首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolution of brain infarction after transient focal cerebral ischemia in mice.   总被引:21,自引:0,他引:21  
The evolution of brain infarction after transient focal cerebral ischemia was studied in mice using multiparametric imaging techniques. One-hour focal cerebral ischemia was induced by occluding the middle cerebral artery using the intraluminal filament technique. Cerebral protein synthesis (CPS) and the regional tissue content of adenosine triphosphate (ATP) were measured after recirculation times from 0 hours to 3 days. The observed changes were correlated with the expression of the mRNAs of hsp-70, c-fos, and junB, as well as the distribution of DNA double-strand breaks, visualized by TUNEL. At the end of 1 hour of ischemia, protein synthesis was suppressed in a larger tissue volume than ATP in accordance with the biochemical differentiation between core and penumbra. Hsp70 mRNA was selectively expressed in the cortical penumbra, whereas c-fos and junB mRNAs were increased both in the lateral part of the penumbra and in the ipsilateral cingulate cortex with normal metabolism. During reperfusion after withdrawal of the intraluminal filament, suppression of CPS persisted except in the most peripheral parts of the middle cerebral artery territory, in which it recovered between 6 hours and 3 days. ATP, in contrast, returned to normal levels within 1 hour but secondarily deteriorated from 3 hours on until, between 1 and 3 days, the ATP-depleted area merged with that of suppressed protein synthesis leading to delayed brain infarction. Hsp70 mRNA, but not c-fos and junB, was strongly expressed during reperfusion, peaking at 3 hours after reperfusion. TUNEL-positive cells were detected from 3 hours on, mainly in areas with secondary ATP depletion. These results stress the importance of an early recovery of CPS for the prevention of ischemic injury and suggest that TUNEL is an unspecific response of delayed brain infarction.  相似文献   

2.
Nitric oxide produced by the inducible nitric oxide synthase (iNOS) is believed to participate in the pathogenic events after cerebral ischemia. In this study, we examined the expression of iNOS in the brain after transient focal cerebral ischemia in mice. We detected differential expression of exons 2 and 3 of iNOS mRNA (16-fold upregulation at 24 to 72 h after middle cerebral artery occlusion, MCAO) compared with exons 6 to 8, 12 to 14, 21 to 22, and 26 to 27 (2- to 5-fold upregulation after 72 and 96 h), which would be compatible with alternative splicing. Expression levels of iNOS mRNA were too low for detection by the Northern blot analysis. Using specific antibodies, we did not detect any iNOS immunoreactivity in the mouse brain 1 to 5 days after MCAO, although we detected iNOS immunoreactivity in the lungs of mice with stroke-associated pneumonia, and in mouse and rat dura mater after lipopolysaccharide administration. In chimeric iNOS-deficient mice transplanted with wild-type bone marrow (BM) cells expressing the green fluorescent protein (GFP) or in wild-type mice transplanted with GFP(+) iNOS-deficient BM cells, no expression of iNOS was detected in GFP(+) leukocytes invading the ischemic brain or in resident brain cells. Moreover, both experimental groups did not show any differences in infarct size. Analysis of three different strains of iNOS-deficient mice and wild-type controls confirmed that infarct size was independent of iNOS deletion, but strongly confounded by the genetic background of mouse strains. In conclusion, our data suggest that iNOS is not a universal mediator of brain damage after cerebral ischemia.  相似文献   

3.
Risperidone attenuates brain damage after focal cerebral ischemia in vivo   总被引:2,自引:0,他引:2  
Since their introduction, atypical neuroleptic agents have been discovered to have some beneficial effects beyond their effectiveness as neuroleptic drugs. Among these initially unexpected effects are their potential effects as mood stabilizers in bipolar disorder and their efficacy in improving long-term outcome in schizophrenia. These effects recently raised the question whether these drugs may also have some neuroprotective effect in the brain. To examine this matter, in this study we evaluated the neuroprotective effect of risperidone after permanent focal cerebral ischemia. Anaesthetized male C57BL/6j mice were submitted to permanent thread occlusion of the middle cerebral artery (MCA). Risperidone (0.1, 1 or 10 mg/kg) or vehicle was applied intraperitoneally just after permanent ischemia. Twenty-four hours after permanent ischemia, brain injury was evaluated by triphenyltetrazolium chloride staining (TTC). Risperidone (0.1, 1 and 10 mg/kg) showed significant neuroprotection after permanent focal cerebral ischemia.  相似文献   

4.
Atypical antipsychotic drugs are widely used in the treatment of schizophrenia. These agents are discovered to have some additional beneficial effects beyond their effectiveness as antipsychotic drugs. Among these initially unexpected effects are their potential effects as mood stabilizers in bipolar disorder and their efficacy in improving long-term outcome in schizophrenia. These effects recently raised the question whether these drugs may also have some neuroprotective effect in the brain. To examine this matter, in this study we evaluated the neuroprotective effect of olanzapine after permanent focal cerebral ischemia. Anaesthetized male C57BL/6j mice were submitted to permanent thread occlusion of the middle cerebral artery (MCA). Olanzapine (0.1 and 1 mg/kg) or vehicle was applied intraperitoneally just after permanent ischemia. Twenty-four hours after permanent ischemia, brain injury was evaluated by triphenyltetrazolium chloride staining (TTC). Olanzapine (0.1 and 1 mg/kg) showed significant neuroprotection after permanent focal cerebral ischemia.  相似文献   

5.
6.
7.
细胞周期调控对局灶性缺血性脑损伤后的保护作用   总被引:1,自引:1,他引:0  
目的通过抑制细胞周期素依赖激酶(Cyclindependentkinases,CDKS)来对神经元凋亡进行干预,以探讨细胞周期调控与细胞凋亡的关系。方法建立光化学法诱导大鼠局灶性脑缺血模型,并随机分为脑缺血组(对照组和干预组)和假手术组,采用HE染色显示梗死灶,并测定其面积占脑片面积百分率的平均值;通过TUNEL方法检测神经元凋亡;免疫印迹(Westernblot)观察损伤侧皮层周期素蛋白A(CyclinA)和周期素蛋白B1(CyclinB1)的表达。结果缺血后24h对照组梗死灶面积占脑片面积百分率的平均值明显大于干预组(P<0.05),缺血后梗死灶周围可见大量TUNEL阳性染色细胞,且对照组数量明显多于干预组(P<0.05),二者均多于假手术组(P<0.05);缺血后24h干预组大鼠NeuN TUNAL双标阳性表达率明显弱于对照组大鼠(P<0.05);Westernblot显示对照组CyclinA和CyclinB1的表达明显高于干预组(P<0.05)。结论细胞周期抑制剂可部分抑制缺血边缘区神经元的凋亡及减小脑梗死面积,这提示细胞周期调控可能参与了神经细胞的凋亡过程。  相似文献   

8.
Mechanisms of brain damage in focal cerebral ischemia   总被引:18,自引:0,他引:18  
Ischemic stroke is a major disabling disease. There are 500,000 new cases in U.S. every year, and the middle cerebral artery (MCA) is the artery most often occluded. In this paper recent results of experimental MCA occlusion are reviewed, with special emphasis on those factors contributing to irreversible damage. Occlusion of MCA in the rat causes a pronounced decline of flow in the neostriatum to less than 10% of normal. The area of low flow is surrounded by a zone 0.2-0.5 mm wide, across which blood flow increases steeply. Beyond this zone, changes in flow are more gradual, and perfusion is reduced to about 1/3 of normal in the adjacent ipsilateral cortex. The MCA occlusion leads to a sharply demarcated infarct and to scattered neuronal injury in the adjacent cortical tissue. It is suggested that the ischemic core is identical with the tissue infarct, i.e. that it is the initial pattern of blood flow which determines the volume and topography of infarction. Waves of spreading depression are detected in the cortical low perfusion area during the first hours of MCA occlusion, and glucose consumption is increased, presumably due to an increased demand for ionic transport. In hyperglycemic animals, the number of spreading depressions is reduced as is the glucose consumption. The repeated waves of spreading depression in combination with partial energy depletion may induce selective neuronal injury in the peri-infarct zone, a suggestion which finds support in the fact that hyperglycemia ameliorates neuronal injury around the infarction.  相似文献   

9.
目的阐明一种新的定量大鼠短暂性大脑中动脉阻塞后轴突损伤程度的研究方法。方法应用动脉腔内插线法制作短暂性局灶性脑缺血模型,并用免疫组织化学方法检测类淀粉样前体蛋白(APP),评估缺血24小时后的轴突损伤。检测大脑中动脉分布区65个轴突丰富的位置,每个位置轴突肿胀处APP阳性为1分,阴性为0分。将确定立体定位水平、神经解剖学位置上的每个分数相加总和,得到每个半球总的APP分数。结果在脑缺血区肿胀、变形的轴突处可检测到APP聚集。短暂性局灶性脑缺血后缺血侧半球总的APP分数和神经元核周体损伤体积分别为47.75±3.24和145.29±25.38mm3。缺血性损伤体积小的大鼠APP免疫反应增加也较小(P<0.01)。结论轴突易受局灶性缺血性损伤,白质和灰质都应受到保护。这种检测轴突缺血性损伤的形态学方法具有可重复性、灵活性、敏感性,可用于评估干预措施对白质病理变化的作用。  相似文献   

10.
11.
Temporal pattern of C1q deposition after transient focal cerebral ischemia   总被引:1,自引:0,他引:1  
Recent studies have focused on elucidating the contribution of individual complement proteins to post-ischemic cellular injury. As the timing of complement activation and deposition after cerebral ischemia is not well understood, our study investigates the temporal pattern of C1q accumulation after experimental murine stroke. Brains were harvested from mice subjected to transient focal cerebral ischemia at 3, 6, 12, and 24 hr post reperfusion. Western blotting and light microscopy were employed to determine the temporal course of C1q protein accumulation and correlate this sequence with infarct evolution observed with TTC staining. Confocal microscopy was utilized to further characterize the cellular localization and characteristics of C1q deposition. Western Blot analysis showed that C1q protein begins to accumulate in the ischemic hemisphere between 3 and 6 hr post-ischemia. Light microscopy confirmed these findings, showing concurrent C1q protein staining of neurons. Confocal microscopy demonstrated co-localization of C1q protein with neuronal cell bodies as well as necrotic cellular debris. These experiments demonstrate the accumulation of C1q protein on neurons during the period of greatest infarct evolution. This data provides information regarding the optimal time window during which a potentially neuroprotective anti-C1q strategy is most likely to achieve therapeutic success.  相似文献   

12.
We have studied the level of products of nitrosative stress, immunoglobulins, and antibodies against nitrated proteins in the cerebrospinal fluid (CSF) and in the neocortex of rats 24 hours after focal ischemia. In the acute stage after ischemia, the level of metabolites of nitric oxide, nitrate, and nitrite, significantly increased in the CSF and in the ischemic neocortex of the animals. In addition, in the CSF of rats, the level of immunoglobulins (Ig) significantly increased and the nitrotyrosine-BSA binding was enhanced. Immunochemical staining of the sections of the brain by anti-rat Ig antibodies revealed their presence in the ischemic focus but not in the contralateral hemisphere. In the ischemic hemisphere in some Ig-positive cells, we observed colocalization of staining with the pro-apoptotic protein Bax. At this stage, in the ischemic hemisphere a membrane attack complex, the product of the terminal stage of complement activation, was detected by immunohistochemistry. Thus, the development of an immune response during the acute stage after experimental stroke is associated with some features of apoptotic cell death and seems to a certain extent to be modulated by nitrosative stress products, such as proteins modified by nitration.  相似文献   

13.
Matrix metalloproteinases (MMPs) degrade the extracellular matrix and carry out key functions during development and after injury. By means of zymography, Western blot and immunohistochemistry, we studied MMP-2 (gelatinase A) and MMP-9 (gelatinase B) in rat brain after focal cerebral ischemia. The control rat brain showed constitutive MMP-2 and, to a lesser extent, MMP-9, which were mainly present as prozymogens. MMP-2 protein was located in the cell body of neurons, glia, and endothelium, whereas MMP-9 was associated to neurons and myelinated fibre tracts. Ischemia greatly increased MMP activation in two temporal waves, in the first one, MMP-9 protein was induced from 4 h to 4 days, and also a small and short-lasting increase in MMP-2 was detected at 4 h. The second wave showed a massive increase in MMP-2 protein expression and activation by day 4, which was compatible with abundant MMP-2 in reactive microglia/macrophages. Our results are compatible with progressive induction of MMP-9 proform, likely in neurons, shortly after ischemia. For MMP-2, the results suggest a discrete production immediately after reperfusion, while a very enhanced expression and activation of MMP-2 attributable to microglia/macrophages occurs on day 4, and it might contribute to the phagocytic action of these reactive cells.  相似文献   

14.
Aquaporin-9 (AQP9) is a new member of the aquaporin family of water-selective channels mainly expressed in liver and testis, presenting the characteristic of also being permeable to various solutes, particularly lactate. Recent data have shown the presence of AQP9 on tanycytes in the rat brain. In the current study, the authors show the expression of AQP9 in astrocytes in the mouse brain and changes in its expression after cerebral ischemia. Indeed, in control mouse, the AQP9 immunolabeling is present on astrocytic processes bordering the subarachnoid space and ventricles. The labeling also is observed on astrocytes in the white matter, hippocampus, hypothalamus, and lateral septum. After focal transient ischemia, an increase of the immunolabeling is detected on astrocytes in periinfarct areas. This AQP9 distribution study in mouse brain suggests a role of AQP9 in water homeostasis in the central nervous system. Furthermore, the overexpression of AQP9 on astrocytes surrounding an ischemic lesion suggests that AQP9 may also play a role in the regulation of postischemia edema and, in view of its permeability to monocarboxylates, in the clearance of lactate from the ischemic focus.  相似文献   

15.
16.
The involvement of matrix metalloproteinases (MMPs) in cerebral ischemia-induced apoptosis was investigated in a model of transient focal cerebral ischemia in rats treated intracerebroventricularly (i.c.v.) with 4-((3-(4-phenoxylphenoxy)propylsulfonyl)methyl)-tetrahydropyran-4-carboxylic acid N-hydroxy amide, a broad spectrum non-peptidic hydroxamic acid MMP inhibitor, and in MMP-9-deficient mice. Our results showed that MMP inhibition reduced DNA fragmentation by 51% (P < 0.001) and cerebral infarct by 60% (P < 0.05) after ischemia. This protection was concomitant with a 29% reduction of cytochrome c release into the cytosol (P < 0.005) and a 54% reduction of calpain-related alpha-spectrin degradation (P < 0.05), as well as with an 84% increase in the immunoreactive signal of the native form of poly(ADP) ribose polymerase (P < 0.01). By contrast, specific targeting of the mmp9 gene in mice did reduce cerebral damage by 34% (P < 0.05) but did not modify the apoptotic response after cerebral ischemia. However, i.c.v. injection of MMP-9-deficient mice with the same broad-spectrum inhibitor used in rats significantly reduced DNA degradation by 32% (P < 0.05) and contributed even further to the protection of the ischemic brain. Together, our pharmacological and genetic results indicate that MMPs other than MMP-9 are actively involved in cerebral ischemia-induced apoptosis.  相似文献   

17.
The X chromosome-linked inhibitor-of-apoptosis protein (XIAP) contributes to apoptosis regulation after a variety of cell death stimuli. XIAP inhibits the caspase reaction via binding to caspases, and is inhibited via binding to the second mitochondria-derived activator of caspase (Smac)/DIABLO to tightly control apoptotic cell death. However, the interaction among XIAP, Smac/DIABLO, and caspases after in vivo cerebral ischemia is not well known. To clarify this issue, the authors examined time-dependent expression and interaction among XIAP, Smac/DIABLO, and activated caspase-9 by immunohistochemistry, Western blot analysis, and immunoprecipitation using an in vivo transient focal cerebral ischemia model. To examine the relationship of the XIAP pathway to the caspase cascade, a pan-caspase inhibitor was administered. XIAP increased concurrently with the release of Smac/DIABLO and the appearance of activated caspase-9 during the early period after reperfusion injury. The bindings of XIAP to Smac/DIABLO and to caspase-9 and the binding of Smac/DIABLO to caspase-9 reached a peak simultaneously after transient focal cerebral ischemia. Neither XIAP nor Smac/DIABLO expression was affected by caspase inhibition. These results suggest that the XIAP pathway was activated upstream of the caspase cascade and that interaction among XIAP, Smac/DIABLO, and caspase-9 plays an important role in the regulation of apoptotic neuronal cell death after transient focal cerebral ischemia.  相似文献   

18.
Proinflammatory cytokines and chemokines are quickly upregulated in response to ischemia/reperfusion (I/R) injury; however, the relationship between I/R-induced oxidative stress and cytokine/chemokine expression has not been elucidated. We investigated the temporal profile of cytokine and chemokine gene expression in transient focal cerebral ischemia using complementary DNA array technology. Among 96 genes studied, 10, 4, 11, and 5 genes were increased at 6, 12, 24, and 72 h of reperfusion, respectively, whereas, 4, 11, 8, and 21 genes, respectively, were decreased. To clarify the relationship between chemokines and oxidative stress, we compared the gene and protein expression of monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein-1 alpha (MIP-1 alpha) in wild-type (WT) mice and copper/zinc-superoxide dismutase (SOD 1) transgenic (Tg) mice. Monocyte chemoattractant protein-1 and MIP-1 alpha mRNA were significantly upregulated at 6 to 12 h of reperfusion. In the SOD 1 Tg mice, however, MCP-1 and MIP-1 alpha mRNA expression was significantly decreased 12 h postinsult. In the WT mice, MCP-1 and MIP-1 alpha protein expression peaked 24 h after onset of reperfusion determined by immunohistochemistry. In the SOD 1 Tg mice, MCP-1 and MIP-1 alpha immunopositive cells were reduced, as were concentrations of these proteins (measured by enzyme-linked immunosorbent assay) at 24 h of reperfusion. Our results suggest that MCP-1 and MIP-1 alpha expression is influenced by I/R-induced oxidative stress after transient focal stroke.  相似文献   

19.
Poly(ADP-ribose) polymerase (PARP) was shown to be detrimental in cerebral ischemia but the mechanisms whereby PARP is deleterious have yet to be determined. They may include a role in neutrophil infiltration known to aggravate ischemic damage. In this context, we investigated the effect of 3-aminobenzamide (3-AB), a PARP inhibitor, on brain damage and neutrophil infiltration after transient focal cerebral ischemia in mice. Ischemia was induced in male Swiss mice, anaesthetized with chloral hydrate (400 mg/kg, i.p.), by a 15-min-occlusion of the left middle cerebral artery using an intraluminal suture. Treatments with 3-AB were first administered intraperitoneally 15 min before reperfusion and endpoints measured at 24 h. Among the range of dosages studied (20-320 mg/kg), 40 mg/kg gave the maximal neuroprotection with a 30% decrease in the infarct volume and tended to improve the neurological score evaluated by a grip test. The same dosage was, however, devoid of effect when injection was delayed 2 or 6 h after reperfusion. Myeloperoxidase (MPO) activity used as an index of neutrophil infiltration showed that infiltration peaked 48 h after reperfusion in our model. At this time point, 3-AB (40 mg/kg given 15 min before reperfusion) markedly reduced the neutrophil infiltration, as evidenced by a 72%-decrease in MPO activity, and was still neuroprotective. Our results confirm that 3-AB reduces brain damage. Moreover, for the first time, a quantitative study shows that 3-AB decreases neutrophil infiltration elicited by cerebral ischemia.  相似文献   

20.
Recent investigations on transient focal cerebral ischemia suggested recovery of energy metabolism during early reperfusion, but followed by secondary energy failure. As disturbances of energy metabolism are reflected by changes of the apparent diffusion coefficient (ADC) of water, the aim of the current study was to follow the dynamics of the ADC during 1 hour of middle cerebral artery occlusion (MCAO) and 10 hours of reperfusion. The right MCA was occluded in male Wistar rats inside the magnet using a remotely controlled thread occlusion model. Diffusion-, perfusion-, and T2-weighted images were performed repetitively, and ADC, perfusion, and T2 maps were calculated and normalized to the respective preischemic value. The lesion volume at each time point was defined by ADC < 80% of control. At the end of 1-hour MCAO the hemispheric lesion volume was 22.3 +/- 9.0%; it decreased to 6.4 +/- 5.7% in the first 2 hours of reperfusion (P < 0.01), but then increased again, and by the end of 10 hours of reperfusion reached 17.3 +/- 9.3%. The mean relative ADC in the end ischemic lesion volume significantly improved within 2 hours of reperfusion (from 65.7 +/- 1.2% to 90.1 +/- 6.7% of control), but later declined and decreased to 75.4 +/- 7.3% of control by the end of the experiment. Pixels with secondary deterioration of ADC showed a continuous increase of T2 value during the first 2 hours of reperfusion in spite of ADC improvement, indicating improving cytotoxic, but generation of vasogenic edema during early reperfusion. A significant decrease of the perfusion level was not observed during 10 hours of recirculation. The authors conclude that the improvement of ADC in the early phase of reperfusion may be followed by secondary deterioration that was not caused by delayed hypoperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号