首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Major histocompatibility complex (MHC) class I molecules, as well as MHC class I-bound peptides, are known to recycle between the cell surface and an undefined, endosomal-like compartment. Little is known about the functional significance of this process. We have explored this using two different forms of the H-2Db molecule expressed in transgenic mice, either transmembranous (Db-tm) or with a glycophosphatidylinositol (GPI)-lipid anchor (Db-GPI). The recycling capacity of peptides bound to Db-tm and Db-GPI was investigated using glycosylated Db-binding glycopeptides, which were detected by flow cytometry. Only the tm form of Db was found to readily internalize and recycle glycopeptides to the cell surface. When transgenic mice were immunized with influenza A virus (PR8) strain and tested for cytotoxic T lymphocyte (CTL) responses against an immunedominant nucleoprotein epitope (366–374, ASNENMETM), onyl Db-tm mice were found to generate specific CTL responses. The results support the idea that membrane recycling of MHC class I-bound peptides on antigen-presenting cells may be important for the generation of certain CTL responses.  相似文献   

2.
The peptides recognized by an H-2Db-restricted CD8 cytotoxic T lymphocyte (CTL) clone which is specific for the 60-kDa mycobacterial heat shock protein (hsp) and cross-reacts with stressed host cells were characterized. None of the nonapeptides from hsp60 conforming to the H-2Db binding motif were able to sensitize target cells for lysis by this CTL clone. Sequence analysis of the stimulatory fraction from a trypsin digest of hsp60, together with synthetic peptide studies, defined a cluster of overlapping epitopes. Carboxy-terminal extension by at least one amino acid of the nonamer predicted to bind best to H-2Db was essential for CTL recognition. Two such elongated peptides, a 10-mer and a 12-mer stimulated the clone at similarly low concentrations in the 100 pM range. We assume that these two peptides comply best with the natural epitope. In contrast, the 11-mer was inactive. The stimulatory 10-mer bound to H-2Db with an efficacy similar to that of the nonapeptide corresponding to the H-2Db motif, as revealed by peptide induced major histocompatibility complex (MHC) surface expression on RMA-S cells and competitive blocking of epitope recognition by the nonamer. Binding of these carboxy-terminally extended peptides to the MHC groove can be explained by anchoring through the amino acid residue Asn in position 5 of the peptide and by intrusion of the hydrophobic carboxy-terminal Ala (10-mer) or Leu (12-mer), but not Gly (11-mer), into the hydrophobic pocket of the H-2Db cleft. Because the carboxy-terminal part is thus larger than predicted this region of the peptide may arch up from the binding groove. We assume that recognition of steric components of the MHC/peptide complex broaden the range of epitope specificity for a single T cell receptor. This flexibility not only promotes recognition of several overlapping peptides from a single antigen, but may also increase the chance of cross-reaction with similar peptides from unrelated proteins, including autoantigens. Consistent with this latter assumption, the T cell clone cross-recognizes mycobacterial hsp60 and stressed host cells.  相似文献   

3.
We describe the effect of the proteasome specific inhibitor lactacystin on the metabolic stability of influenza nucleoprotein (NP) and on the generation of antigens presented by human and murine class I molecules of the major histocompatibility complex to cytotoxic T lymphocytes (CTL). We show that cells treated with lactacystin fail to present influenza antigens to influenza-specific CTL, but retain the capacity to present defined epitopes expressed as peptides intracellularly by recombinant vaccinia viruses. This block in antigen presentation can be overcome by expressing the viral protein within the lumen of the endoplasmic reticulum, confirming the specificity of lactacystin for cytosolic proteases. We also show that the effect of lactacystin on antigen presentation correlates with the block of breakdown of a rapidly degraded form of the influenza NP linked to ubiquitin. These results demonstrate that proteasome-dependent degradation plays an important role in the cytosolic generation of CTL epitopes.  相似文献   

4.
A peptide corresponding to amino acids 1 through 23 of Ras protein containing a mutation at position 12 was used to induce cytotoxic T lymphocytes (CTL) in mice. Although the CTL were CD8+ and expressed α, β T cell antigen receptors (TCR), their major histocompatibility complex (MHC)-restriction was unconventional. They recognized peptide-treated murine cells of different H-2 haplotypes, but not MHC class I-negative cells. Human HLA class I molecules did not present Ras peptides and hybrid human/mouse MHC molecules revealed that all three extracellular domains α1, α2 and α3 were required for recognition by peptide-specific CTL. Shortening the 23-mer peptide by 5 residues at either the amino or carboxy terminus resulted in loss of CTL recognition. This demonstrates an unusual form of antigen recognition by mouse CTL in which peptide presentation requires murine H-2 class I molecules but is not class I allele restricted, and the peptides recognized are much larger than peptides in conventional class I-restricted responses.  相似文献   

5.
This study extends our previous observation that glycopeptides bind to class I major histocompatibility complex (MHC) molecules and elicit carbohydrate-specific CTL responses. The Sendai virus nucleoprotein wild-type (WT) peptide (FAPGNYPAL) binds H-2Db using the P5-Asn as an anchor. The peptide K2 carrying a P5 serine substitution did not bind Db. Surprisingly, glycosylation of the serine (K2-O-GlcNAc) with N-acetylglucosamine (GlcNAc), a novel cytosolic O-linked glycosylation, partially restored peptide binding to Db. We argue that the N-acetyl group of GlcNAc may fulfil the hydrogen bonding requirements of the Db pocket which normally accomodates P5-Asn. Glycosylation of the P5-Asn residue itself abrogated binding similar to K2, probably for steric reasons. The peptide K2-O-GlcNAc readily elicited Db-restricted cytotoxic T lymphocytes (CTL), which did not cross-react with K2 or WT. However, all Db-restricted CTL raised against K2-O-GlcNAc cross-reacted strongly with another glycopeptide, K3-O-GlcNAc, where the GlcNAc substitution is on a neighboring P4-Ser. Furthermore, Db-restricted CTL clones raised against K2-O-GlcNAc or K3-O-GlcNAc displayed a striking TCR conservation. Our interpretation is that the carbohydrate of K2-O-GlcNAc not only mediates binding to Db, but also interacts with the TCR in such a way as to mimic K3-O-GlcNAc. This unusual example of molecular mimicry extends the known effects of peptide glycosylation from what we and others have previously reported: glycosylation may create a T cell neo-epitope, or, conversely, abrogate recognition. Alternatively, glycosylation may block peptide binding to MHC class I and finally, as reported here, restore binding, presumably through direct interaction of the carbohydrate with the MHC molecule.  相似文献   

6.
TAP1 -/- and β2-microglobulin (β2m) -/- mice (H-2b background) express very low levels of major histocompatibility complex (MHC) class I molecules on the cell surface. Consequently these mice have low numbers of mature CD8+ T lymphocytes. However, TAP1 -/- mice have significantly higher numbers of CD8+ T cells than β2m -/- mice. Alloreactive CD8+ cytotoxic T lymphocyte (CTL) responses were also stronger in TAP1 -/- mice than in β2m -/- mice. Alloreactive CTL generated in TAP1 -/- and β2m -/- mice cross-react with H-2b-expressing cells. Surprisingly, such cross-reactivity was stronger with alloreactive CTL from β2m -/- mice than with similar cells from TAP1 -/- mice. The β2m -/- mice also responded more strongly when primed with and tested against cells expressing normal levels of H-2b MHC class I molecules. Such H-2b-reactive CD8+ CTL from β2m -/- mice but not from TAP1 -/- mice also reacted with TAP1 -/- and TAP2-deficient RMA-S cells. In contrast, H-2b-reactive CD8+ CTL from neither β2m -/- mice nor TAP1 -/- mice killed β2m -/- cells. In line with these results, β2m -/- mice also responded when primed and tested against TAP1 -/- cells. We conclude that the reactivity of residual CD8+ T cells differs between TAP1 -/- and β2m -/- mice. The MHC class I-deficient phenotype of TAP1 -/- and β2m -/- mice is not equivalent: class I expression differs between the two mouse lines with regard to quality as well as quantity. We propose that the differences observed in numbers of CD8+ T cells, their ability to react with alloantigens and their cross-reactivity with normal H-2b class I are caused by differences in the expression of MHC class I ligands on selecting cells in the thymus.  相似文献   

7.
The extent to which one compartment of the immune system depends on another for efficient function is important to establish to fully comprehend disease phenotypes arising from selective immunodeficiency. Just how much the major histocompatibility complex class I-restricted cytotoxic T cell responses depend on class II-restricted T cell help has been controversial. Using the influenza A virus system, we show that mice unable to make class II-restricted T cell responses due to an engineered defect in class II molecule expression are able to mount virtually normal cytotoxic responses when bred under specific-pathogen-free conditions. However, when exposed to the more diverse environmental challenges of a conventional breeding facility, a situation that more closely parallels immuno-deficient states in man, they show impaired cytotoxic responses.  相似文献   

8.
The murine antigen-processing-defective mutant cell line RMA-S is leaky in the presentation of certain endogenously synthesized minor histocompatibility and viral antigens to major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTL). The viral antigens include influenza virus nucleoprotein, vesicular stomatitis virus (VSV) nucleocapsid and Rauscher murine leukemia virus (MuLV) antigen. Here we demonstrate Sendai virus antigen presentation by the HAM2 (murine TAP2, transporter associated with antigen presentation type 2)-defective RMA-S cell line and compare antigen presentation after restoration of the defect by murine TAP1/2 gene transfection. Kinetic studies revealed that RMA-S cells required 2-3 h longer incubation and approximately 10 times higher doses of Sendai virus to reach the same level of killing as the RMA parental line. After transfection of RMA-S cells with the murine TAP1/2 gene, Sendai virus antigen presentation was restored to levels of the RMA wild-type line with regard to time of virus infection and dose of virus needed for sensitizing target cells. The presentation of Sendai virus antigen in RMA-S cells was sensitive to brefeldin A (BFA), suggesting that the presentation was mediated via the endogenous pathway. Our findings comfirmed leakiness of antigen presentation in RMA-S cells and extended it to Sendai virus. The results underscored the role for intact expression of the TAP 1/2 molecules for efficient MHC class I-mediated antigen presentation.  相似文献   

9.
Mice deficient in the gene encoding the transporter associated with antigen processing 1 (TAP1) are defective in providing major histocompatibility complex (MHC) class I molecules with cytosolic peptides. Consequently, these mice express reduced levels of MHC class I glycoproteins on the cell surface, and have reduced numbers of CD8+ T cells in the periphery. In the present study, we have addressed the diversity and specificity of the peripheral CD8+ T cell population in TAP1 -/- mice. CD8+ T cells were polyclonal with regard to T cell receptor (TCR) Vβ expression. Overall, Vβ usage in TAP1 -/- mice appeared to be very similar to that in wild-type mice, with significantly reduced levels of Vβ5.1/5.2-expressing CD8+ T cells as the only clear exception. This polyclonal population of CD8+ T cells readily mounted epitope-specific CTL responses against four out of five well-defined MHC class I-restricted peptides. In contrast to allospecific CTL, peptide-specific CTL from TAP1 -/- mice did not cross-react on cells expressing normal levels of H-2b class I. The present results demonstrate that a polyclonal CD8+ T cell repertoire, displaying both diversity and peptide specificity, is positively selected in mice devoid of a functional peptide transporter. These observations imply that TAP-dependent peptides are not absolutely required for positive selection of a functionally diverse repertoire of CD8+ T cells.  相似文献   

10.
Glycosylphosphatidylinositol-anchored (GPI)-Db molecules are defective in mediating cytotoxic T lymphocytes (CTL) lysis of transfected lymphoma cells, compared to their transmembrane (TM) counterpart. This defect is manifest when antigenic peptide must be processed and presented through the endogenous pathway. These same transfectants can be lysed by allospecific CTL, or by antigen-specific Db-restricted CTL when pulsed with appropriate exogenous synthetic peptide, demonstrating that they can bind and present peptide for CTL-mediated lympholysis. The defect apparently results from differences between GPI-Db and TM-Db assembly and transport, or from differences in membrane topology that affect CD8+ CTL recognition of major histocompatibility complex/peptide complex.  相似文献   

11.
Mice were immunized i.p. with soluble or heat-denatured protein antigens [ovalbumin, β-galactosidase, or recombinant E7 protein of human papilloma virus type 16 (HBV)]. Heat-denatured (100°C) preparations of these proteins were able to induce cytotoxic T lymphocytes (CTL) that recognize cells expressing the respective genes, whereas native protein was either inefficient or required up to 30-fold higher doses. If the heat-treated proteins were separated into aggregated and soluble fractions by ultracentrifugation, only the aggregated fractions were able to induce specific CTL; this is probably because of the easier access to one of the major histocompatibility complex class I loading pathways for exogenous antigen. Addition of the adjuvant aluminium hydroxide (alum) to aggregated proteins abolished their ability to induce CTL; thus, a condition leading to a strong antibody response appeared to inhibit CTL induction. Interestingly, immunization with heat-denatured ovalbumin plus alum increased the IgM/IgG1 ratio compared to immunization with native ovalbumin and alum. Immunization of B6 mice transgenic for an HLA-A2/H-2Kb hybrid gene with heat-denatured, recombinant HPV 16-E7 protein induced Db-restricted CTL specific for the peptide 49–57 of E7, indicating that this epitope is immunodominant over any A2-restricted E7 epitope in these mice. A whole influenza virus preparation heated to 100°C or even autoclaved was still able to induce virus-specific CTL and BALB/c spleen cells heated to 100°C could still cross-prime minor H-specific CTL in B6 mice, although with lower efficiency than fresh spleen cells. Thus, aggregated proteins can be considered as components for future vaccines.  相似文献   

12.
Although there are numerous minor histocompatibility antigens (MiHA), T cell responses leading to graft-versus-host (GVH) and graft-versus-tumor effects involve only a small number of immunodominant MiHA. The goal of the present study was to analyze at the cellular and molecular levels the mechanisms responsible for MiHA immunodominance. Cytotoxic T lymphocytes (CTL) generated in eight combinations of H2b strains of mice were tested against syngeneic targets sensitized with HPLC-fractionated peptides eluted from immunizing cells. The number of dominant MiHA was found to range from as little as two up to ten depending on the strain combination used. The nature of dominant MiHA was influenced by both the antigen profile of the antigen-presenting cells (APC) and the repertoire of responding CTL. When C57BL/6 dominant MiHA (B6dom) and H-Y were presented on separate APC, they showed similar immunogenicity. In contrast, when they were presented on the same APC, B6dom MiHA totally dominated H-Y. B6dom MiHA did not suppress anti-H-Y responses by acting as T cell receptor antagonists for anti-H-Y CTL, nor were anti-B6dom CTL precursors more abundant than anti-H-Y CTL precursors. Dominance resulted from competition for the APC surface between anti-B6dom and anti-H-Y CTL; the crucial difference between the dominant and the dominated MiHA appears to depend on the differential avidity of their respective CTL for APC. The only B6dom epitope thus far identified is the nonapeptide AAPDNRETF presented by H2-Db. We found that compared with other known Db-binding peptides, AAPDNRETF is expressed at very high levels on the cell surface, binds to the Db molecule with very high affinity, and dissociates very slowly from its presenting class I molecule. These data indicate that one cannot predict which MiHA will be dominant or dominated based simply on their respective immunogenicity when presented on separate APC. Indeed, the avidity of T cell/APC interactions appears to determine which antigen(s) will trigger T cell responses when numerous epitopes are presented by the same APC.  相似文献   

13.
In the class II region of the major histocompatibility complex (MHC), four genes implicated in MHC class I-mediated antigen processing have been described. Two genes (TAP 1 and TAP 2) code for multimembrane-spanning ATP-binding transporter proteins and two genes (LMP 2 and LMP 7) code for subunits of the proteasome. While TAP 1 and TAP 2 have been shown to transport antigenic peptides from the cytosol into the endoplasmic reticulum, where the peptides associate with MHC class I molecules, the role of LMP 2/7 in antigen presentation is less clear. Using antigen processing mutant T2 cells that lack TAP 1/2 and LMP 2/7 genes, it was recently shown that expression of TAP 1/2 alone was sufficient for processing and presentation of the influenza matrix protein M1 as well as the minor histocompatibility antigen HA-2 by HLA-A2. To understand if presentation of a broader range of viral antigens occurs in the absence of LMP 2/7, we transfected T2 cells with TAP 1, TAP 2 and either of the H-2Kb, Db or Kd genes and tested their ability to present vesicular stomatitis vires and influenza virus antigens to virus-specific cytotoxic T lymphocytes. We found that T2 cells, expressing TAP 1/2 gene products, presented all tested viral antigens restricted through either the H-2Kb, Db or Kd class I molecules. We conclude that the proteasome subunits LMP 2/7 as well as other gene products in the MHC class II region, except from TAP 1/2, are not generally necessary for presentation of a broader panel of viral antigens to cytotoxic T cells. However, the present results do not exclude that LMP 2/7 in a more subtle way may, or in rare cases completely, affect processing of antigen for presentation by MHC class I molecules.  相似文献   

14.
We have been investigating the immunogenicity of two class I major histocompatibility complex-specific peptides with a sequence derived from influenza virus nucleoprotein specific for Kd and one for Db. Peptide-modified splenocytes are unable to immunize for a primary cytotoxic T (Tc) cell response in vivo, or secondary response in vitro. Peptide-modified stimulator cells can boost virus-primed splenocytes for a strong secondary response in vitro. Animals primed with syngeneic peptide-modified splenocytes upon challenge with virus in vivo do not generate strong secondary Tc cell responses on day 3 after challenge in contrast to virus primed animals. Day 6 responses of virus-challenged, peptide-primed animals are reduced as compared to unprimed mice. This hyporesponsiveness is independent of CD8+ T cells in the priming population and can be elicited with tumor cell lines. The data are discussed in the framework of the two-signal model of immune induction.  相似文献   

15.
A murine solid tumor was transfected to express various levels of an allogeneic major histocompatibility complex class I gene (K216), in order to test the effect of the level of antigen expression on immunogenicity and sensitivity to lysis by cytotoxic T lymphocytes (CTL). The growth rates of clones of tumor cells expressing different levels of the transfected gene were similar in vitro and in nude mice. Although all tumor cells, including cells freshly isolated from growing tumors, were equally sensitive to lysis by specific CTL, only tumor cells expressing the highest level of the K216 antigen stimulated CTL and were rejected by normal mice. In contrast, tumor cells expressing lower levels of antigen failed to immunize for CTL and grew progressively in normal mice, despite retaining expression of the transfected gene and remaining fully sensitive to CTL-mediated lysis; thus, the threshold of antigen needed to stimulate CTL responses was considerably higher than that needed to lyse tumor cells. Reduction of K216 antigen expression from 100-fold to 40-fold above background, impaired significantly the ability of the tumor cells to induce a K216-specific immune response, while tumor cells expressing K216 at levels 2-fold above background were as susceptible to CTL-mediated lysis as tumor cells expressing 50-fold more antigen. The important implication of these findings is that some tumors occurring in nature may not be immunogenic but nevertheless express antigens which are potential targets for immune therapy.  相似文献   

16.
In this report, we demonstrate stimulation of T cell receptor (TCR) transgenic CD8 T cells by isolated major histocompatibility complex (MHC) class I H-2Ld complexes and antigenic peptide. This is the first demonstration of CD8 T cells activated by MHC and antigenic peptide in the absence of antigen priming. Furthermore, isolated MHC and a potent peptide antigen can stimulate phenotypically naive CD44? T cells to become CTL effectors and to produce interleukin-2 in nanogram per milliliter amounts. These results demonstrate that particular TCR antigen pairs may overcome the need for specialized antigen-presenting cells and have implications for mechanisms of autoimmunity and tolerance induction.  相似文献   

17.
Tumor associated, MHC I restricted antigenic peptides have been identified in both human and mouse tumors. Cytotoxic T lymphocytes (CTL) which recognize these tumor associated antigenic peptides are potential anti-cancer effectors. The anti-tumor activity of CTL is usually measured in vitro by the 51Cr release assay and in mice by tumor growth inhibition which is the most direct assessment of anti-tumor effect. In clinical studies, an in vivo tumor growth inhibition assay is not an option and an in vitro assay which corroborates with in vivo tumor growth is needed to assess the long-term outcome of CTL activity. Here, a three-dimensional (3-D) collagen gel assay was developed to measure in vitro the inhibition of mouse mammary tumor growth by anti-tumor CTL. BALB/c mouse CTL were induced with peptide E474 SFAVATTAL which was expressed by mouse mammary tumor cells D2F2. To measure D2F2 tumor growth inhibition in vitro, a mixture of tumor cells and anti-E474 CTL in a 1 μl cell bolus was embedded in the collagen gel. Complete eradication of tumor growth was observed at E:T ratio of or greater than 1:1. rIL-2 supplementation was necessary to achieve long-term tumor growth inhibition. Even spontaneous D2 tumor explant could be grown in the collagen gel and addition of anti-E474 to this culture reduced tumor growth. This assay system provides a realistic and sensitive alternative to the in vivo tumor growth inhibition assay and allows easy adaptation to test additional therapeutic reagents.  相似文献   

18.
Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas' disease, lives free within the cytoplasm of infected host cells. This intracellular niche suggests that parasite antigens may be processed and presented on major histocompatibility complex (MHC) class I molecules for recognition by CD8+ T cells. However, the parasite persists indefinitely in the mammalian host, indicating its success at evading immune clearance. It has been shown that T. cruzi interferes with processing and presentation of antigenic peptides in the MHC class II pathway. This investigation sought to determine whether interference in MHC class I processing and presentation occurs with T. cruzi infection. Surface expression of MHC class I molecules was found to be unaffected or up-regulated by T. cruzi infection in vitro. A model system employing a β-galactosidase (β-gal)-specific murine cytotoxic T lymphocyte (CTL) line (0805B) showed: (i) in vitro infection of mouse peritoneal macrophages or J774 cells with T. cruzi did not inhibit MHC class I presentation of exogenous peptide (a nine-amino acid epitope of β-gal) to the CTL line, (ii) in vitro infection of a β-gal-expressing 3T3 cell line (LZEJ) with T. cruzi did not inhibit MHC class I presentation of the endogenous protein to the CTL line and (iii) mouse renal adenocarcinoma cells infected with T. cruzi and subsequently infected with adenovirus expressing β-gal were able to present antigen to the β-gal-specific CTL line. These findings indicate that the failure of the immune response to clear T. cruzi does not result from global interference by the parasite with MHC class I processing and presentation. Parasites engineered to express β-gal were unable to sensitize infected antigen-presenting cells in vitro to lysis by the CTL 0805B line. This was probably due to the intracellular localization of the β-gal within the parasite and its inaccessibility to the host cell cytoplasm.  相似文献   

19.
20.
A direct and sensitive biochemical assay to measure the interaction in solution between peptides and affinity-purified major histocompatibility complex (MHC) class I molecules has been generated. Specific binding reflecting the known class I restriction of cytotoxic T cell responses was obtained. Adding an excess of β2-microglobulin (β2m) significantly increased the rate of peptide association, but it did not affect the rate of dissociation. Binding was complicated by a rapid and apparently irreversible loss of functional MHC class I at 37°C which might limit the life span of empty MHC class I thereby preventing the inadvertent exchange of peptides at the target cell surface. All class I molecules tested bound peptides of the canonical octa- to nona-meric length. However, one class I molecule, Kk, also bound peptides, which were much longer suggesting that the preference of class I molecules for short epitopes is not absolute and may be caused by factors other than the peptide-MHC class I binding event itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号