels. These results suggest that sympathetic activity (possibly through its control of body temperature), but not corticotropic activity, plays a key role in MDMA-elicited neurotoxicity in Fischer 344 rats.  相似文献   

7.
Growing concerns surround the risk of fetal exposure to 3,4-methylenedioxymethamphetamine (MDMA; ecstasy). Prior animal studies using neonatal rats administered MDMA from postnatal days (P) 11-20 (a period approximating third trimester brain development in humans) have demonstrated long-lasting decrements in serotonin (5-HT) and learning; however, no studies have examined the acute post-MDMA response of the brain at this early age. Specifically, it is of interest whether MDMA administration to neonatal rats produces the expected depletion of monoamines and whether the brain exhibits any ameliorative response to the pharmacologic insult. In the current study, this model was employed to determine whether forebrain and brainstem dopamine (DA) and 5-HT neurochemistry were altered 24 h after the last injection (P21), and whether brain-derived neurotrophic factor (BDNF) was upregulated in response to MDMA exposure. All forebrain structures examined (frontal cortex, hippocampus, and striatum) showed significant MDMA-induced reductions in 5-HT and its metabolite, 5-HIAA, and significant increases in the DA metabolite, HVA, as well as DA turnover (HVA/DA). In the brainstem, there were significant increases in 5-HIAA, HVA and DA turnover. BDNF was significantly increased (19-38%) in all forebrain structures and in the brainstem in MDMA-exposed neonates versus saline controls. These data suggest that MDMA exposure to the developing rat brain from P11-20 produces similar alterations in serotonin and dopamine neurochemistry to those observed from adult administrations. In addition, a compensatory increase in BDNF was observed and may be the brains ameliorative response to minimize MDMA effects. This is the first report demonstrating that MDMA exposure results in increased levels of BDNF and that such increases are correlated with changes in monoamine levels. Future research is needed to elucidate any deleterious effects MDMA-induced increases in trophic activity might have on the developing brain and to examine earlier gestational exposure periods in order to assess the risk throughout pregnancy.  相似文献   

8.
A single administration of either 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") or p-chloroamphetamine (PCA) produced a rapid and marked reduction of serotonin (5-HT) content in rat frontal cortex and hippocampus. In the cortex of MDMA-treated rats, 5-HT levels returned to control values 48 h after drug administration. This recovery was correlated with an induction of CRE-binding activity and an enhanced expression of tryptophan hydroxylase (TPH) mRNA, the rate-limiting enzyme in 5-HT biosynthesis, suggesting that MDMA may up-regulate the TPH gene through a CREB-dependent mechanism. In the cortex of PCA-treated rats, neither a recovery of 5-HT levels nor changes in DNA-binding or TPH mRNA were found at the same time point. In the hippocampus of rats receiving either PCA or MDMA a decrease in TPH mRNA levels was found at all times, along with a reduced CRE-binding at the 8-h time point. The results show region-specific effects of MDMA. In the frontal cortex, the increased TPH expression suggests a compensatory response to MDMA-induced loss of serotonergic function.  相似文献   

9.
The present study investigates the age-dependent effects of prenatal cocaine exposure on changes in the neurochemical and functional status of brain serotonin neurons. Pregnant rats were administered either saline or (−)cocaine HCl (15 mg/kg, subcutaneously), twice daily from gestational days 13 through 20. Neurochemical changes in frontal cortex, hypothalamus, hippocampus, striatum and midbrain of prepubescent and adult offspring were determined by measuring: (1) the content of serotonin (5-HT) and its major metabolite 5-hydroxyindolacetic acid (5-HIAA), and (2) the ability of the serotonin releasing drug p-chloroamphetamine (PCA) to reduce brain serotonin levels. Brain catecholamine content was determined in progeny for comparative purposes. Prior to maturation, prenatal exposure to cocaine did not alter basal levels of brain 5-HT or 5-HIAA in any brain region examined. However, in adult progeny prenatally exposed to cocaine, basal 5-HT content was significantly reduced in the frontal cortex (−32%) and hippocampus (−40%), suggesting maturation-dependent effects of prenatal cocaine exposure on brain 5-HT neurons. Consistent with the maturational onset of changes in 5-HT, striatal dopamine was significantly reduced (−10%) by prenatal exposure to cocaine only in adult offspring. Reductions in 5-HT in most brain regions, produced by pharmacological challenge with p-chloroamphetamine (PCA), were comparable in prenatal saline versus cocaine offspring. One notable exception was the markedly greater reduction (−40%) in 5-HT in the midbrain of immature offspring prenatally exposed to cocaine, suggesting alterations in midbrain 5-HT neurons prior to maturation. Overall, these data demonstrate prenatal cocaine exposure produces region-specific changes in 5-HT neurons in offspring with some deficits occurring only following maturation.  相似文献   

10.
Repeated administration of methylenedioxymethamphetamine (MDMA) to rats results in long-term depletion of serotonin (5-hydroxytryptamine; 5-HT) in several brain regions. Because of the apparent role of 5-HT in morphine-induced antinociception, the present experiment was designed to determine the effects of repeated MDMA injections on morphine-induced analgesia. Rats (n = 48) received 8 s.c. injections (one every 12 h for 4 days) of MDMA (20 mg/kg) or saline (1.0 ml/kg). Two weeks after the last injection, the groups were divided into 4 subgroups that received either saline, or morphine 2.5, 3.55 or 5.0 mg/kg (s.c.). Nociception was assayed before and after saline or morphine administration by the method of tail immersion in warm water (55 degrees C). The day after analgesia testing, the animals were sacrificed, brains and spinal cords removed and 5-HT, norepinephrine (NE) and dopamine (DA) levels in various brain and spinal cord regions were assayed. The analgesic effect of morphine was enhanced in rats that had received repeated MDMA injections. MDMA selectively depleted 5-HT in the cortex, hippocampus, striatum, brainstem and in the cervical portion of spinal cord. However, 5-HT levels were not changed in the thoracic and lumbar segments of the spinal cord. Thus, a functional consequence of repeated MDMA administration in rats was to enhance morphine-induced antinociception in association with reductions in brain and cervical spinal cord 5-HT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethyleneglycol (DHPG) were determined by high-performance liquid chromatography in different brain areas of scrapie-infected rats, 8.5 months after intracerebral inoculation of a rat-adapted strain from mice brain (C 506). At this time, rats developed early clinical signs of the disease. Scrapie-infected rats showed a reduction in the levels of 5-HT and 5-HIAA (frontal cortex, hippocampus, mesolimbic structure). Concentrations of DHPG decreased in the frontal and parietal cortices but remained unchanged in the hippocampus. DOPAC levels decreased in the striatum but not in the mesolimbic structure. These results confirm that the serotonergic, noradrenergic and dopaminergic systems are altered in the brain of scrapie-infected rats. They can partly account for clinical signs of scrapie and are in agreement with the scarce data provided by the postmortem analysis of Creutzfeldt-Jakob disease brains.  相似文献   

12.
We investigated several aspects of the dopaminergic and serotonergic functions throughout brain development in rats prenatally exposed to MDMA ("ecstasy"). Pregnant rats were treated with MDMA (10 mg/kg s.c.) or saline from the 13th to the 20th day of gestation and studies were conducted on the progeny from both groups: (i) quantification of whole brain contents of DA, 5-HT and metabolites from the 14th day of embryonic life (E14) to weaning (21st day of postnatal life, P21); (ii) quantification of DA and 5-HT membrane transporters by autoradiography from E18 to adult age (P70); (iii) measurement of pharmacologically induced release of DA and 5-HT using microdialysis on adult (P70) freely moving rats; (iv) measurement of sucrose preference in adults (P70). Prenatally MDMA-exposed rats showed (i) a two-fold decrease of whole brain levels of 5-HT and 5-HIAA at P0; (ii) no effect on the DAT and SERT density; (iii) a strongly reduced pharmacologically induced release of DA and 5-HT at P70 in the striatum and hippocampus; and (iv) a significant 20% decrease in sucrose preference at P70. This study suggests that a prenatal exposure to MDMA induces transient and long-term neurochemical and behavioural modifications in dopaminergic and serotonergic functions.  相似文献   

13.
To further evaluate the serotonin (5-HT) neurotoxic potential of substituted amphetamines, we used tritiated proline to examine anterograde transport along ascending axonal projections originating in the rostral raphe nuclei of animals treated 3 weeks previously with (+/-)fenfluramine (FEN, 10 mg/kg, every 2 h x 4 injections; i.p.) or (+/-)3,4-methylenedioxymethamphetamine (MDMA, 20 mg/kg, twice daily for 4 days; s.c.). The documented 5-HT neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT, 75 microg; ICV; 30 min after pretreatment with pargyline, 50 mg/kg; i.p., and desipramine 25 mg/kg; i.p.), served as a positive control. Along with anterograde axonal transport, we measured two 5-HT axonal markers, 5-HT and 5-hydroxyindoleacetic acid (5-HIAA). Prior treatment with FEN or MDMA led to marked reductions in anterograde transport of labeled material to various forebrain regions known to receive 5-HT innervation. These reductions were associated with lasting decrements in 5-HT axonal markers. In general, decreases in axonal transport were less pronounced than those in 5-HT and 5-HIAA. However, identical changes were observed after 5,7-DHT. These results further indicate that FEN and MDMA, like 5,7-DHT, are 5-HT neurotoxins.  相似文献   

14.
It has been demonstrated that repeated, subcutaneous administration of 3,4-methylenedioxymethamphetamine (MDMA) to rats, guinea pigs, and squirrel monkeys produces long-lasting depletions of serotonin (5-hydroxytryptamine; 5-HT) in several brain regions. Since evidence of degenerating 5-HT neurons has been observed in the rat brain following MDMA injections, it is likely that these depletions are due to neurotoxicity similar to that observed with other substituted amphetamines. The purpose of the present study was to determine if MDMA produces similar evidence of neurotoxicity in rhesus monkeys when administered by either the intragastric (i.g.) or subcutaneous (s.c.) route. Administration of MDMA (5.0 mg/kg/12 h x 4 days) by either i.g. or s.c. routes depleted 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in various brain regions 2 weeks after the last injection. Further, a significant decrease in [3H]5-HT uptake sites in the hippocampus was observed in monkeys treated with MDMA by the i.g. route. Reductions in uptake sites did not achieve statistical significance when drug was administered s.c. The results suggest that repeated administration of MDMA produces long-lasting, potentially neurotoxic effects on central 5-HT neurons in primates and does so when given orally.  相似文献   

15.
The effect of prior exposure to methylenedioxyamphetamine (MDA) on behavioural and neurochemical responses to fluoxetine were assessed in a rat model of antidepressant action. MDA (7.5 mg/kg, i.p.) was administered to rats twice daily for 4 consecutive days, and 4 weeks later the behavioural effect of fluoxetine (5 or 20 mg/kg; i.p. x 3) was examined in the modified rat forced-swimming test. In addition, the ability of fluoxetine to reduce serotonin (5-HT) metabolism was measured as an index of its efficacy in inhibiting 5-HT reuptake in vivo. In vehicle-treated rats, fluoxetine (5 and 20 mg/kg) produced a characteristic increase in swimming behaviour in the forced-swimming test. In contrast, fluoxetine-induced swimming was markedly attenuated in MDA-treated rats. MDA pretreatment resulted in 5-HT nerve terminal degeneration, indicated by reduced 5-HT and 5-HIAA concentrations in the frontal cortex, amygdala and hippocampus, and reduced [3H]paroxetine binding in the frontal cortex. In vehicle-treated rats, fluoxetine (5 and 20 mg/kg) decreased 5-HT metabolism (5-HIAA : 5-HT ratio) in the frontal cortex, amygdala and hippocampus. MDA pretreatment attenuated the ability of fluoxetine to reduce 5-HT metabolism in all brain regions examined. These findings are the first to demonstrate that prior exposure to the methylenedioxy-substituted amphetamine MDA results in diminished responsiveness to the antidepressant fluoxetine.  相似文献   

16.
Chronic L-3,4-dihydroxyphenylalanine (L-DOPA) pharmacotherapy in Parkinson's disease is often accompanied by the development of abnormal and excessive movements known as dyskinesia. Clinical and experimental studies indicate that indirect serotonin agonists can suppress dyskinesia without affecting the efficacy of L-DOPA. While the mechanism by which these effects occur is not clear, recent research suggests that serotonin 5-HT1A receptors may play a pivotal role. To test this, male Sprague-Dawley rats with unilateral 6-hydroxydopamine medial forebrain bundle lesions received 1 week of daily treatment with L-DOPA (12 mg/kg, i.p.) plus benserazide (15 mg/kg, i.p.). Beginning on the 8th day of treatment and every 3rd or 4th day thereafter, rats were pretreated with vehicle (0.9% NaCl), the serotonin and dopamine releaser 3,4-methylenedioxymethamphetamine (MDMA; 0.25 or 2.5 mg/kg, i.p.) or the serotonin releaser fenfluramine (FEN; 0.25 or 2.5 mg/kg, i.p.) 5 min prior to L-DOPA, after which abnormal involuntary movements (AIMs) and rotations were quantified every 20th minute for 2 h. Pretreatment with 2.5 mg/kg of either MDMA or FEN reduced AIMs. To determine the contribution of the 5-HT1A receptor to these effects, another group of L-DOPA-primed 6-hydroxydopamine-lesioned rats were pretreated with the 5-HT1A antagonist WAY100635 (0.5 mg/kg, i.p.), MDMA + WAY100635 (2.5 + 0.5 mg/kg, i.p.) or FEN + WAY100635 (2.5 + 0.5 mg/kg, i.p.) 5 min prior to L-DOPA and subsequent AIMs and rotation tests. The antidyskinetic effects of MDMA and FEN were reversed by cotreatment with WAY100635. These results suggest that 5-HT-augmenting compounds such as MDMA and FEN probably convey antidyskinetic properties in part via stimulation of 5-HT1A receptors.  相似文献   

17.
A single administration of 3,4-methylenedioxymethamphetamine (MDMA, 20 mg/kg, i.p.), induced significant hyperthermia in rats and reduced 5-hydroxytryptamine (5-HT) content and [3H]paroxetine-labeled 5-HT transporter density in the frontal cortex, striatum and hippocampus by 40-60% 1 week later. MDMA treatment also increased glial fibrillary acidic protein (GFAP) immunoreactivity in the hippocampus. Repeated administration of the metabolic antioxidant alpha-lipoic acid (100 mg/kg, i.p., b.i.d. for 2 consecutive days) 30 min prior to MDMA did not prevent the acute hyperthermia induced by the drug; however, it fully prevented the serotonergic deficits and the changes in the glial response induced by MDMA. These results further support the hypothesis that free radical formation is responsible for MDMA-induced neurotoxicity.  相似文献   

18.
19.
Systemic administration of 3,4-methylenedioxymethamphetamine (MDMA) produces depletions of serotonin (5-HT) and its primary metabolite, 5-hydroxyindoleacetic acid (5-HIAA), decreases 5-HT reuptake sites and diminishes tryptophan hydroxylase activity in various forebrain regions. MDMA has been shown to be neurotoxic to the fine fibers originating from dorsal raphe (DR) 5-HT neurons but not the beaded fibers from the median raphe (MR) nucleus. In the present experiment, MDMA was microinjected directly into the DR or MR to determine whether differential neurotoxicity developed in the DR versus MR fiber systems as measured by 5-HT levels and immunocytochemistry. Two weeks following stereotaxic injection with either vehicle or (+)MDMA (50 micrograms base in 2 microliters) into the DR or MR, rat brains were assayed for 5-HT and catecholamine content or 5-HT immunocytochemistry. HPLC analysis revealed no significant changes in monoamine or metabolite concentrations in the hippocampus and striatum of rats administered intra-DR or -MR (+)MDMA. Raphe sections stained for 5-HT also did not reveal any apparent neurotoxicity. A single cerebral injection of (+)MDMA does not produce neurotoxicity to 5-HT neuronal systems originating in the raphe, although neurotoxicity of multiple MDMA injections into these raphe nuclei cannot be ruled out.  相似文献   

20.
This study investigated the effect of two different ambient temperatures on fenfluramine-induced 5-HT neurotoxicity. Fenfluramine (FEN) (12.5 mg/kg×4; injections made hourly) or saline (SAL) was administered to rats in either a normal laboratory temperature of 24°C or a warm environment of 30°C. Animals were kept at that ambient temperature for 20 h after FEN administration. Ambient temperature was controlled to ±0.5°C and rat core temperature was continually measured using a non-invasive apparatus. FEN-treated rats at 24°C displayed a core temperature hypothermia with a peak low of 33.8°C, and this core temperature hypothermia lasted for 20 h after FEN administration. Rats treated with FEN at 30°C displayed a significant core temperature hyperthermia for 4 h after the first drug injection compared to SAL-treated groups, with a peak core temperature of 38.6°C. 2 weeks after FEN injections, brain regions were analyzed by HPLC. Both groups of FEN-treated rats showed decreases in 5-HT and 5-HIAA in the hippocampus, frontal cortex, somatosensory cortex, striatum, hypothalamus and septum. However, FEN rats treated at 30°C had significantly greater decreases (26–35%) in 5-HT compared to FEN-treated rats at 24°C in the frontal cortex, hippocampus, striatum and somatosensory cortex and significantly greater decreases (26–50%) in 5-HIAA in the frontal cortex, hippocampus and somatosensory cortex. This study indicates fenfluramine can produce neurotoxicity in rats that display either a core temperature hypothermia or hyperthermia, although hyperthermic rats have greater 5-HT and 5-HIAA depletions than the hypothermic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号