首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Indomethacin, the nonselective COX inhibitor, decreased mucosal PGE2 content and caused damage in the intestine within 24 h, accompanied by increase in intestinal motility, bacterial number and MPO, as well as iNOS activity, together with the up-regulation of COX-2 and iNOS mRNA expression. Neither SC-560 nor rofecoxib alone caused intestinal damage, but their combined administration produced lesions. SC-560, but not rofecoxib, caused intestinal hypermotility, bacterial invasion and COX-2 as well as iNOS mRNA expression, yet the iNOS and MPO activity was increased only when rofecoxib was also administered. Although SC-560 inhibited the PG production, the level of PGE2 was recovered, in a rofecoxib-dependent manner. Thus, inhibition of COX-1, despite causing intestinal hypermotility, bacterial invasion and iNOS expression, up-regulates the expression of COX-2, and the the COX-2/PGE2 counteracts deleterious events and maintains the mucosal integrity. This sequence of events explains why intestinal damage occurs when both COX-1 and COX-2 are inhibited.  相似文献   

2.
We examined whether intestinal damage is provoked in rats under inhibition of both cNOS and COX-2. SC-560, rofecoxib or L-NAME was given either alone or in combination, and the animals were killed 24 h later. Neither SC-560 nor rofecoxib alone provoked damage in the small intestinal mucosa. However, SC-560 produced gross lesions when administered together with rofecoxib. Likewise, L-NAME alone did not cause damage, but this agent provoked gross lesions when administered together with rofecoxib. Mucosal PGE2 content was decreased by SC-560 but not by rofecoxib and L-NAME. The expression of COX-2 was upregulated by L-NAME as well as by SC-560. Both L-NAME and SC-560 enhanced intestinal motility, decreased mucus secretion, and increased the enterobacterial number in the mucosa. We conclude that inhibition of both cNOS and COX-2 provokes intestinal damage. Inhibition of cNOS up-regulates COX-2 expression, and this may be a key to occurrence of intestinal damage associated with COX-2 inhibition.  相似文献   

3.
This article reviews our recent studies on NSAID-induced gastric damage, focusing on the relation between COX inhibition and pathogenic events. Conventional NSAIDs such as indomethacin, at a dose that inhibits PG production, enhance gastric motility, resulting in an increase in mucosal permeability and MPO activity, and eventually, gastric lesions. The development of these lesions can be prevented by administering PGE2 or antisecretory drugs, and also via an atropine-sensitive mechanism, not related to any antisecretory action. The selective COX-2 inhibitor rofecoxib has no effect on PG production and does not induce damage in the stomach. The selective COX-1 inhibitor SC-560 also does not cause damage, despite evoking a decrease in the PGE2 level. The combined administration of SC-560 and rofecoxib, however, provokes the formation of gastric lesions. SC-560, but not rofecoxib, causes gastric hypermotility and an increase in mucosal permeability, although the level of MPO activity increases only when rofecoxib is co-administered. COX-2 mRNA is expressed in the stomach after administration of SC-560 and indomethacin but not rofecoxib. The up-regulation of COX-2 expression in response to indomethacin is prevented by atropine at a dose that inhibits gastric hypermotility but not by omeprazole at an antisecretory dose. We conclude that the gastric ulcerogenic properties of NSAIDs are not accounted for solely by the inhibition of COX-1 and require the inhibition of both COX-1 and COX-2, the inhibition of COX-1 up-regulates COX-2 expression in association with gastric hypermotility, and PGs produced by COX-2 counteract the deleterious influences of the COX-1 inhibition.  相似文献   

4.
To investigate the role of endogenous glucocorticoids in the healing of gastric lesions, we compared the healing of indomethacin- or cold-restraint-induced gastric erosions as well as aceticacid-induced ulcers in sham-operated rats, adrenalectomized rats and adrenalectomized rats with corticosterone replacement. Adrenalectomy was performed immediately after the formation of gastric erosions (4 h after indomethacin administration or 6 h after the onset of cold-restraint stress) or chronic ulcers (in 3 days after ingestion of acetic acid into the luminal side of the stomach). All ulcerogenic stimuli caused an increase in corticosterone production. Adrenalectomy created corticosterone deficiency and delayed the healing of gastric erosions and chronic ulcers. Replacing corticosterone reversed the deleterious effect of adrenalectomy on healing of gastric damage in adrenalectomized rats. These results suggest that glucocorticoids participate in natural healing processes of injured gastric mucosa. The data obtained also indicate that participation of glucocorticoid in the healing of gastric lesions is more evident under prostaglandin deficient conditions.  相似文献   

5.
The discovery of a second isoform of cyclooxygenase has led to a re-evaluation of the mechanisms underlying the adverse effects of nonsteroidal anti-inflammatory drugs, focusing in particular on the gastrointestinal system. We investigated the involvement of cyclooxygenase-1 and -2 in the regulation of gastric acid secretion and cardiovascular functions in anesthetized rats, after acute intravenous administration of the selective cyclooxygenase-1 inhibitor SC-560, the selective cyclooxygenase-2 inhibitor celecoxib and the nonselective inhibitor indomethacin. Indomethacin, celecoxib and SC-560 did not significantly modify basal acid secretion. Indomethacin and celecoxib were also ineffective on the acid secretion stimulated by pentagastrin; by contrast, SC-560 significantly enhanced the acid secretion stimulated by pentagastrin, electrical vagal stimulation or histamine. The stimulatory effects of SC-560 were prevented by cervical vagotomy, atropine and famotidine. Indomethacin caused either no change, increasing or decreasing effects on mean arterial pressure and heart rate. By contrast, SC-560 was unable to change cardiovascular parameters at 5 mg/kg, while inducing a marked bradycardia at 10 mg/kg. Celecoxib was ineffective. Our findings indicate that cyclooxygenase-1-derived prostaglandins are involved in the regulation of stimulated acid secretion and of basal heart rate; the role of prostaglandins in the acute control of systemic blood pressure under resting conditions seems to be negligible.  相似文献   

6.
The ability of glucocorticoid hormones to protect gastric mucosa during desensitization of capsaicin-sensitive afferent neurons has been investigated in rats. Functional ablation of the afferent neurons was performed by pre-treatment with neurotoxic doses of capsaicin (100 mg/kg s.c.). After 1 week of recovery, capsaicin-desensitized, as well as control rats were adrenalectomized or shamoperated. Seven days later, indomethacin at an ulcerogenic dose (35 mg/kg s.c.) was given to each group of rats. One half of adrenalectomized capsaicin-pre-treated rats were injected by corticosterone for replacement (4 mg/kg s.c., 15 min before indomethacin). Gastric lesions, plasma corticosterone and blood glucose levels were estimated 4 h after indomethacin administration. Indomethacin caused gastric erosions that were aggravated by adrenalectomy or desensitization of capsaicinsensitive afferent neurons approximately with the same extension. Combination of adrenalectomy with the sensory desensitization profoundly potentiated the effect of sensory desensitization alone on indomethacin-induced gastric erosions: the mean gastric erosion area was increased approximately 10-fold. Corticosterone replacement completely prevented this profound effect of adrenalectomy. The results suggest a pivotal role of glucocorticoid hormones in the maintenance of gastric mucosal integrity in the case of impaired gastroprotective mechanisms provided by PGs and capsaicin-sensitive sensory neurons.  相似文献   

7.
1. The maintenance of renal function in decompensated cirrhosis is highly dependent on prostaglandins (PGs). Since PG synthesis is mediated by cyclooxygenase-1 and -2 (COX-1 and COX-2), the present study was designed to examine which COX isoform is involved in this phenomenon. 2. Renal COX-1 and COX-2 protein expression and distribution were analysed by Western blot and immunohistochemistry in nine rats with carbon tetrachloride-induced cirrhosis and ascites and 10 control animals. The effects of placebo and selective COX-1 (SC-560) and COX-2 (celecoxib) inhibitors on urine flow (V), urinary excretion of sodium (U(Na)V) and PGE(2) (U(PGE2)V), glomerular filtration rate (GFR), renal plasma flow (RPF), the diuretic and natriuretic responses to furosemide and renal water metabolism were assessed in 88 rats with cirrhosis and ascites. 3. COX-1 protein levels were found to be unchanged in kidneys from cirrhotic rats. In contrast, these animals showed enhanced renal COX-2 protein expression which was focally increased in the corticomedullary region. Although U(PGE2)V was equally reduced by SC-560 and celecoxib, only SC-560 produced a significant decrease in U(Na)V, GFR and RPF and a pronounced impairment in the diuretic and natriuretic responses to furosemide in rats with cirrhosis and ascites. Neither SC-560 nor celecoxib affected renal water metabolism in cirrhotic rats. 4. These results indicate that despite abundant renal COX-2 protein expression, the maintenance of renal function in cirrhotic rats is mainly dependent on COX-1-derived prostaglandins.  相似文献   

8.
In the present work, we studied the effect of the selective cyclooxygenase-2 (COX-2) inhibitors, compound 11 g, celecoxib and selective COX-1 inhibitor SC-560 (intraperitoneally and acutely) on striatal glutamatergic and dopaminergic neurotransmission in normal and substantia nigra pars compacta (SNc)-lesioned rats using the microdialysis technique. We also investigated the effect of acute COX inhibition on the damaged SNc neurons. Our results indicate a significant increase in dopaminergic neurotransmission and a decrease in glutamatergic neurotransmission (P<0.05) only after selective COX-2 inhibition in the striatum of normal and hemiparkinsonian rats. Nonetheless, neither COX-1 nor COX-2 inhibitors showed any improvement in the damaged SNc neurons.  相似文献   

9.
It is now widely recognized that nonsteroidal anti-inflammatory drugs (NSAIDs) may cause extensive damage to the intestine. The pathogenesis of NSAID-induced intestinal injury, however, is still controversial and both local irritant actions and cyclooxygenase (COX) inhibition have been proposed as underlying mechanisms. In this study we investigated further on NSAID-induced intestinal damage by using nonselective (indomethacin and ibuprofen), COX-1 selective (SC-560) or COX-2 selective (celecoxib) inhibitors. NSAIDs were administered orally to conscious rats and small intestinal injury was evaluated 24 h afterwards in terms of macroscopic and microscopic alterations, myeloperoxidase activity, lipid peroxidation, number of enterobacteria in the mucosa and epithelial mucin content. Oral administration of indomethacin (20 mg/kg) induced macroscopic and microscopic damage to the small intestine, increased translocation of enterobacteria from lumen into the mucosa, myeloperoxidase activity and lipid peroxidation. Ibuprofen (120 mg/kg), SC-560 (20 mg/kg), celecoxib (60 mg/kg) or the combination of SC-560 plus celecoxib did not cause any intestinal injury nor modified the number of bacteria in mucosal homogenates. SC-560 significantly increased both myeloperoxidase activity and lipid peroxidation, whereas celecoxib significantly reduced myeloperoxidase levels, while leaving unaltered lipid peroxidation. Finally, all NSAIDs, mostly indomethacin, increased neutral mucins and decreased acidic mucins in the intestinal goblet cells. These results indicate that inhibition of cyclooxygenase, although variably influencing mucosal integrity homeostasis, is not sufficient to initiate acute intestinal damage in rats. Moreover, topical mucosal injury induced by the NSAID molecule seems to be a critical factor in the development of intestinal injury.  相似文献   

10.
1. Effects of the cyclo-oxygenase (COX)-1 inhibitor SC-560 and the COX-2 inhibitors rofecoxib and DFU were investigated in the normal stomach and after acid challenge. 2. In healthy rats, neither SC-560 nor rofecoxib (20 mg kg(-1) each) given alone damaged the mucosa. Co-treatment with SC-560 and rofecoxib, however, induced severe lesions comparable to indomethacin (20 mg kg(-1)) whereas co-administration of SC-560 and DFU (20 mg kg(-1) each) had no comparable ulcerogenic effect 5 h after dosing. 3. SC-560 (20 mg kg(-1)) inhibited gastric 6-keto-prostaglandin (PG) F(1alpha) by 86+/-5% and platelet thromboxane (TX) B(2) formation by 89+/-4% comparable to indomethacin (20 mg kg(-1)). Rofecoxib (20 mg kg(-1)) did not inhibit gastric and platelet eicosanoids. 4. Intragastric HCl elevated mucosal mRNA levels of COX-2 but not COX-1. Dexamethasone (2 mg kg(-1)) prevented the up-regulation of COX-2. 5. After acid challenge, SC-560 (5 and 20 mg kg(-1)) induced dose-dependent injury. Rofecoxib (20 mg kg(-1)), DFU (5 mg kg(-1)) and dexamethasone (2 mg kg(-1)) given alone were not ulcerogenic but aggravated SC-560-induced damage. DFU augmented SC-560 damage 1 but not 5 h after administration whereas rofecoxib increased injury after both treatment periods suggesting different time courses. 6. Gastric injurious effects of rofecoxib and DFU correlated with inhibition of inflammatory PGE(2). 7. The findings show that in the normal stomach lesions only develop when both COX-1 and COX-2 are inhibited. In contrast, during acid challenge inhibition of COX-1 renders the mucosa more vulnerable suggesting an important role of COX-1 in mucosal defence in the presence of a potentially noxious agent. In this function COX-1 is supported by COX-2. In the face of pending injury, however, COX-2 cannot maintain mucosal integrity when the activity of COX-1 is suppressed.  相似文献   

11.
Prostaglandin plays an important role in the pathogenesis of hepatic encephalopathy. This study investigated the therapeutic effects of selective cyclooxygenase (COX) inhibitor on hepatic encephalopathy in thioacetamide-induced fulminant hepatic failure (FHF) rats. The selective COX-1 inhibitor (SC-560), COX-2 inhibitor (NS-398) or distilled water (control) was administered in the normal and FHF rats. The mortality rates were calculated and severity of hepatic encephalopathy was evaluated using Opto-Varimex activity sensors. Besides, the levels of blood ammonia, 6-keto-prostaglandin-F(1α) (PGF(1α), active metabolite of prostacyclin), tumor necrosis factor α (TNF-α) and liver biochemistry tests were measured. The hepatic mRNA expressions of nitric oxide synthase and COX were determined, and the liver histopathological changes were examined. The liver biochemistries and motor activities were similar among COX-1, COX-2 treated and control groups. SC-560 treatment improved the survival of FHF rats (mortality rates: SC-560 group 0%, control 33%; P=0.037). Besides, SC-560 treatment improved hepatic encephalopathy and decrease plasma levels of PGF(1α), but did not change TNF-α levels. There were no significant differences in liver biochemistry and ammonia levels except that the aspartate aminotransferase levels were lower in the NS-398 treated group. Both hepatic COX-1 and COX-2 mRNA expressions were attenuated after SC-560 treatment. The decreased COX-2 and increased constitutive nitric oxide synthase mRNA expressions were found after NS-398 treatment. Besides, the histopathology of liver got improved after selective COX inhibition. In conclusion, COX-1 inhibition by SC-560 decreases the mortalities and improves motor activities, suggesting COX-1, rather than COX-2, plays a major role in hepatic encephalopathy of FHF rats.  相似文献   

12.
Members of the cyclooxygenase (COX) family are known to catalyze the rate-limiting steps of prostaglandins synthesis and reported to be involved in neuropathic pain. Diabetic neuropathy is a type of neuropathic pain, though it is not clear if COX is relevant to the condition. Recently, spinal COX-2 protein was found to be increasing in streptozotocin-induced rats as compared to the constitutive expression. We attempted to determine which cyclooxygenase isoforms are involved in streptozotocin-induced mechanical hyperalgesia, which was induced by a single intraperitoneal injection of 75 mg/kg of streptozotocin. Intrathecal administrations of the COX-2 inhibitors SC-58125 (7-100 microg) and NS-398 (7-60 microg), as well as a high dose (100 microg) of the COX-1 inhibitor SC-560 attenuated hyperalgesia, whereas intrathecal administrations of a low dose (10 microg) of SC-560 and the COX-3 inhibitor acetaminophen (1-7 mg) did not. Further, intrathecal administration of SC-58125 (100 microg) did not produce an analgesic effect in normal rats. These results indicate that intrathecal administration of COX-2 inhibitors has an anti-hyperalgesic effect on streptozotocin-induced mechanical hyperalgesia and we concluded that spinal COX-2 is pivotal in streptozotocin-induced hyperalgesia.  相似文献   

13.
In rats, neither the cyclooxygenase-1 inhibitor SC-560 nor the cyclooxygenase-2 inhibitor rofecoxib damages the gastric mucosa. Coadministration of dexamethasone induced injury in SC-560- but not in rofecoxib-treated rats. High levels of cyclooxygenase-1 protein occurred in the gastric mucosa of control rats, with no change after administration of SC-560. In contrast, the gastric cyclooxygenase-2 protein levels were low in control rats, but increased in a time-dependent manner after administration of SC-560. Dexamethasone prevented the increase in cyclooxygenase-2 protein levels. Our findings show that inhibition of cyclooxygenase-1 upregulates cyclooxygenase-2. When the upregulation is prevented by dexamethasone, gastric damage develops, suggesting that induction of cyclooxygenase-2 represents a compensatory mechanism that counteracts the injurious effect of cyclooxygenase-1 inhibition.  相似文献   

14.
  1. We examined the effects of selective and nonselective cyclo-oxygenase (COX) inhibitors on various functional changes in the rat stomach induced by topical application of taurocholate (TC) and investigated the preferential role of COX isozymes in these responses.
  2. Rat stomachs mounted in ex vivo chambers were perfused with 50 mM HCl and transmucosal potential difference (p.d.), mucosal blood flow (GMBF), luminal acid loss and luminal levels of prostaglandin E2 (PGE2) were measured before, during and after exposure to 20 mM TC.
  3. Mucosal application of TC in control rats caused a reduction in p.d., followed by an increase of luminal acid loss and GMBF, and produced only minimal damage in the mucosa 2 h later. Pretreatment with indomethacin (10 mg kg−1, s.c.), a nonselective COX-1 and COX-2 inhibitor, attenuated the gastric hyperaemic response caused by TC without affecting p.d. and acid loss, resulting in haemorrhagic lesions in the mucosa. In contrast, selective COX-2 inhibitors, such as NS-398 and nimesulide (10 mg kg−1, s.c.), had no effect on any of the responses induced by TC and did not cause gross damage in the mucosa.
  4. Luminal PGE2 levels were markedly increased during and after exposure to TC and this response was significantly inhibited by indomethacin but not by either NS-398 or nimesulide. The expression of COX-1-mRNA was consistently detected in the gastric mucosa before and after TC treatment, while a faint expression of COX-2-mRNA was detected only 2 h after TC treatment.
  5. Both NS-398 and nimesulide significantly suppressed carrageenan-induced rat paw oedema, similar to indomethacin.
  6. These results confirmed a mediator role for prostaglandins in the gastric hyperaemic response following TC-induced barrier disruption, and suggest that COX-1 but not COX-2 is a key enzyme in maintaining ‘housekeeping'' functions in the gastric mucosa under both normal and adverse conditions.
  相似文献   

15.
BACKGROUND AND PURPOSE: Ghrelin, a gut-brain peptide, is considered a gastroprotective factor in gastric mucosa. We investigated the role of prostaglandins (PG) and the possible interplay between PGs and nitric oxide (NO) in ghrelin gastroprotection against ethanol (EtOH)-induced gastric lesions. EXPERIMENTAL APPROACH: We examined the effects of (1) central ghrelin (4 mug per rat) injection on PGE(2) accumulation in normal or EtOH-lesioned gastric mucosa, (2) pretreatment with indomethacin (10 mg kg(-1), p.o.), a non-selective cyclooxygenase (COX) inhibitor, and with a selective COX-1, SC560 (5 mg kg(-1), p.o.) or COX-2 inhibitor, celecoxib (3.5 mg kg(-1), p.o.) on ghrelin gastroprotection against 50% EtOH (1 mL per rat)-induced gastric lesions, (3) the NO synthase inhibitor, L-NAME (70 mg kg(-1), s.c), on gastric PGE(2) content in ghrelin-treated rats and (4) central ghrelin on the expression of constitutive and inducible NOS and COX mRNA and on the localization of the immunoreactivity for COX-2 in the gastric mucosa exposed to EtOH. KEY RESULTS: Ghrelin increased PGE(2) in normal mucosa, whereas, it reversed the EtOH-induced PGE(2) surge. Ghrelin had no effect on mucosal COX-1 expression but reduced the EtOH-induced increase in COX-2 expression and immunoreactivity. Indomethacin and SC560, but not celecoxib, removed ghrelin gastroprotection. L-NAME prevented the PGE(2) surge induced by ghrelin and, like indomethacin, reduced EtOH-induced PGE(2) increase. Ghrelin enhanced eNOS expression and reduced iNOS mRNA. CONCLUSIONS AND IMPLICATIONS: This study shows that COX-1-derived PGs are mainly involved in ghrelin gastroprotection and that the constitutive-derived NO together with PGE(2) are involved in ghrelin gastroprotective activity.  相似文献   

16.
Mechanical hyperalgesia induced in rat paws by carrageenan (250microg) was modified by pre-treatment with three selective inhibitors of cyclo-oxygenase-2 (COX-2); celecoxib, rofecoxib and SC236. These inhibitors raised the nociceptive threshold above the normal, non-inflamed, level, inducing a state of hypoalgesia. Such hypoalgesia was observed in different strains of rat (Holtzman, Wistar and Sprague-Dawley) and after different modes of administration of the COX-2 inhibitor (locally, in the paw, or systemically). A selective inhibitor of COX-1 (SC 560; 1-10mg kg(-1)) decreased hyperalgesia but did not induce hypoalgesia. Pre-treatment with naltrexone (3mg kg(-1)), an opioid receptor antagonist, did not affect carrageenan-induced hyperalgesia but abolished the hypoalgesic effects of COX-2 inhibitors, without diminishing the anti-hyperalgesic effect of indomethacin. In rats made tolerant to the anti-nociceptive effects of morphine, all anti-nociceptive effects of SC236 were abolished but the anti-hyperalgesic effects of indomethacin or SC 560 were unaffected. We conclude that, in our model of inflammatory hyperalgesia, the anti-nociceptive effect of selective COX-2 inhibitors involved the participation of endogenous opioids.  相似文献   

17.
Although it is well known that histamine induces gastric mucosal lesions in laboratory animals, the fundamental mechanisms remain unclear. In order to further analyze the vascular mechanisms underlying histamine-induced lesions, a new model was developed in the glandular stomach via administration of histamine (40 mg/kg, s.c.) twice to rats with partial gastric vascular occlusion (ligated left gastric artery and vein) also subjected to pylorus ligation. Both antagonists of histamine H(2)-receptors (roxatidine and famotidine) and H(1)-receptors (epinastine and tripelennamine) significantly inhibited lesion formation at doses that did not inhibit acid secretion. Combined treatment of tripelennamine and famotidine synergistically inhibited lesion formation. Nitro L-arginine methyl ester inhibited lesion development; inhibition was reversed by concomitantly administered L-arginine. Indomethacin, diclofenac, and SC-560 (a selective COX-1 inhibitor), but not rofecoxib (a selective COX-2 inhibitor), significantly inhibited lesion formation. In addition, sodium bicarbonate, pirenzepine, S-0509 (a gastrin/CCK(2) inhibitor), omeprazole, sucralfate, and a prostaglandin analog also significantly inhibited lesion formation. It was concluded that the mechanism by which histamine induces gastric lesions in rats with partial gastric vascular occlusion appears to involve extensive vasodilation resulting from histamine acting on microvasculature histamine H(1)- and H(2)-receptors, generation of endogenous nitric oxide and prostaglandins, with the presence of gastric acid.  相似文献   

18.
The study was designed to investigate whether gastric microcirculation is involved in mechanisms of gastroprotective action of glucocorticoids during desensitization of capsaicin-sensitive sensory neurons (CSN). The effects of desensitization of CSN on gastric microcirculation and gastric erosions after indomethacin administration (35 mg/kg) were compared in sham-operated rats and adrenalectomized animals without and with corticosterone replacement (4 mg/ kg sc). Desensitization of CSN (by capsaicin, 100 mg/kg s. c.) and adrenalectomy or sham-operation was performed 2 or 1 weeks before experiment, respectively. An in vivo microscopy technique for the direct visualization of gastric microcirculation and the analysis of red blood cell (RBC) velocity was employed. The results obtained indicate that desensitization of capsaicin-sensitive sensory neurons potentiate indomethacin-induced microvascular disturbances in gastric submucosa and mucosa and gastric injury. These potentiated effects of the desensitization are profoundly promoted by concomitant glucocorticoid deficiency. The results suggest that protective action of glucocorticoids against indomethacin- induced injury during desensitization of CSN is provided by their maintenance of gastric blood flow. Received 28 July 2006; accepted 21 August 2006  相似文献   

19.
Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor (α7 nAChR) and β-adrenergic receptors. Treatment of cells with α-bungarotoxin (α-BTX, α7nAChR antagonist) or propranolol (β-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE2 and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE2 induction can only be suppressed by propranolol, but not α-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.  相似文献   

20.
The pharmacological profile of celecoxib (CAS 169590-42-5, SC-58635), a specific cyclooxygenase-2 (COX-2) inhibitor, was investigated. Celecoxib inhibited COX-2-mediated prostaglandin E2 (PGE2) production in human dermal fibroblasts (IC50 = 91 nmol/l), whereas it was a weak inhibitor of COX-1-mediated PGE2 production in human lymphoma cells (IC50 = 2800 nmol/l). In in vivo studies, the effects of celecoxib were compared with those of nonsteroidal anti-inflammatory drugs (NSAIDs) in acute rat models of hyperalgesia and pyrexia. Celecoxib abrogated carrageenan-induced hyperalgesia in the hind paw accompanied by a decrease in PGE2 content in paw exudates and cerebrospinal fluid in a dose-related manner, with an ED30 = 0.81 mg/kg. Its analgesic potency was comparable to those of NSAIDs. In lipopolysaccharide-induced pyrexia, the anti-pyretic potency of celecoxib was equal to that of NSAIDs. On the other hand, in a gastric toxicity study in rats, single oral administration of celecoxib had no effect on gastric mucosa or mucosal PGE2 content at doses up to 200 mg/kg. Additionally, celecoxib did not inhibit thromboxane B2 production of calcium ionophore-stimulated peripheral blood of rats or arachidonic acid-induced aggregation of human platelets. These findings suggest that celecoxib might be a safe and effective alternative to NSAIDs for clinical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号