首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Layer-by-layer deposition of polyelectrolyte multilayer (PEM) thin films has recently been applied to biomaterial applications. This simple and versatile technique provides a wide variety of potential utilization by insertion of biomolecules such as cell adhesion peptides. In this work dual peptides containing RGD (a cell-binding domain) and LHRRVKI (a heparin-binding domain) were immobilized onto polystyrene by the PEM technique and the effects on osteoblast cell culture were investigated. These peptides were conjugated to the amino groups of poly(allylamine hydrochloride) and then adsorbed onto the top of a 10 layer poly(allylamine hydrochloride)/poly(acrylic acid) film assembled at either pH 2.0 or pH 6.5. Osteoblasts, isolated from neonatal rat calvariae, were then seeded and cultured on the peptide-conjugated surfaces. We found that the cells adhered and grew better on the RGD-conjugated PEM films. The osteoblasts exhibited a better differentiated phenotype on the pH 2.0 films than the pH 6.5 films with respect to calcium deposition. The incorporation of LHRRVKI did not support cell adhesion, growth and matrix mineral deposition. Our results showed that the efficacy of RGD conjugation on osteoblast behavior was affected by the base PEM film.  相似文献   

2.
We have designed multifunctional peptide fibrils using bioactive laminin-derived peptides and evaluated their potential as a biomedical material for tissue engineering. The Leu-Arg-Gly-Asp-Asn (LRGDN) peptide derived from laminin-111, which contains an RGD sequence bound to integrin αvβ3, was added to the N-terminus of the four amyloidogenic cell-adhesive laminin-derived peptides (A119: LSNIDYILIKAS, AG97: SAKVDAIGLEIV, B133: DISTKYFQMSLE, and B160: VILQQSAADIAR). The RGD-conjugated peptides were stained with Congo red and exhibited amyloid-like fibril formation in the electron microscopic. The RGD-conjugated peptides promoted human dermal fibroblasts spreading with well-organized actin stress fibers and focal contacts. Human dermal fibroblast attachment to the RGD-conjugated peptides was inhibited by anti-αv integrin antibody. Further, cell attachment to B133 was inhibited by anti-α2 and anti-β1 integrin antibodies, whereas attachment to RGD-B133 was inhibited by anti-αv and anti-β1 integrin antibodies. These results suggest that the RGD-conjugated peptides interact with integrin αvβ3 and that RGD-B133 interacts with both integrin αvβ3 and integrin β1. The RGD-conjugated peptide fibrils promoted neurite outgrowth in a peptide-dependent manner. These results support that biologically active sequence-conjugated peptide fibrils interact in a receptor-specific manner with cells and promote multifunctional activities. These fibrils may have use as biological supports for cell-specific tissue engineering.  相似文献   

3.
Control of cell adhesion on poly(methyl methacrylate)   总被引:2,自引:0,他引:2  
Patel S  Thakar RG  Wong J  McLeod SD  Li S 《Biomaterials》2006,27(14):2890-2897
Keratoprostheses have been constructed from a wide variety of transparent materials, including poly(methyl methacrylate) (PMMA). However, the success of keratoprosthesis has been plagued by numerous shortcomings that include the weakening of the implant-host interface due to weak cell adhesion and opaque fibrous membrane formation over the inner surface of the implant due to fibroblast attachment. An effective solution requires a surface modification that would selectively allow enhanced cell attachment at the implant-host interface and reduced cell attachment over the interior surface of the implant. Here, we have developed a novel and simple peptide conjugation scheme to modify PMMA surfaces, which allowed for region-specific control of cell adhesion. This method uses di-amino-PEG, which can be grafted onto PMMA using hydrolysis or aminolysis method. PEG can resist cell adhesion and protein adsorption. The functionalization of grafted di-amino-PEG molecules with RGD peptide not only restored cell adhesion to the surfaces, but also enhanced cell attachment and spreading as compared to untreated PMMA surfaces. Long-term cell migration and micropatterning studies clearly indicated that PEG-PMMA surfaces with and without RGD conjugation can be used to differentiate cell adhesion and control cell attachment spatially on PMMA, which will have potential applications in the modification of keratoprostheses.  相似文献   

4.
INTRODUCTION Biomaterials play an importantrole in human disease- treatmentand healing〔1,2〕.Due to the good mechanical property,PET is used to the coating of artificial heartvalve,the film of mending hearts and artificial vessel etc〔3〕.But the imperfection isthe low capability of surface hydrophile leading to the high static and low water ad-sorption〔4〕.In the application,traditional artificial cardiovascular materials( e.g.PET) have blood coagulation,alexin- activation and other…  相似文献   

5.
Titanium-based biomaterials for endosseous implants have found widespread applications in the orthopedic, maxillofacial, and dental domains. Indeed, the surface characteristics such as their chemical modification control considerably the cellular response and, subsequently, the quality and the quantity of new-formed bone around the implant. In this study, human osteoprogenitor (HOP) cell adhesion on different titanium surfaces functionalized with hydroxyapatite (HA), type I collagen, or Arg-Gly-Asp (RGD)-containing peptides is investigated by the quartz crystal resonators and by confocal laser scanning microscopy (CLSM) for the imaging of focal contact formation. Data obtained by quartz crystal resonator technique revealed that RGD-containing peptides alone increase HOP cell adhesion in early time period of culture. Moreover, association of RGD-containing peptides with either type I collagen or with HA layers induces an additive effect on HOP cell adhesion compared to Ti-Coll or Ti-HA. CLSM shows both the area of focal contact by cell unit and the cytoskeleton network organization to differ according to the surfaces. Interestingly, association of RGD-containing peptides with HA layers induces an additive effect on focal contact formation on HOP cells compared to Ti-HA alone. These data confirm that an RGD peptide effect occurs in the early time of culture, which is beneficial for osteoblast to spreading, differentiation, and survival.  相似文献   

6.
The ability of biomaterial surfaces to regulate cell behavior requires control over surface chemistry and microstructure. One of the greatest challenges with silicon-based biomedical microdevices such as those recently developed for neural stimulation, implantable encapsulation, biosensors, and drug delivery, is to improve biocompatibility and tissue integration. This may be achieved by modifying the exposed silicon surface with bioactive peptides. In this study, Arg-Gly-Asp (RGD) peptide conjugated surfaces were prepared and characterized. The effect of these surfaces on fibroblast adhesion and proliferation was examined over 4 days. Silicon surfaces coupled with a synthetic RGD peptide, as characterized with X-ray photoelectron spectroscopy and atomic force microscopy, display enhanced cell proliferation and bioactivity. Results demonstrate an almost three-fold greater cell attachment! proliferation on RGD immobilized surfaces compared to unmodified (control) silicon surfaces. Modulating the biological response of inorganic materials such as silicon will allow us to design more appropriate interfaces for implantable diagnostic and therapeutic silicon-based microdevices.  相似文献   

7.
RGD是许多粘附蛋白结构中的高度保守序列,与细胞在生物材料表面的粘附、增殖密切相关。本研究在聚酯薄膜表面分别预衬纤维粘连蛋白和共价接枝RGD三肽,然后在不同聚酯材料上种植体外培养的人脐静脉内皮细胞,结果显示RGD可明显促进细胞在材料表面的粘附和增殖,与纤维粘连蛋白相比,RGD促进细胞粘附的作用更为明显,而在细胞增殖方面,二者的作用无显著性差异。本研究为改进生物材料的表面设计,促进心血管移植物的内皮化提供了一个切实可行的思路。  相似文献   

8.
Prior studies from our laboratory have shown that RGD peptides increase the attachment of mesenchymal stem cells (MSCs) to hydroxyapatite (HA), however, RGD does not induce cell spreading when coupled to this type of biomaterial. In an effort to improve MSC spreading, and possibly cell attachment, proteoglycan-binding peptides (KRSR or FHRRIKA) were combined with RGD in the current study. It was found that the peptide combinations did not enhance MSC attachment relative to RGD alone, although a slight amount of spreading was elicited by both KRSR and FHRRIKA. Similar results were obtained with proteoglycan-binding peptides modified with a heptaglutamate domain, a motif that improves peptide tethering to HA. To determine whether differentiation status affected cell responses, MSCs were in vitro differentiated into osteoblasts, and evaluated as before. These experiments revealed that, like MSCs, osteoblasts did not adhere in greater numbers to the peptide combinations. Finally, none of the peptides or peptide combinations were able to stimulate the robust amount of cell adhesion and spreading elicited by serum-coated HA surfaces (of note, five different species of serum were tested). Given the propensity of HA to adsorb proadhesive proteins from blood/serum, we question the utility of functionalizing HA with RGD and/or proteoglycan-binding peptides.  相似文献   

9.
With the advances made in surface patterning by micro- and nanotechnology, alternative methods to immobilize biomolecules for different purposes are highly desired. RGD peptides are commonly used to create cell-attractive surfaces for cell-biological and also medical applications. We have developed a fast, one-step method to bind RGD peptides covalently to surfaces by thiourea formation, which can be applied to structured and unstructured materials. RGD peptides were fused to an isothiocyanate anchor during synthesis and directly immobilized on amino-terminated surfaces. The spreading behavior of fibroblasts and the formation of focal contacts served to prove the applicability of the coupling method. Two different linear peptides and one cyclic peptide were compared. All the peptides induced spreading behavior and the formation of focal contacts in murine fibroblasts. Adhesion was specific as cells neither recognized the corresponding negative control peptides nor spread in the presence of soluble H-RGDS-OH peptide. We successfully applied our coupling method to functionalize surface patterns created by microcontact printing (μCP) and chemical etching. Cells recognize areas selectively coated with RGD-containing peptides, proliferate and maintain this preference during long-term cultivation. Our method significantly facilitates surface modification with any kind of peptide – even for the preparation of peptide-functionalized small surface areas.  相似文献   

10.
A nonfouling peptide grafted polymer was synthesized that can promote endothelial cell (EC) binding. The polymer was composed of hexyl methacrylate, methyl methacrylate, poly(ethylene glycol) methacrylate, and CGRGDS peptide. The peptide was incorporated into the polymer system either by a chain transfer reaction or by coupling to an acrylate-PEG-N-hydroxysuccinimide (NHS) comonomer. The introduction of PEG chains minimizes protein adsorption. Human umbilical vein ECs and endothelial colony forming cells were cultured on these surfaces in short term and long-term studies. A difference in number and morphology of ECs was observed depending on the method of peptide incorporation. Both cell types adhered better to polymer films containing NHS coupled RGD peptide after 2 h even in the presence of albumin but significant cell detachment occurred after 4 days. Polymer solutions were electrospun into fibrous scaffolds. Both nonfouling and peptide binding characteristics were retained after processing.  相似文献   

11.
We have previously reported that star shaped poly(ethylene oxide-stat-propylene oxide) macromers with 80% EO content and isocyanate functional groups at the distal ends [NCO-sP(EO-stat-PO)] can be used to generate coatings that are non-adhesive but easily functionalized for specific cell adhesion. In the present study, we investigated whether the NCO-sP(EO-stat-PO) surfaces maintain peptide configuration-specific cell-surface interactions or if differences between dissimilar binding molecules are concealed by the coating. To this end, we have covalently immobilized both linear-RGD peptides (gRGDsc) and cyclic-RGD (RGDfK) peptides in such coatings. Subsequently, SaOS-2 or human multipotent mesenchymal stromal cells (MSC) were seeded on these substrates. Cell adhesion, spreading and survival was observed for up to 30 days. The time span for cell adherence was not different on linear and cyclic RGD peptides, but was shorter in comparison to the unmodified glass surface. MSC proliferation on cyclic RGDfK modified coatings was 4 times higher than on films functionalized by linear gRGDsc sequences, underlining that the NCO-sP(EO-stat-PO) film preserves the configuration-specific biochemical peptide properties. Under basal conditions, MSC expressed osteogenic marker genes after 14 days on cyclic RGD peptides, but not on linear RGD peptides or the unmodified glass surfaces. Our results indicate specific effects of these adhesion peptides on MSC biology and show that this coating system is useful for selective testing of cellular interactions with adhesive ligands.  相似文献   

12.
Previous studies reported on the delivery of vitamin E to the surface of a polycarbonate polyurethane (PCNU) to produce antioxidant surfaces, using a bioactive fluorinated surface modifer (BFSM). In the current report, a cell adhesive peptide sequence was coupled to the BFSM, and when blended into PCNU, generated a cell adhesive substrate. An NH2-GK*GRGD-CONH2 peptide sequence (referred to as RGD) with a dansyl label (*) on the lysine residue was coupled via the N-terminal to a BFSM precursor molecule. The resulting RGD BFSM was purified and the pmol peptide/mg BFSM value was assayed by amino acid quantification. The migration of the RGD BFSM in a PCNU blend was confirmed by X-ray photoelectron spectroscopy analysis. U937 macrophage-like cells and human monocytes were seeded onto the PCNU and blends of PCNU with non-bioactive fluorinated surface modifier or the RGD BFSM, in order to study the cell response. Both U937 cells and human monocytes adhered in greater numbers to the RGD BFSM substrate when compared to unmodified PCNU or the blend of PCNU with the non-bioactive fluorinated surface modifying macromolecule substrate. The study demonstrated a novel approach for the introduction of peptides onto the surface of polymers by modifying the surface from within the polymer as opposed to the use of cumbersome post-surface modification techniques. The generation of a peptide substrate points to the possibility of producing complex bioactive surfaces using various peptide BFSMs or pharmaceuticals simultaneously to manipulate cell functions.  相似文献   

13.
In this study, we investigated the corneal epithelial cell growth rate and adhesion to novel hydrogels with (1) extracellular matrix proteins [fibronectin, laminin, substance P, and insulin-like growth factor-1 (IGF-1)] and (2) peptide sequences [RGD and fibronectin adhesion-promoting peptide (FAP)] tethered to their surface on poly(ethylene glycol) (PEG) chains. The growth rate to confluence of primary rabbit cornea epithelial cells was compared for plain polymethacrylic acid-co-hydroxyethyl methacrylate (PHEMA/MAA) hydrogels, PHEMA/MAA hydrogels coated with extracellular matrix proteins or peptides, and PHEMA/MAA hydrogels with tethered extracellular matrix proteins or peptides on the surface. The development of focal adhesions by the epithelial cells grown on the surfaces was determined by F-actin staining. Little to no epithelial cell growth occurred on the plain hydrogel surfaces throughout the 15-day culture period. Of the coated hydrogels, only the fibronectin-coated surfaces showed a significant increase in cell growth compared to plain hydrogels (p < 0.009). However, even these surfaces reached a maximum of only 20% confluence. Laminin, fibronectin adhesion-promoting peptide (FAP), and fibronectin/laminin (1:1) tether-modified hydrogels all achieved 100% confluence by the end of the culture period, although the rates at which confluence was reached differed. F-actin staining showed that focal adhesions were formed for the laminin, FAP, and fibronectin/laminin tether-modified surfaces. The results support the hypothesis that tethering certain extracellular matrix proteins and/or peptides to the hydrogel surface enhances epithelial cell growth and adhesion, compared with that seen for protein-coated or plain hydrogel surfaces.  相似文献   

14.
M.-C. Durrieu 《ITBM》2005,26(3):1311
One promising strategy to control the interactions between biomaterial surfaces and attaching cells involves grafting of adhesion peptides as RGD peptides (R: arginine; G: glycine; D: aspartic acid) to materials on which protein adsorption, which mediates unspecific cell adhesion, is essentially suppressed. This review gives an overview of RGD modified materials, that have been used for cell adhesion, and provides information about technical aspects of RGD immobilization on materials. The impacts of RGD peptide surface density, spatial arrangement as well as integrin affinity and selectivity on cell responses like adhesion and migration are discussed. We have tried to relate one of numerous scientifics adventures initiated by Charles Baquey within our laboratory. This review is dedicated to him for his enthusiasm in the development of project and for his wish of always leading of a professional blooming of his students.  相似文献   

15.
Recently, the multipin approach for simultaneous multiple peptide synthesis was applied to the analysis of T cell determinants by using a novel cleavage method (Maeji et al., 1990). A diketopiperazine forming linker allowed cleavage of peptides into aqueous buffer which, without further purification, could be used immediately in cell culture assays. Another potential application of the technique is the simultaneous cleavage and coupling of peptides to immunogenic carriers. Without further purification the resulting conjugates can be used for the production of antipeptide antisera. The choice of carrier and conjugation chemistry is not restricted as peptide/pin cleavage occurs in aqueous solution over a range of pH and ionic strength. The method was assessed using the 2,4-dinitrophenyl group as a model hapten, diphtheria toxoid as the carrier, and N-(epsilon-maleimidocaproyloxy)succinimide as the cross-linking reagent. The resulting DNP-DT conjugate was used to prepare high titered specific anti-DNP antisera in mice.  相似文献   

16.
Peptides containing the sequence of arginine-glycine-aspartate (RGD), a famous adhesion moiety, can specifically conjugate integrins in cell membranes, and are usually applied to enhance cell adhesion after linking to solid substrates in tissue engineering or to nanoparticles in targeting delivery. This paper reveals, however, that free RGD peptides can assist in preventing tissue adhesion by blocking focal adhesion between cells and surfaces of barrier devices. In order to avoid a rapid peptide loss after straightforward injection of a peptide solution, we employed a thermosensitive injectable hydrogel composed of a biodegradable block copolymer poly(ε-caprolactone-co-lactide)-poly(ethylene glycol)-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) to encapsulate peptides cyclo(-RGDfK-). A sustainable release for one week was achieved in vitro. The rabbit model of sidewall defect and bowel abrasion was selected to examine the in vivo anti-adhesion efficacy. It reveals a significant reduction of postoperative peritoneal adhesion in the group of RGD-loaded PCLA-PEG-PCLA hydrogels. We interpret this excellent efficacy by the combination of two effects: first, our hydrogel affords a physical barrier to prevent adhesion between injured abdominal wall and cecum; second, the RGD molecules as integrin blockers released from the hydrogel assist the anti-adhesion.  相似文献   

17.
Immobilization of RGD peptides on titanium (Ti) surfaces enhances implant bone healing by promoting early osteoblastic cell attachment and subsequent differentiation by facilitating integrin binding. Our previous studies have demonstrated the efficacy of RGD peptide immobilization on Ti surfaces through the electrodeposition of poly(ethylene glycol) (PEG) (RGD/PEG/Ti), which exhibited good chemical stability and bonding. The RGD/PEG/Ti surface promoted differentiation and mineralization of pre-osteoblasts. This study investigated the in vivo bone healing capacity of the RGD/PEG/Ti surface for biomedical application as a more osteoconductive implant surface in dentistry. The RGD/PEG/Ti surface was produced on an osteoconductive implant surface, i.e. the grit blasted micro-rough surface of a commercial oral implant. The osteoconductivity of the RGD/PEG/Ti surface was compared by histomorphometric evaluation with an RGD peptide-coated surface obtained by simple adsorption in rabbit cancellous bone after 2 and 4 weeks healing. The RGD/PEG/Ti implants displayed a high degree of direct bone apposition in cancellous bone and achieved greater active bone apposition, even in areas of poor surrounding bone. Significant increases in the bone to implant contact percentage were observed for RGD/PEG/Ti implants compared with RGD-coated Ti implants obtained by simple adsorption both after 2 and 4 weeks healing (P<0.05). These results demonstrate that RGD peptide immobilization on a Ti surface through electrodeposited PEG may be an effective method for enhancing bone healing with commercial micro-rough surface oral implants in cancellous bone by achieving rapid bone apposition on the implant surface.  相似文献   

18.
Synthetic peptides are widely used in indirect ELISA to detect and characterize specific antibodies in biological samples. Small peptides are not efficiently immobilized on plastic surfaces by simple adsorption, and the conjugation to carrier proteins with different binding techniques is the method of choice. Common techniques to conjugate peptide antigens to carrier proteins and to subsequently purify such complexes are time consuming, expensive, and occasionally abrogate immunogenicity of peptides. In this report we describe a simple, fast and inexpensive alternative protocol to immobilize synthetic peptides to plastic surfaces for standard ELISA. The technique is based on use of maleimide-activated bovine serum albumin or keyhole limpet hemocyanin as a protein anchor adsorbed on the polystyrene surface of the microtiter plate. Following adsorption of the carrier protein, sulfhydryl-containing peptides are cross-linked with an in-well reaction, allowing their correct orientation and availability to antibody binding, avoiding the time consuming steps needed to purify the hapten-carrier complexes. The immunoreactivity of peptides was tested by using both monoclonal and polyclonal antibodies in standard ELISA assays, and compared with established coating methods.  相似文献   

19.
Mimicking endogenous bone-binding proteins, RGD peptides have been synthesized with polyacidic amino acid domains in order to ionically tether the peptides to bone-like synthetic biomaterials, including hydroxyapatite (HA). However, a direct comparison of unmodified RGD with polyacidic-conjugated RGD has not been performed, and thus a benefit for the acidic domain has not been established. We evaluated the peptide/HA bond of RGD peptides with and without an attached polyglutamate sequence (E(7)), as well as examined mesenchymal stem cell (MSC) adhesion and morphology as they were affected by the conjugated peptide. We found that significantly more E(7)RGD was bound to HA than RGD at all coating concentrations tested, and moreover, more E(7)RGD was retained on the HA surface even after extended washing in serum-free media. Consistent with in vitro results, higher levels of E(7)RGD than RGD remained on HA that had been implanted in vivo for 24 h, indicating that the polyacidic domain improved peptide-binding efficiency. At several peptide concentrations, E(7)RGD increased cell adhesion compared to RGD surfaces, establishing a biological benefit for the E(7) modification. In addition, HA pre-coated sequentially with low-density E(7)RGD (1-10 microg/ml) and serum (FBS) stimulated cell adhesion and spreading, compared to either coating alone, suggesting that an ionic linkage allows for the potential adsorption of serum proteins to unoccupied sites, which may be important for bone formation in vivo. Collectively, these results suggest that tethering peptides to HA via a polyglutamate domain is an effective method for improving the peptide/HA bond, as well as for enhancing MSC adhesion.  相似文献   

20.
Hyaluronan (HA) hydrogels resist attachment and spreading of fibroblasts and most other mammalian cell types. A thiol-modified HA (3,3'-dithiobis(propanoic dihydrazide) [HA-DTPH]) was modified with peptides containing the Arg-Gly-Asp (RGD) sequence and then crosslinked with polyethylene glycol (PEG) diacrylate (PEGDA) to create a biomaterial that supported cell attachment, spreading, and proliferation. The hydrogels were evaluated in vitro and in vivo in three assay systems. First, the behavior of human and murine fibroblasts on the surface of the hydrogels was evaluated. The concentration and structure of the RGD peptides and the length of the PEG spacer influenced cell attachment and spreading. Second, murine fibroblasts were seeded into HA-DTPH solutions and encapsulated via in situ crosslinking with or without bound RGD peptides. Cells remained viable and proliferated within the hydrogel for 15 days in vitro. Although the RGD peptides significantly enhanced cell proliferation on the hydrogel surface, the cell proliferation inside the hydrogel in vitro was increased only modestly. Third, HA-DTPH/PEGDA/peptide hydrogels were evaluated as injectable tissue engineering materials in vivo. A suspension of murine fibroblasts in HA-DTPH was crosslinked using PEGDA plus PEGDA peptide, and the viscous, gelling mixture was injected subcutaneously into the flanks of nude mice; gels formed in vivo following injection. After 4 weeks, growth of new fibrous tissue had been accelerated by the sense RGD peptides. Thus, attachment, spreading, and proliferation of cells is dramatically enhanced on RGD-modified surfaces but only modestly accelerated in vivo tissue formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号